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We focus on the expected discounted penalty function of a compound Poisson risk model with random incomes and potentially
delayed claims. It is assumed that each main claim will produce a byclaim with a certain probability and the occurrence of the
byclaim may be delayed depending on associated main claim amount. In addition, the premium number process is assumed as a
Poisson process. We derive the integral equation satisfied by the expected discounted penalty function. Given that the premium
size is exponentially distributed, the explicit expression for the Laplace transform of the expected discounted penalty function is
derived. Finally, for the exponential claim sizes, we present the explicit formula for the expected discounted penalty function.

1. Introduction

In the classical risk theory, assumption of independence
among claims is an important condition to the study of risk
models. However, in many practical situations, the assump-
tion is often inconsistent with the operation of insurance
companies. In reality, claims may be time-correlated for
various reasons, and it is important to study risk model
which is able to depict this phenomenon. Since the work
by Waters and Papatriandafylou [1], many researchers have
studied various kinds of dependencies among claim amounts
and claim numbers, such as Gerber [2], Shiu [3], Dickson
[4], Willmot [5], and Ambagaspitiya [6, 7]. Among others,
in the case of the compound binomial model, Yuen and Guo
[8] consider a specific dependence structure between the
claim sizes and interclaim times. Under their assumption,
each claim causes a byclaim but the occurrence of the byclaim
may be delayed. Further, based on the same model, Xiao
and Guo [9] investigate the joint distribution of the surplus
immediately prior to ruin and the deficit at ruin.

Note that the risk model referred above is based on the
assumption that the probability of delay of each byclaim is

constant and independent of claim amounts. Albrecher and
Boxma [10] consider a generalization of the classical risk
model to a dependent setting where the distribution of the
time between two claim occurrences depends on the previous
claim size.Motivated by the idea, Zou andXie [11] introduce a
riskmodel with an interesting dependence structure between
the amount of main claim and the occurrence of byclaim.
It is a natural extension for the delayed claims model due
to the fact that the bigger the claim amount for main claim
(such as car damage) is, the greater odds of the byclaim
(such as injury) would be delayed in the actual practice with
insurer. Based on the structure, we consider an improved
payment mode named potentially delayed claims where the
main claim induces a byclaim with a certain probability. The
improvement is inspired from a series of examples similar to
the case referred above, in which main claim does not induce
byclaim with probability 1.

Because the insurance company may have lump sums of
income, we apply potentially delayed claims to the compound
Poisson risk model in the presence of random incomes.
Since Boucherie et al. [12] described the random incomes by
adding a compound Poisson process with positive jumps to
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the classical risk model, many authors have studied similar
topics. Boikov [13] studies ruin problem of a risk model with
stochastic premium process. Bao [14] considers a risk model,
in which the premium is a Poisson process instead of a linear
function of time. Labbé et al. [15] consider a risk model
where the stochastic incomes follow a compound Poisson
process and research the casewhen the premiumshaveErlang
distributions in more depth. Hao and Yang [16] analyze the
expected discounted penalty function of a compoundPoisson
risk model with random incomes and delayed claims. Yu [17]
also studies the expected discounted penalty function in a
Markov regime-switching risk model with random income.

In this paper, we aim at the expected discounted penalty
function of an extensive risk model with random incomes
and potentially delayed claims. This paper generalizes the
model ofHao andYang [16]. Based on the extensivemodel, we
obtain explicit expression of the expected discounted penalty
function, while [16] derives defective renewal equations of it
only.When themain claim induces a byclaimwith probability
1 and the byclaim is delayed with a constant probability, the
results in this paper will reduce to them in [16]. So [16]
can be seen as a special case of this paper. In addition, Zou
and Xie [11] derive the probability of ruin in the risk model
with delayed claims, but this paper obtains the expected
discounted penalty function which contains the probability
of ruin. If we define the expected discounted penalty function
with the same expression as ruin probability and assume that
the premium is a linear function of time, we can get the same
results as [11].

