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The object of this paper is to emphasize the role of a suitable implicit relation involving altering distance function which covers a
multitude of contraction conditions in one go. By using this implicit relation, we prove a new coincidence and common fixed point
theorem for a hybrid pair of occasionally coincidentally idempotentmappings in ametric space employing the common limit range
property. Ourmain result improves and generalizes a host of previously known results. We also utilize suitable illustrative examples
to substantiate the realized improvements in our results.

1. Introduction and Preliminaries

Fixed point theory is one of the most rapidly growing
research areas in nonlinear functional analysis. Apart from
numerous extensions of Banach Contraction Principle for
single valued mappings, it was also naturally extended to
multivalued mappings by Nadler Jr. [1] in 1969 which is also
sometimes referred to as Nadler Contraction Principle. Since
then, there has been continuous and intense research activity
in multimap fixed point theory (including hybrid fixed point
results) and by now there exists an extensive literature on this
specific theme (see, e.g., [2–7] and the references therein).The
study of common fixed points of mappings satisfying hybrid
contraction conditions has been at the center of vigorous
research activity. Here, it can be pointed out that hybrid
fixed theorems have numerous applications in science and
engineering.

In the following lines, we present some definitions and
their implications which will be utilized throughout this
paper.

Let (𝑋, 𝑑) be a metric space. Then, on the lines of Nadler
Jr. [1], we adopt that

(1) 𝐶𝐿(𝑋) = {𝐴 : 𝐴 is a nonempty closed subset of𝑋},
(2) 𝐶𝐵(𝑋) = {𝐴 : 𝐴 is a nonempty closed and bounded

subset of𝑋},
(3) for nonempty closed and bounded subsets 𝐴, 𝐵 of 𝑋

and 𝑥 ∈ 𝑋,

𝑑 (𝑥, 𝐴) = inf {𝑑 (𝑥, 𝑎) : 𝑎 ∈ 𝐴} ,

𝐻 (𝐴, 𝐵)

= max {sup {𝑑 (𝑎, 𝐵) : 𝑎 ∈ 𝐴} , sup {𝑑 (𝑏, 𝐴) : 𝑏 ∈ 𝐵}} .

(1)

It is well known that 𝐶𝐵(𝑋) is a metric space with the
distance𝐻which is known as the Hausdorff-Pompeiumetric
on 𝐶𝐵(𝑋). The following terminology is also standard.

Let (𝑋, 𝑑) be a metric space with 𝑓 : 𝑋 → 𝑋 and 𝑇 :

𝑋 → 𝐶𝐵(𝑋). Then

(1) a point 𝑥 ∈ 𝑋 is a fixed point of 𝑓 (resp., 𝑇) if 𝑥 = 𝑓𝑥

(resp., 𝑥 ∈ 𝑇𝑥). The set of all fixed points of 𝑓 (resp.,
𝑇) is denoted by 𝐹(𝑓) (resp., 𝐹(𝑇));
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(2) a point 𝑥 ∈ 𝑋 is a coincidence point of 𝑓 and 𝑇 if
𝑓𝑥 ∈ 𝑇𝑥. The set of all coincidence points of 𝑓 and 𝑇

is denoted by 𝐶(𝑓, 𝑇);
(3) a point 𝑥 ∈ 𝑋 is a common fixed point of 𝑓 and 𝑇 if

𝑥 = 𝑓𝑥 ∈ 𝑇𝑥. The set of all common fixed points of 𝑓
and 𝑇 is denoted by 𝐹(𝑓, 𝑇).

In 1984, Khan et al. [8] utilized the idea of altering
distance function inmetric fixed point theorywhich is indeed
a control function that alters distance between two points in
a metric space. Thereafter, this idea has further been utilized
by several mathematicians (see, e.g., [9–13]).

Definition 1 (see [8]). An altering distance function is a
mapping 𝜓 : [0,∞) → [0,∞) which satisfies that

(𝜓
1
) 𝜓(𝑡) is increasing and continuous and

(𝜓
2
) 𝜓(𝑡) = 0 if and only if 𝑡 = 0.

Certain ideas on commutativity and weak commutativity
for a pair of hybrid mappings on metric spaces were utilized
by Kaneko [14, 15]. In 1989, Singh et al. [16] extended the
notion of compatible mappings to hybrid pair of mappings
and proved some common fixed point theorems for nonlin-
ear hybrid contractions. Such ways of proving new results
continue to attract the attention of many researchers of this
domain where it can be observed that under compatibility
the fixed point results often require continuity of one of the
underlying mappings.

Kamran [17] extended the property (E.A) (due to Aamri
and El Moutawakil [18]) to a hybrid pair of mappings. Most
recently, Imdad et al. [19] established common limit range
property (essentially motivated by Sintunavarat and Kumam
[20]) for a hybrid pair of mappings and proved some fixed
point theorems in symmetric (or semimetric) spaces.

The notions of coincidentally idempotent and occasion-
ally coincidentally idempotent hybrid pairs of mappings
were, respectively, introduced and used by Imdad et al. [21]
and Pathak and Rodŕıguez-López [22]. An easy and natural
example is available in Kadelburg et al. [23, Example 1]
exhibiting the importance of the occasionally coincidentally
idempotent property over coincidentally idempotent prop-
erty.

The technical definitions of the earliermentioned notions
are described in the following lines.

Definition 2. Let (𝑋, 𝑑) be a metric space with 𝑓 : 𝑋 → 𝑋

and 𝑇 : 𝑋 → 𝐶𝐵(𝑋). A hybrid pair of mappings (𝑓, 𝑇) is
said to be

(1) commuting on𝑋 [14] if 𝑓𝑇𝑥 ⊆ 𝑇𝑓𝑥 for all 𝑥 ∈ 𝑋,
(2) weakly commuting on 𝑋 [15] if 𝐻(𝑓𝑇𝑥, 𝑇𝑓𝑥) ≤

𝑑(𝑓𝑥, 𝑇𝑥) for all 𝑥 ∈ 𝑋,
(3) compatible [16] if 𝑓𝑇𝑥 ∈ 𝐶𝐵(𝑋) for all 𝑥 ∈ 𝑋

and lim
𝑛→∞

𝐻(𝑇𝑓𝑥
𝑛
, 𝑓𝑇𝑥
𝑛
) = 0, whenever {𝑥

𝑛
} is a

sequence in 𝑋 such that 𝑇𝑥
𝑛

→ 𝐴 ∈ 𝐶𝐵(𝑋) and
𝑓𝑥
𝑛
→ 𝑡 ∈ 𝐴, as 𝑛 → ∞,

(4) noncompatible [24] if there exists at least one
sequence {𝑥

𝑛
} in 𝑋 such that 𝑇𝑥

𝑛
→ 𝐴 ∈ 𝐶𝐵(𝑋)

and 𝑓𝑥
𝑛

→ 𝑡 ∈ 𝐴, as 𝑛 → ∞, but lim
𝑛→∞

𝐻

(𝑇𝑓𝑥
𝑛
, 𝑓𝑇𝑥
𝑛
) is either nonzero or nonexistent,

(5) with the property (E.A) [17] if there exists a sequence
{𝑥
𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑡 ∈ 𝐴 = lim

𝑛→∞
𝑇𝑥
𝑛
, (2)

for some 𝑡 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋),
(6) with common limit range property with respect to the

mapping 𝑓 [19] if there exists a sequence {𝑥
𝑛
} in 𝑋

such that

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢 ∈ 𝐴 = lim

𝑛→∞
𝑇𝑥
𝑛
, (3)

for some 𝑢 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋),
(7) coincidentally idempotent [21] if 𝑓𝑓V = 𝑓V for every

V ∈ 𝐶(𝑓, 𝑇); that is,𝑓 is idempotent at the coincidence
points of 𝑓 and, 𝑇, and

(8) occasionally coincidentally idempotent [22] if 𝑓𝑓V =

𝑓V for some V ∈ 𝐶(𝑓, 𝑇).

Some relations between the introduced notions can be
seen in [25, 26].

Remark 3. Note that if a pair (𝑓, 𝑇) satisfies the property
(E.A) along with the closedness of 𝑓(𝑋), then the pair also
satisfies the common limit range property with respect to the
mapping 𝑓 (see Theorem 7). However, common limit range
propertymay be satisfiedwithout the closedness of𝑓(𝑋) (e.g.,
Example 6).