The rest of this paper is structured as follows. In Section 2,
we introduce the compound Poisson riskmodel with random
incomes and potentially delayed claims. In Section 3, we
derive an integral equation for the expected discounted
penalty function and obtain explicit expression of its Laplace
transform when the premium income is exponentially dis-
tributed. The defective renewal equation satisfied by the
expected discounted penalty function is studied in Section 4.
Section 5 obtains explicit result for the expected discounted
penalty function with positive initial surplus when the claim
amounts from both classes are exponentially distributed.
Section 6 concludes the paper.

2. Model

Now, we can show the extensive risk model with random
incomes and potentially delayed claims in mathematics. On
the one hand, we denote the aggregate premium incomes
at time 𝑡 by 𝑆

𝑋
(𝑡) which is a compound Poisson process,

and {𝑁
1
(𝑡) : 𝑡 ≥ 0} is the corresponding Poisson

income number process with parameter 𝜆
1
. The premium

incomes amounts {𝑋
𝑖
}
𝑖≥1

are assumed to be independent and
identically distributed (i.i.d.) positive random variables with
common distribution 𝐹

𝑋
, probability function 𝑓

𝑋
, and mean

𝜇
𝑋
. So we get 𝑆

𝑋
(𝑡) = ∑

𝑁
1
(𝑡)

𝑗=1
𝑋
𝑗
. On the other hand, we con-

sider a continuous time model which involves two types of
insurance claims, namely, the main claims and the byclaims.
Let the aggregatemain claims process be a compoundPoisson
process and let {𝑁

2
(𝑡) : 𝑡 ≥ 0} be the corresponding

Poisson claim number process with parameter 𝜆
2
. Its jump

times are denoted by {𝑉
𝑖
}
𝑖≥1

with 𝑉
0

= 0. The main claim
amounts {𝑌

𝑖
}
𝑖≥1

and the byclaim amounts {𝑍
𝑖
}
𝑖≥1

are assumed
to be independent and identically distributed (i.i.d.) positive
random variables with common distribution 𝐹

𝑌
and 𝐹

𝑍
,

respectively.Moreover, they are independent and theirmeans
are denoted by 𝜇

𝑌
and 𝜇
𝑍
.Then the surplus process of the risk

model is defined as

𝑈 (𝑡) = 𝑢 +

𝑁
1
(𝑡)

∑

𝑗=1

𝑋
𝑗
−

𝑁
2
(𝑡)

∑

𝑖=1

𝑌
𝑖
− 𝑅 (𝑡) , (1)

where 𝑈(0) = 𝑢 is the initial capital and 𝑅(𝑡) is the sum of
all byclaims 𝑍

𝑖
that occurred before time 𝑡. We assume that

𝑁
1
(𝑡) and𝑁

2
(𝑡) are mutually independent.

With the assumption of potentially delayed claims, the
claim occurrence process is to be of the following type: there
will be a main claim 𝑌

𝑖
at every epoch 𝑉

𝑖
of the Poisson

process and the main claim 𝑌
𝑖
will induce a byclaim 𝑍

𝑖
with

probability 𝑞. If the main claim amount 𝑌
𝑖
induces a byclaim

𝑍
𝑖
and the main claim amount 𝑌

𝑖
is less than a threshold

𝑀
𝑖
, the byclaim 𝑍

𝑖
and its associated main claim 𝑌

𝑖
occur

simultaneously; otherwise, the occurrence of the byclaim 𝑍
𝑖

is delayed to 𝑉
𝑖+1

and main claim 𝑌
𝑖+1

occurs simultaneously.
From Zou and Xie [18], we know that

𝐸[

[

𝑁
1
(𝑡)

∑

𝑗=1

𝑋
𝑗
−

𝑁
2
(𝑡)

∑

𝑖=1

𝑌
𝑖
− 𝑅 (𝑡)]

]

= 𝜆
1
𝑡𝜇
𝑋
− [𝜆
2
𝑡𝜇
𝑌
+ 𝜆
2
𝑡𝑞𝜇
𝑍

−𝑞𝑃 (𝑌
1
≥ 𝑀
1
) 𝜇
𝑍
(1 − 𝑒

−𝜆
2
𝑡
)] .