In this paper, an attempt has been made to derive com-
mon fixed point theorems for a hybrid pair ofmappings using
the notion of common limit range property with occasionally
coincidentally idempotent property involving implicit rela-
tions and altering distance. The presented theorems extend
and unify various known fixed point results [21, 23, 24, 27–
37]. Some examples are also furnished to exhibit that our
results are proper extensions of the known ones.

2. Implicit Relations

In the recent past, implicit relations have been utilized to
prove unified common fixed points results covering various
kinds of contractionmappings in one go. In fact, this idea was
initiated by Popa [38, 39], where he introduced an implicit
function which covers a variety of contraction classes. In
[33], Popa and Patriciu introduced the following implicit
function and utilized the same to prove some coincidence
and common fixed point results for hybrid pair of mappings
covering several contraction conditions.

In what follows, Φ will be the set of all continuous
functions 𝜙 : R6

+
→ R satisfying the following conditions:

(𝜙
1
) 𝜙 is nondecreasing in its first variable;

(𝜙
2
) 𝜙(𝑡, 0, 0, 𝑡, 𝑡, 0) ≤ 0 implies 𝑡 = 0.

Example 4 (see [33]). The following functions are the exam-
ples of implicit function belonging to the set Φ:
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(1)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−max {𝑡

2
,
𝑡
3
+ 𝑡
4

2
,
𝑡
5
+ 𝑡
6

2
} , (4)

(2)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− 𝑘max {𝑡

2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
} , (5)

where 0 < 𝑘 < 1,
(3)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− 𝑎𝑡
2
− 𝑏 (𝑡
3
+ 𝑡
4
) − 𝑐 (𝑡

5
+ 𝑡
6
) ,

(6)

where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑏 + 𝑐 < 1,
(4)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− 𝑎𝑡
2
− 𝑏 (𝑡
3
+ 𝑡
4
) − 𝑐min {𝑡

5
, 𝑡
6
} ,

(7)

where 𝑎, 𝑐 ≥ 0 and 0 < 𝑏 < 1,
(5)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
− 𝑎𝑡
2
− 𝑏 (𝑡
3
+ 𝑡
4
) − 𝑐√𝑡

5
𝑡
6
, (8)

where 𝑎, 𝑐 ≥ 0 and 0 < 𝑏 < 1,
(6)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
)

= 𝑡
1
− 𝑎𝑡
2
− 𝑏max {𝑡

3
, 𝑡
4
} − 𝑐max {𝑡

5
, 𝑡
6
} ,

(9)

where 𝑎, 𝑏, 𝑐 ≥ 0 and 0 < 𝑏 + 𝑐 < 1,
(7)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
2

1
− 𝑡
2

2
− 𝑎

𝑡2
3
+ 𝑡2
4

1 +min {𝑡
5
, 𝑡
6
}
, (10)

where 0 < 𝑎 < 1,
(8)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
)

= 𝑡
1
−max {𝑡

2
, 𝑡
3
, 𝑡
4
} − (1 − 𝛼)max {𝑎𝑡

5
+ 𝑏𝑡
6
} ,

(11)

where 0 ≤ 𝛼 < 1, 0 < 𝑎 < 1 and 𝑏 ≥ 0,
(9)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−max {𝑐𝑡

2
, 𝑐𝑡
3
, 𝑐𝑡
4
, 𝑎𝑡
5
+ 𝑏𝑡
6
} ,

(12)

where 𝑎, 𝑏, 𝑐 ≥ 0 and max{𝑎, 𝑐} < 1,
(10)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−max {𝑡

2
, 𝑘 (

𝑡
3
+ 𝑡
4

2
) ,

𝑡
5
+ 𝑡
6

2
} ,

(13)

where 0 < 𝑘 < 1,

(11)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
)

= 𝑡
1
−max {𝑘

1
(𝑡
2
+ 𝑡
3
+ 𝑡
4
) , 𝑘
2
(𝑡
5
+ 𝑡
6
)} ,

(14)

where 𝑘
1
, 𝑘
2
≥ 0 and max{𝑘

1
, 𝑘
2
} < 1, and

(12)

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
2

1
−
𝑡2
3
𝑡2
4
+ 𝑡2
5
𝑡2
6

1 + 𝑡
2

. (15)

Certainly, apart from foregoing examples, there are many
other functions that meet the requirements (𝜙

1
) and (𝜙

2
).

3. Main Results

Now we prove our main result.

Theorem 5. Let 𝑓 be a self-mapping of a metric space (𝑋, 𝑑)
and 𝑇 a mapping from𝑋 into 𝐶𝐵(𝑋) satisfying

𝜙 (𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) ,

𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))) ≤ 0,

(16)

for all 𝑥, 𝑦 ∈ 𝑋, where 𝜙 ∈ Φ and 𝜓(𝑡) is an altering distance
function. Suppose that the pair (𝑓, 𝑇) satisfies the common
limit range property with respect to the mapping 𝑓. Then the
mappings 𝑓 and 𝑇 have a coincidence point (i.e., 𝐶(𝑓, 𝑇) ̸= 0).

Moreover, the mappings 𝑓 and 𝑇 have a common fixed
point in 𝑋 provided that the pair (𝑓, 𝑇) is occasionally
coincidentally idempotent.

Proof. Suppose that the pair (𝑓, 𝑇) enjoys the common limit
range property with respect to the mapping 𝑓. Then there
exists a sequence {𝑥

𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢 ∈ 𝐴 = lim

𝑛→∞
𝑇𝑥
𝑛
, (17)

for some 𝑢 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋). First we show that 𝑓𝑢 ∈ 𝑇𝑢.
To accomplish this, using inequality (16) with 𝑥 = 𝑥

𝑛
and

𝑦 = 𝑢, we obtain

𝜙 (𝜓 (𝐻 (𝑇𝑥
𝑛
, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑥

𝑛
, 𝑓𝑢)) , 𝜓 (𝑑 (𝑓𝑥

𝑛
, 𝑇𝑥
𝑛
)) ,

𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑥
𝑛
, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝑇𝑥

𝑛
)))

≤ 0.

(18)

Taking the limit as 𝑛 → ∞, we have

𝜙 (𝜓 (𝐻 (𝐴, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝑓𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝐴)) ,

𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝐴))) ≤ 0.

(19)
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Since 𝑓𝑢 ∈ 𝐴, we have 𝑑(𝑓𝑢, 𝑇𝑢) ≤ 𝐻(𝐴, 𝑇𝑢). Using (𝜙
1
) in

inequality (19), we have

𝜙 (𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (0) , 𝜓 (0) , 𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) ,

𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (0)) ≤ 0,
(20)

or, equivalently,

𝜙 (𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 0, 0,

𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 𝜓 (𝑑 (𝑓𝑢, 𝑇𝑢)) , 0) ≤ 0.
(21)

From the condition (𝜙
2
), we have 𝜓(𝑑(𝑓𝑢, 𝑇𝑢)) = 0 which

implies 𝑑(𝑓𝑢, 𝑇𝑢) = 0. Hence 𝑓𝑢 ∈ 𝑇𝑢 which shows that the
pair (𝑓, 𝑇) has a coincidence point (i.e., 𝐶(𝑓, 𝑇) ̸= 0) so that
the set of coincidence points is nonempty.

In the case that the mappings 𝑓 and 𝑇 are occasionally
coincidentally idempotent; then 𝑓𝑓V = 𝑓V for some V ∈

𝐶(𝑓, 𝑇), which implies 𝑓𝑓V = 𝑓V ∈ 𝑇V. Now we assert that
𝑓V ∈ 𝑇𝑓V. On using inequality (16) with 𝑥 = V and 𝑦 = 𝑓V,
we get

𝜙 (𝜓 (𝐻 (𝑇V, 𝑇𝑓V)) , 𝜓 (𝑑 (𝑓V, 𝑓𝑓V)) , 𝜓 (𝑑 (𝑓V, 𝑇V)) ,

𝜓 (𝑑 (𝑓𝑓V, 𝑇𝑓V)) , 𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 𝜓 (𝑑 (𝑓𝑓V, 𝑇V)) ) ≤ 0.