(2)

Therefore, we further assume that

𝜆
1
𝜇
𝑋
> 𝜆
2
(𝜇
𝑌
+ 𝑞𝜇
𝑍
) . (3)

This assumption ensures that the safety loading is positive.
Let 𝑇 ≜ inf{𝑡 ≥ 0 : 𝑈(𝑡) < 0} be the time of ruin with

𝑇 = ∞ if𝑈(𝑡) ≥ 0 for all 𝑡 ≥ 0.The ruin probability is defined
by Ψ(𝑢) ≜ 𝑃(𝑇 < ∞ | 𝑈(0) = 𝑢), 𝑢 ≥ 0. The expected
discounted penalty function is of the following form:

𝜙 (𝑢) ≜ 𝐸 [𝑒
−𝛿𝑇

𝜔 (𝑈 (𝑇−) , |𝑈 (𝑇)|) 𝐼 (𝑇 < ∞) | 𝑈 (0) = 𝑢] ,

𝑢 ≥ 0,

(4)

where 𝛿 ≥ 0 is a constant and 𝜔(𝑥
1
, 𝑥
2
) is a nonnegative

measurable function defined on [0,∞) × [0,∞). 𝐼(𝐴) is the
indicator function of event𝐴. |𝑈(𝑇)| is the deficit at ruin and
𝑈(𝑇−) is the surplus immediately prior to ruin.

3. The Expected Discounted Penalty Function
of the Exponential Premium Income

To handle the surplus process (1), we consider a slight
change in the risk model. Instead of having one main claim
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𝑌
1
and a byclaim 𝑍

1
with probability 𝑃(𝑌

1
< 𝑀

1
) at

the first epoch 𝑉
1
, another byclaim 𝑍 is added at the first

epoch 𝑉
1
; that is, byclaim 𝑍 and main claim 𝑌

1
occur at

𝑉
1
simultaneously. Hence, the corresponding surplus process

𝑈
1
(𝑡) of this auxiliary risk model is defined as

𝑈
1 (𝑡) = 𝑢 +

𝑁
1
(𝑡)

∑

𝑗=1

𝑋
𝑗
−

𝑁
2
(𝑡)

∑

𝑖=1

𝑌
𝑖
− 𝑅 (𝑡) − 𝑍, (5)

where 𝑍 denotes the other byclaim amount, 𝑈
1
(0) = 𝑢.

Assume that𝑍 and {𝑍
𝑖
}
𝑖≥1

are i.i.d. positive random variables.
The expected discounted penalty function for this auxil-

iary risk model is denoted by 𝜙
1
(𝑢) which is useful to derive

𝜙(𝑢).
Obviously there will be a main claim 𝑌

1
at the first epoch

𝑉
1
. Let 𝑊

1
be the time for the first premium. The first claim

can be or cannot be earlier than the first premium. If it is,
there are three situations.

(1) The main claim does not induce a byclaim; then the
surplus process gets renewed except for the initial
value. The probability of this event is 1 − 𝑞.

(2) The main claim induces a byclaim 𝑍
1
and the main

claim size𝑌
1
< 𝑀
1
; then the byclaim𝑍

1
also occurs at

the first epoch𝑉
1
; the surplus process𝑈(𝑡)will renew

itself with different initial reserve. The probability of
this event is 𝑞𝑃(𝑌

1
< 𝑀
1
).

(3) The main claim induces a byclaim 𝑍
1
and the main

claim size 𝑌
1

≥ 𝑀
1
; then the occurrence of the

byclaim 𝑍
1
will be delayed to 𝑉

2
; that is, the delayed

byclaim 𝑍
1
and the main claim 𝑌

2
occur simul-

taneously. In this case, 𝑈(𝑡) will not renew itself
but transfer to the auxiliary model described in the
paragraph above. The probability of this event is
𝑞𝑃(𝑌
1
≥ 𝑀
1
).