(22)

Since 𝑓V ∈ 𝑇V, we have 𝑑(𝑇𝑓V, 𝑓V) ≤ 𝐻(𝑇𝑓V, 𝑇V). Using (𝜙
1
)

in inequality (22), we get

𝜙 (𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 𝜓 (0) , 𝜓 (0) , 𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) ,

𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 𝜓 (0)) ≤ 0,
(23)

or, equivalently,

𝜙 (𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 0, 0,

𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 𝜓 (𝑑 (𝑓V, 𝑇𝑓V)) , 0) ≤ 0.
(24)

In view of (𝜙
2
), we have 𝜓(𝑑(𝑓V, 𝑇𝑓V)) = 0 which implies

𝑑(𝑓V, 𝑇𝑓V) = 0; that is, 𝑓V ∈ 𝑇𝑓V. Thus in all, we have 𝑓V =

𝑓𝑓V ∈ 𝑇𝑓V which shows that 𝑓V is a common fixed point of
the mappings 𝑓 and 𝑇.

Example 6. Consider 𝑋 = [0, +∞) equipped with the
standard metric. Define mappings 𝑓 : 𝑋 → 𝑋 and 𝑇 : 𝑋 →

𝐶𝐵(𝑋) as follows:

𝑓𝑥 =

{{

{{

{

2𝑥
2, 0 ≤ 𝑥 < 1;

𝑥2 + 𝑥 + 3, 1 ≤ 𝑥 < 2;

2𝑥2 − 3, 𝑥 ≥ 2,

𝑇𝑥 = [0, 𝑥
2
+ 1] .

(25)

Then

(i) 𝑓(𝑋) = [0, 2) ∪ [5, +∞) is not closed in𝑋;
(ii) 𝐶(𝑓, 𝑇) = [0, 1) ∪ {2};

(iii) for 𝑥
𝑛
= 1/𝑛, it is lim

𝑛→∞
𝑓𝑥
𝑛
= 0 = 𝑓0 ∈ [0, 1] =

𝑇0 = lim
𝑛→∞

𝑇𝑥
𝑛
; hence, (𝑓, 𝑇) enjoys the common

limit range property with respect to the mapping 𝑓;

(iv) 𝑓𝑓0 = 𝑓0 = 0; hence, (𝑓, 𝑇) is occasionally
coincidentally idempotent;

(v) 𝑓𝑓2 = 𝑓5 = 47 ̸= 𝑓2; hence, (𝑓, 𝑇) is not coinciden-
tally idempotent.

Define 𝜓(𝑡) = 𝑡/2 (which is an altering distance function),
while 𝜙 ∈ Φ is given by

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−max {𝑡

2
,
1

2
(
𝑡
3
+ 𝑡
4

2
) ,

𝑡
5
+ 𝑡
6

2
}

(26)

(see Example 4(10) with 𝑘 = 1/2). Write

𝐿 = 𝜙 (𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) ,

𝜓 (𝑑 (𝑓y, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥)))

= 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

−max{𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ,

1

2
(
𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))

2
) ,

𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))

2
} .

(27)

In order to check the contractive condition (16) ofTheorem 5,
without loss of generality, we can suppose that 0 ≤ 𝑥 <

𝑦 < ∞. Then 𝜓(𝐻(𝑇𝑥, 𝑇𝑦)) = (1/2)(𝑦2 − 𝑥2). Consider the
following possible cases.

(1) For the case 0 ≤ 𝑥 < 𝑦 < 1, we have

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) − 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

=
1

2
(𝑦
2
− 𝑥
2
) −

1

2
⋅ 2 (𝑦
2
− 𝑥
2
)

= −
1

2
(𝑦
2
− 𝑥
2
) < 0.

(28)

(2) In the case 1 ≤ 𝑥 < 𝑦 < 2, one finds

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) − 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

=
1

2
(𝑦
2
− 𝑥
2
) −

1

2
(𝑦
2
+ 𝑦 − 𝑥

2
− 𝑥)

= −
1

2
(𝑦 − 𝑥) < 0.

(29)
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(3) If 2 ≤ 𝑥 < 𝑦, then one can show on the lines of case
(1) that 𝐿 < 0.