Conditioning on the time of the first event, we have

𝜙 (𝑢) = ∫

∞

0

𝜆
1
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡∫

∞

0

𝜙 (𝑢 + 𝑥) 𝑑𝐹𝑋 (𝑥)

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡 (1 − 𝑞)

× [∫

𝑢

0

𝜙 (𝑢 − 𝑦) 𝑑𝐹
𝑌
(𝑦) + ∫

∞

𝑢

𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
(𝑦)]

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡𝑞

× [∬

0<𝑦+𝑧<𝑢

(1 − 𝐹
𝑀

(𝑦)) 𝜙 (𝑢 − 𝑦 − 𝑧) 𝑑𝐹
𝑌
(𝑦)

× 𝑑𝐹
𝑍 (𝑧)

+ ∬

𝑦+𝑧>𝑢

(1 − 𝐹
𝑀

(𝑦))

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧) ]

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡𝑞

× [∫

𝑢

0

𝐹
𝑀

(𝑦) 𝜙
1
(𝑢 − 𝑦) 𝑑𝐹

𝑌
(𝑦)

+ ∫

∞

𝑢

𝐹
𝑀

(𝑦) 𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
(𝑦)]

=
𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

𝐴 (𝑢) +
𝜆
2
(1 − 𝑞)

𝜆
1
+ 𝜆
2
+ 𝛿

× [∫

𝑢

0

𝜙 (𝑢 − 𝑦) 𝑑𝐹
𝑌
(𝑦) + 𝜔

1 (𝑢)]

+
𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

× [∬

0<𝑦+𝑧<𝑢

(1 − 𝐹
𝑀

(𝑦)) 𝜙 (𝑢 − 𝑦 − 𝑧)

× 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧) + 𝜔
2 (𝑢) ]

+
𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

[∫

𝑢

0

𝐹
𝑀

(𝑦) 𝜙
1
(𝑢 − 𝑦)

×𝑑𝐹
𝑌
(𝑦) + 𝜔

3 (𝑢) ] ,

(6)

where

𝐴 (𝑢) = ∫

∞

0

𝜙 (𝑢 + 𝑥) 𝑑𝐹𝑋 (𝑥) ,

𝜔
1 (𝑢) = ∫

∞

𝑢

𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
(𝑦) ,

𝜔
2 (𝑢) = ∬

𝑦+𝑧>𝑢

(1 − 𝐹
𝑀

(𝑦))

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧) ,

𝜔
3 (𝑢) = ∫

∞

𝑢

𝐹
𝑀

(𝑦) 𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
(𝑦) .

(7)

Similarly, for the expected discounted penalty function 𝜙
1
(𝑢)

of the auxiliary risk model, we have

𝜙
1 (𝑢) = ∫

∞

0

𝜆
1
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡∫

∞

0

𝜙
1 (𝑢 + 𝑥) 𝑑𝐹𝑋 (𝑥)

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡 (1 − 𝑞)

× [∫

𝑢

0

𝜙 (𝑢 − 𝑦) 𝑑𝐹
𝑌
∗ 𝐹
𝑍
(𝑦)

+∫

∞

𝑢

𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
∗ 𝐹
𝑍
(𝑦)]

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡𝑞
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× [∬

0<𝑦+𝑧<𝑢

(1 − 𝐹
𝑀

(𝑦)) 𝜙 (𝑢 − 𝑦 − 𝑧)

× 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍
∗ 𝐹
𝑍 (𝑧)

+ ∬

𝑦+𝑧>𝑢

(1 − 𝐹
𝑀

(𝑦))

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍
∗ 𝐹
𝑍 (𝑧)]

+ ∫

∞

0

𝜆
2
𝑒
−(𝜆
1
+𝜆
2
+𝛿)𝑡

𝑑𝑡𝑞

× [∬

0<𝑦+𝑧<𝑢

𝐹
𝑀

(𝑦) 𝜙
1
(𝑢 − 𝑦 − 𝑧)

× 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧)

+ ∬

𝑦+𝑧>𝑢

𝐹
𝑀

(𝑦)

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧)]

=
𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

𝐴
1 (𝑢) +

𝜆
2
(1 − 𝑞)

𝜆
1
+ 𝜆
2
+ 𝛿

× [∫

𝑢

0

𝜙 (𝑢 − 𝑦) 𝑑𝐹
𝑌
∗ 𝐹
𝑍
(𝑦) + 𝜔

4 (𝑢)]

+
𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

× [∬

0<𝑦+𝑧<𝑢

(1 − 𝐹
𝑀

(𝑦)) 𝜙 (𝑢 − 𝑦 − 𝑧)

× 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍
∗ 𝐹
𝑍 (𝑧) + 𝜔

5 (𝑢) ]

+
𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

[∬

0<𝑦+𝑧<𝑢

× 𝐹
𝑀

(𝑦) 𝜙
1
(𝑢 − 𝑦 − 𝑧)

× 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧) + 𝜔
6 (𝑢)] ,

(8)

where

𝐴
1 (𝑢) = ∫

∞

0

𝜙
1 (𝑢 + 𝑥) 𝑑𝐹𝑋 (𝑥) ,

𝜔
4 (𝑢) = ∫

∞

𝑢

𝜔 (𝑢, 𝑦 − 𝑢) 𝑑𝐹
𝑌
∗ 𝐹
𝑍
(𝑦) ,

𝜔
5 (𝑢) = ∬

𝑦+𝑧>𝑢

(1 − 𝐹
𝑀

(𝑦))

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍
∗ 𝐹
𝑍 (𝑧) ,

𝜔
6 (𝑢) = ∬

𝑦+𝑧>𝑢

𝐹
𝑀

(𝑦)

× 𝜔 (𝑢, 𝑦 + 𝑧 − 𝑢) 𝑑𝐹
𝑌
(𝑦) 𝑑𝐹

𝑍 (𝑧) .

(9)

In the following, we will give the Laplace transforms of
the 𝜙(𝑢) and 𝜙

1
(𝑢).

Let 𝜒
1
(𝑦) = 𝐹

𝑀
(𝑦)𝐹
󸀠

𝑌
(𝑦) and 𝜒

2
(𝑦) = (1 − 𝐹

𝑀
(𝑦))𝐹
󸀠

𝑌
(𝑦).

For Re(𝑠) ≥ 0, we define

𝜒
1 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝜒
1
(𝑦) 𝑑𝑦 = 𝐸 [exp (−𝑠𝑌) 𝐼 (𝑌 ≥ 𝑀)]

= ∫

∞

0

𝑒
−𝑠𝑦

𝐹
𝑀

(𝑦) 𝑑𝐹
𝑌
(𝑦) ,

𝜒
2 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝜒
2
(𝑦) 𝑑𝑦 = 𝐸 [exp (−𝑠𝑌) 𝐼 (𝑌 < 𝑀)]

= ∫

∞

0

𝑒
−𝑠𝑦

(1 − 𝐹
𝑀

(𝑦)) 𝑑𝐹
𝑌
(𝑦) ,

𝑏̂
1 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝑑𝐹
𝑌
(𝑦) ,

𝑏̂
2 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝑑𝐹
𝑍
(𝑦) ,

𝑏̂
3 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝑑𝐹
𝑌
∗ 𝐹
𝑍
(𝑦) ,

𝑏̂
4 (𝑠) ≜ ∫

∞

0

𝑒
−𝑠𝑦

𝑑𝐹
𝑍
∗ 𝐹
𝑍
(𝑦) .