(4) If 0 ≤ 𝑥 < 1 ≤ 𝑦 < 2, then 𝑑(𝑓𝑥, 𝑇𝑦) = 0, 𝑑(𝑓𝑦, 𝑇𝑥) =
𝑦2 + 𝑦 + 3 − (𝑥2 + 1) = 𝑦2 + 𝑦 + 2 − 𝑥2, and

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) −
𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))

2

=
𝑦2 − 𝑥2

2
−
𝑦2 + 𝑦 + 2 − 𝑥2

4

=
𝑦2 − 𝑦 − 2 − 𝑥2

4
< 0.

(30)

(5) If 0 ≤ 𝑥 < 1, 𝑦 ≥ 2, then

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) − 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

=
1

2
(𝑦
2
− 𝑥
2
) −

1

2
(2𝑦
2
− 3 − 2𝑥

2
)

=
1

2
(3 − 𝑦

2
+ 𝑥
2
) < 0.

(31)

(6) The case 1 ≤ 𝑥 < 2 ≤ 𝑦 is similar to the case (2).

Thus, all the conditions ofTheorem 5 are satisfied and the
pair (𝑓, 𝑇) has common fixed points (which are 0 and 1/2).

The same conclusion cannot be reached using [35, Theo-
rem 3.1] or [33,Theorem 4.1], as 𝑓(𝑋) is not closed and (𝑓, 𝑇)
is not coincidentally idempotent.

Theorem 7. Let 𝑓 be a self-mapping of a metric space (𝑋, 𝑑)
and 𝑇 a mapping from𝑋 into 𝐶𝐵(𝑋) satisfying inequality (16)
ofTheorem 5. Suppose that the pair (𝑓, 𝑇) satisfies the property
(E.A) and 𝑓(𝑋) is a closed subset of 𝑋; then the mappings 𝑓
and 𝑇 have a coincidence point (i.e., 𝐶(𝑓, 𝑇) ̸= 0).

Moreover, the mappings 𝑓 and 𝑇 have a common fixed
point in 𝑋 provided that the pair (𝑓, 𝑇) is occasionally
coincidentally idempotent.

Proof. If the pair (𝑓, 𝑇) enjoys the property (E.A), then there
exists a sequence {𝑥

𝑛
} in𝑋 such that

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑧 ∈ 𝐴 = lim

𝑛→∞
𝑇𝑥
𝑛
, (32)

for some 𝑧 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋). Since 𝑓(𝑋) is a closed
subset of𝑋, there exists some 𝑢 ∈ 𝑋 such that 𝑧 = 𝑓𝑢. Hence
condition (32) implies

lim
𝑛→∞

𝑓𝑥
𝑛
= 𝑓𝑢 ∈ 𝐴 = lim

𝑛→∞
𝑇𝑥
𝑛
, (33)

for some 𝑢 ∈ 𝑋 and 𝐴 ∈ 𝐶𝐵(𝑋) which shows that the pair
(𝑓, 𝑇) also satisfies the common limit range property with
respect to the mapping 𝑓. Now, the conclusions follow from
Theorem 5.

Example 8. Consider 𝑋 = [0, 2] equipped with the standard
metric. Define mappings 𝑓 : 𝑋 → 𝑋 and 𝑇 : 𝑋 → 𝐶𝐵(𝑋)

as

𝑓𝑥 = {
2 − 𝑥, 0 ≤ 𝑥 ≤ 1;

2, 1 < 𝑥 ≤ 2,

𝑇𝑥 =

{{{

{{{

{

[
𝑥 + 1

2
,
5

4
] , 0 ≤ 𝑥 ≤ 1;

[
3

4
, 1] , 1 < 𝑥 ≤ 2.

(34)

Then
(i) 𝑓(𝑋) = [1, 2] is closed in𝑋;
(ii) 𝐶(𝑓, 𝑇) = [3/4, 1];
(iii) for 𝑥

𝑛
= 1 − 1/𝑛, it is lim

𝑛→∞
𝑓𝑥
𝑛
= 1 ∈ [1, 5/4] =

lim
𝑛→∞

𝑇𝑥
𝑛
; hence, (𝑓, 𝑇) enjoys the property (E.A);

(iv) 𝑓𝑓1 = 𝑓1 = 1; hence, (𝑓, 𝑇) is occasionally
coincidentally idempotent;

(v) 𝑓𝑓(3/4) = 𝑓(5/4) = 2 ̸= 𝑓(3/4); hence, (𝑓, 𝑇) is not
coincidentally idempotent.

Take 𝜓(𝑡) = 2𝑡 (which is an altering distance function) and
𝜙 ∈ Φ given by

𝜙 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
, 𝑡
6
) = 𝑡
1
−
1

2
𝑡
2
−
1

2
(𝑡
3
+ 𝑡
4
) (35)

(see Example 4(3) with 𝑎 = 𝑏 = 1/2, 𝑐 = 0). Denote

𝐿 = 𝜙 (𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) ,

𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥)))

= 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) −
1

2
𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

−
1

2
(𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))) .

(36)

In order to check the contractive condition (16) ofTheorem 5,
without loss of generality, we can suppose that 0 ≤ 𝑥 < 𝑦 ≤ 2.
Consider the following possible cases.

(1) Consider 0 ≤ 𝑥 < 𝑦 ≤ 1. Then

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) −
1

2
𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

= 2 ⋅
𝑦 − 𝑥

2
−
1

2
⋅ 2 (𝑦 − 𝑥) = 0.

(37)

(2) Consider 1 < 𝑥 < 𝑦 ≤ 2. Then 𝐿 ≤ 𝜓(𝐻(𝑇𝑥, 𝑇𝑦)) −

(1/2)𝜓(𝑑(𝑓𝑥, 𝑓𝑦)) = 0 − 0 = 0.
(3) Consider 0 ≤ 𝑥 ≤ 1 < 𝑦 ≤ 2. Then𝐻(𝑇𝑥, 𝑇𝑦) = 1/4,

𝑑(𝑓𝑥, 𝑇𝑥) ≥ 0, 𝑑(𝑓𝑦, 𝑇𝑦) = 1, and

𝐿 ≤ 𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦)) −
1

2
[𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))]

≤ 2 ⋅
1

4
−
1

2
[0 + 2 ⋅ 1] = −

1

2
< 0.

(38)
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Hence, all the conditions of Theorem 7 are fulfilled and the
pair (𝑓, 𝑇) has a common fixed point (which is 1).

The same conclusion cannot be obtained using, for
example, [35, Theorem 3.1] or [33, Theorem 4.1], since (𝑓, 𝑇)
is not coincidentally idempotent.

Notice that a noncompatible hybrid pair always satisfies
the property (E.A). Hence, we get the following corollary.

Corollary 9. Let 𝑓 be a self-mapping of a metric space (𝑋, 𝑑)
and 𝑇 a mapping from𝑋 into 𝐶𝐵(𝑋) satisfying inequality (16)
ofTheorem 5. Suppose that the pair (𝑓, 𝑇) is noncompatible and
𝑓(𝑋) is a closed subset of𝑋. Then the mappings 𝑓 and 𝑇 have
a coincidence point (i.e., 𝐶(𝑓, 𝑇) ̸= 0).

Moreover, the mappings 𝑓 and 𝑇 have a common fixed
point in 𝑋 provided that the pair (𝑓, 𝑇) is occasionally
coincidentally idempotent.

Corollary 10. The conclusions of Theorems 5 and 7 and
Corollary 9 remain true if inequality (16) is replaced by one of
the following contraction conditions. For all 𝑥, 𝑦 ∈ 𝑋 and some
𝜓 ∈ Ψ,

(1)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ max{𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ,
𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))

2
,

𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))

2
} ,

(39)

(2)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ 𝑘max {𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) ,

𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦)) ,

𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))} ,

(40)

where 0 < 𝑘 < 1,

(3)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ 𝑎𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

+ 𝑏 [𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))]

+ 𝑐 [𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))] ,

(41)

where 𝑎, 𝑏, 𝑐 ≥ 0 and 𝑏 + 𝑐 < 1,

(4)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ 𝑎𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

+ 𝑏 [𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))]

+ 𝑐min {𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))} ,

(42)

where 𝑎, 𝑐 ≥ 0 and 0 < 𝑏 < 1,
(5)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ 𝑎𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

+ 𝑏 [𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))]