(10)

Taking the Laplace transforms of (6) and (8), we obtain

𝜙 (𝑠) =
𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

𝐴 (𝑠) +
𝜆
2
(1 − 𝑞)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜙 (𝑠) 𝑏̂1 (𝑠) + 𝜔̂
1 (𝑠)] +

𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜙 (𝑠) 𝜒2 (𝑠) 𝑏̂2 (𝑠) + 𝜙
1 (𝑠) 𝜒1 (𝑠) + 𝜔̂

2 (𝑠) + 𝜔̂
3 (𝑠)] ,

(11)

𝜙
1 (𝑠) =

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

𝐴
1 (𝑠) +

𝜆
2
(1 − 𝑞)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜙 (𝑠) 𝑏̂3 (𝑠) + 𝜔̂
4 (𝑠)] +

𝜆
2
𝑞

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜙 (𝑠) 𝜒2 (𝑠) 𝑏̂4 (𝑠)

+ 𝜙
1 (𝑠) 𝜒1 (𝑠) 𝑏̂2 (𝑠) + 𝜔̂

5 (𝑠) + 𝜔̂
6 (𝑠)] .

(12)
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Now we introduce the Dickson-Hipp operator 𝑇
𝑟
studied

in Dickson and Hipp [19]. Define

𝑇
𝑟
ℎ (𝑥) = ∫

∞

𝑥

𝑒
−𝑟(𝑦−𝑥)

ℎ (𝑦) 𝑑𝑦, (13)

where ℎ(𝑥) is a real-valued function and 𝑟 is a complex
number. As in Li and Garrido [20], we find 𝑇

𝑟
ℎ(0) = ℎ̂(𝑟).

For distinct 𝑟 and 𝑠,

𝑇
𝑟
𝑇
𝑠
ℎ (𝑥) = 𝑇

𝑠
𝑇
𝑟
ℎ (𝑥) =

𝑇
𝑟
ℎ (𝑥) − 𝑇

𝑠
ℎ (𝑥)

𝑠 − 𝑟
. (14)

If 𝑟 = 𝑠,

𝑇
𝑟
𝑇
𝑠
ℎ (𝑥) = ∫

∞

𝑥

(𝑦 − 𝑥) 𝑒
−𝑟(𝑦−𝑥)

ℎ (𝑦) 𝑑𝑦. (15)

Suppose that the premium incomes 𝑋
𝑗
are exponentially

distributed; that is,

𝐹
𝑋 (𝑥) = 1 − 𝑒

−𝑥/𝜇
𝑋
. (16)

According to the definition and properties of the
Dickson-Hipp operator, we take the Laplace transform of
𝐴(𝑢) and 𝐴

1
(𝑢); then

𝐴 (𝑠) =
𝜙 (𝑠) − 𝜙 (1/𝜇

𝑋
)

1 − 𝑠𝜇
𝑋

, (17)

𝐴
1 (𝑠) =

𝜙
1 (𝑠) − 𝜙

1
(1/𝜇
𝑋
)

1 − 𝑠𝜇
𝑋

. (18)

Plugging (17) and (18) into (11) and (12), respectively, and
then making some simplifications, we obtain

𝜙 (𝑠) = (
(1 − 𝑠𝜇

𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜒
3 (𝑠) 𝜔̂ (𝑠) +

𝜆
2
𝑞 (1 − 𝑠𝜇

𝑋
) 𝜒
1 (𝑠)

𝜆
1
+ 𝜆
2
+ 𝛿

𝜔̂
∗
(𝑠)]

−𝑙
1 (𝑠) )

× ((1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

)

2

− (1 − 𝑠𝜇
𝑋
)

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

×(1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

))

−1

,

(19)

𝜙
1 (𝑠)

= (
(1 − 𝑠𝜇

𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜒
4 (𝑠) 𝜔̂

∗
(𝑠)

+

𝜆
2
(1 − 𝑠𝜇

𝑋
) ((1 − 𝑞) 𝑏̂

3 (𝑠) + 𝑞𝜒
2 (𝑠) 𝑏̂4 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

× 𝜔̂ (𝑠)] −𝑙2 (𝑠) )

× ((1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

)

2

− (1 − 𝑠𝜇
𝑋
)

×

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

×(1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

))