+ 𝑐√𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥)),

(43)

where 𝑎, 𝑐 ≥ 0 and 0 < 𝑏 < 1,
(6)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ 𝑎𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

+ 𝑏max {𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))}

+ 𝑐max {𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))} ,

(44)

where 𝑎, 𝑏, 𝑐 ≥ 0 and 0 < 𝑏 + 𝑐 < 1,
(7)

𝜓 (𝐻
2
(𝑇𝑥, 𝑇𝑦))

≤ 𝜓 (𝑑
2
(𝑓𝑥, 𝑓𝑦))

+ 𝑎
𝜓 (𝑑2 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑2 (𝑓𝑦, 𝑇𝑦))

1 +min {𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))}
,

(45)

where 0 < 𝑎 < 1,
(8)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ max {𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) , 𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) , 𝜓 (𝑑 (𝑓𝑦, 𝑇y))}

+ (1 − 𝛼) (𝑎𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝑏𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))) ,

(46)

where 0 ≤ 𝛼 < 1, 0 < 𝑎 < 1, and 𝑏 ≥ 0,
(9)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ max {𝑐𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ,

𝑐𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) , 𝑐𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦)) ,

𝑎𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝑏𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))} ,

(47)

where 𝑎, 𝑏, 𝑐 ≥ 0 andmax{𝑎, 𝑐} < 1,
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(10)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ max{𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)) ,

𝑘
𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))

2
,

𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥))

2
} ,

(48)

where 0 < 𝑘 < 1,
(11)

𝜓 (𝐻 (𝑇𝑥, 𝑇𝑦))

≤ max {𝑘
1
(𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦))

+𝜓 (𝑑 (𝑓𝑥, 𝑇𝑥)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑦))) ,

𝑘
2
(𝜓 (𝑑 (𝑓𝑥, 𝑇𝑦)) + 𝜓 (𝑑 (𝑓𝑦, 𝑇𝑥)))} ,

(49)

where 𝑘
1
, 𝑘
2
≥ 0 andmax{𝑘

1
, 𝑘
2
} < 1,

(12)

𝜓 (𝐻
2
(𝑇𝑥, 𝑇𝑦))

≤ (𝜓 (𝑑
2
(𝑓𝑥, 𝑇𝑥)) 𝜓 (𝑑

2
(𝑓𝑦, 𝑇𝑦))

+𝜓 (𝑑
2
(𝑓𝑥, 𝑇𝑦)) 𝜓 (𝑑

2
(𝑓𝑦, 𝑇𝑥)))

× (1 + 𝜓 (𝑑 (𝑓𝑥, 𝑓𝑦)))
−1

.

(50)

Proof. The conclusion follows from Theorem 5 in view of
Example 4, (1)–(12).

On setting 𝜓(𝑡) = 𝑡 in the earlier defined theorems
involving altering distance, we can get some natural results
which improve hybrid type fixed point results given in the
literature. For the sake of simplicity, we only derive the
following corollary by putting 𝜓(𝑡) = 𝑡 in Theorem 5.

Corollary 11. Let 𝑓 be a self-mapping of a metric space (𝑋, 𝑑)
and 𝑇 a mapping from𝑋 into 𝐶𝐵(𝑋) satisfying

𝜙 (𝐻 (𝑇𝑥, 𝑇𝑦) , 𝑑 (𝑓𝑥, 𝑓𝑦) , 𝑑 (𝑓𝑥, 𝑇𝑥) ,

𝑑 (𝑓𝑦, 𝑇𝑦) , 𝑑 (𝑓𝑥, 𝑇𝑦) , 𝑑 (𝑓𝑦, 𝑇𝑥)) ≤ 0,
(51)

for all 𝑥, 𝑦 ∈ 𝑋 and some 𝜙 ∈ Φ. Suppose that the pair (𝑓, 𝑇)
satisfies the common limit range property with respect to the
mapping 𝑓. Then the mappings 𝑓 and 𝑇 have a coincidence
point (i.e., 𝐶(𝑓, 𝑇) ̸= 0).

Moreover, the mappings 𝑓 and 𝑇 have a common fixed
point in 𝑋 provided that the pair (𝑓, 𝑇) is occasionally
coincidentally idempotent.
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