−1

,

(20)

where

𝜔̂ (𝑠) = 𝜆
2
[(1 − 𝑞) 𝜔̂

1 (𝑠) + 𝑞 (𝜔̂
2 (𝑠) + 𝜔̂

3 (𝑠))] ,

𝜔̂
∗
(𝑠) = 𝜆

2
[(1 − 𝑞) 𝜔̂

4 (𝑠) + 𝑞 (𝜔̂
5 (𝑠) + 𝜔̂

6 (𝑠))] ,

𝜒
3 (𝑠) = 1 − 𝑠𝜇

𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

− (1 − 𝑠𝜇
𝑋
)
𝜆
2
𝑞𝜒
1 (𝑠) 𝑏̂2 (𝑠)

𝜆
1
+ 𝜆
2
+ 𝛿

,

𝜒
4 (𝑠) = 1 − 𝑠𝜇

𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

− (1 − 𝑠𝜇
𝑋
)

×

𝜆
2
[(1 − 𝑞) 𝑏̂

1 (𝑠) + 𝑞𝜒
2 (𝑠) 𝑏̂2 (𝑠)]

𝜆
1
+ 𝜆
2
+ 𝛿

,

𝑙
1 (𝑠) =

𝜆
1
𝜒
3 (𝑠)

𝜆
1
+ 𝜆
2
+ 𝛿

𝜙(
1

𝜇
𝑋

)

+
𝜆
1
𝜆
2
𝑞 (1 − 𝑠𝜇

𝑋
) 𝜒
1 (𝑠)

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

𝜙
1
(

1

𝜇
𝑋

) ,

𝑙
2 (𝑠) =

𝜆
1
𝜒
4 (𝑠)

𝜆
1
+ 𝜆
2
+ 𝛿

𝜙
1
(

1

𝜇
𝑋

)

+

𝜆
1
𝜆
2
(1 − 𝑠𝜇

𝑋
) [(1 − 𝑞) 𝑏̂

3 (𝑠) + 𝑞𝜒
2 (𝑠) 𝑏̂4 (𝑠)]

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× 𝜙(
1

𝜇
𝑋

) .

(21)

To solve 𝜙(𝑠) and 𝜙
1
(𝑠) in (19) and (20), we need to find

𝜙(1/𝜇
𝑋
) and 𝜙

1
(1/𝜇
𝑋
). Here we will first consider the zeros



6 Journal of Applied Mathematics

of the denominators of (19) and (20) or equally the zeros of
the following equation:

(1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

)

× [1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

−

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

(1 − 𝑠𝜇
𝑋
)] = 0.

(22)

Lemma 1. For 𝛿 > 0, the denominators of (19) and (20) have
exactly two distinct positive real roots, say, 𝜌

1
(𝛿) and 𝜌

2
(𝛿) =

(𝜆
2
+𝛿)/(𝜆

1
+𝜆
2
+𝛿)𝜇
𝑋
. Further, 𝜌

1
(𝛿) and 𝜌

2
(𝛿) are the only

roots on the right half of the complex plane.

Proof. To prove Lemma 1, it is equal to show that (22) has
exactly two roots in the right half complex plan. Firstly, (22)
can be rewritten as

(1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

) 𝑙 (𝑠) = 0, (23)

where
𝑙 (𝑠) = (1 − 𝑠𝜇

𝑋
)

× [1 −

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

] −
𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

.

(24)

For 𝛿 > 0, 𝑠 ≥ 0, it is easy to check that 𝑙(0) = 𝛿/(𝜆
1
+𝜆
2
+

𝛿) > 0 and lim
𝑠→+∞

𝑙(𝑠) = −∞. And

𝑙
󸀠
(𝑠) = −𝜇

𝑋
[1 −

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

] − (1 − 𝑠𝜇
𝑋
)

×

𝜆
2
[𝑏̂
󸀠

1
(𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠)) + 𝑏̂
1 (𝑠) 𝑞𝑏̂

󸀠

2
(𝑠)]

𝜆
1
+ 𝜆
2
+ 𝛿

< −𝜇
𝑋
[1 −

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

]

−

𝜆
2
[𝑏̂
󸀠

1
(𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠)) + 𝑏̂
1 (𝑠) 𝑞𝑏̂

󸀠

2
(𝑠)]

𝜆
1
+ 𝜆
2
+ 𝛿

< −𝜇
𝑋
[1 −

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

]

+

𝜆
2
[𝜇
𝑌
(1 − 𝑞 + 𝑞𝑏̂

2 (𝑠)) + 𝑏̂
1 (𝑠) 𝑞𝜇𝑍]

𝜆
1
+ 𝜆
2
+ 𝛿

< −𝜇
𝑋

𝜆
1
+ 𝛿

𝜆
1
+ 𝜆
2
+ 𝛿

+
𝜆
2
(𝜇
𝑌
+ 𝑞𝜇
𝑍
)

𝜆
1
+ 𝜆
2
+ 𝛿

<
𝜆
2
(𝜇
𝑌
+ 𝑞𝜇
𝑍
) − 𝜆
1
𝜇
𝑋

𝜆
1
+ 𝜆
2
+ 𝛿

< 0,

(25)

which implies 𝑙(𝑠) is a strictly decreasing function of 𝑠. So
𝑙(𝑠) = 0 has exactly one positive real root, say, 𝜌

1
(𝛿).

Obviously, 𝜌
1
(𝛿) is also one positive real root of (22). Note

that (𝜆
2
+ 𝛿)/(𝜆

1
+ 𝜆
2
+ 𝛿)𝜇

𝑋
is another positive real root

of (22), say, 𝜌
2
(𝛿) and 𝑙((𝜆

2
+ 𝛿)/(𝜆

1
+ 𝜆
2
+ 𝛿)𝜇

𝑋
) ̸= 0. That

means 𝜌
1
(𝛿) ̸= 𝜌

2
(𝛿), so we conclude that (22) has exactly two

distinct positive real roots, say 𝜌
1
(𝛿) and 𝜌

2
(𝛿).

Now, we prove that 𝜌
1
(𝛿) is the exactly one positive real

root of equation 𝑙(𝑠) = 0 on the right half of the complex
plane.When 𝑠 is on the half-circle, |𝑧| = 𝑟 (𝑟 > 0) andRe(𝑧) ≥
0 on the complex plane, for 𝑟 sufficiently large,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

> 1 −
𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

>
𝜆
2

𝜆
1
+ 𝜆
2
+ 𝛿

>

𝜆
2

󵄨󵄨󵄨󵄨󵄨
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠)) (1 − 𝑠𝜇
𝑋
)
󵄨󵄨󵄨󵄨󵄨

𝜆
1
+ 𝜆
2
+ 𝛿

,

(26)

while for 𝑠 on the imaginary axis, Re(𝑧) = 0, the last
inequality is true as well.That is to say, on the boundary of the
contour enclosed by the half-circle and the imaginary axis,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

>

𝜆
2

󵄨󵄨󵄨󵄨󵄨
𝑏̂
1 (𝑠) [1 − 𝑞 + 𝑞𝑏̂

2 (𝑠)] (1 − 𝑠𝜇
𝑋
)
󵄨󵄨󵄨󵄨󵄨

𝜆
1
+ 𝜆
2
+ 𝛿

.

(27)

Thenwe conclude, by Rouché’s theorem, that on the right half
of the complex plane, the number of roots of the equation
𝑙(𝑠) = 0 equals the number of roots of the equation 1 − 𝑠𝜇

𝑋
−

𝜆
1
/(𝜆
1
+ 𝜆
2
+ 𝛿) = 0. Furthermore, the latter has exactly

one root on the right half of the complex plane. It follows
that 𝑙(𝑠) = 0 has exactly one positive real root, say, 𝜌

1
(𝛿),

on the right half of the complex plane. It is easy to see that
𝜌
2
(𝛿) = (𝜆

2
+ 𝛿)/(𝜆

1
+ 𝜆
2
+ 𝛿)𝜇
𝑋
is the exactly one positive

real root of equation 1−𝑠𝜇
𝑋
−𝜆
1
/(𝜆
1
+𝜆
2
+𝛿) = 0 on the right

half of the complex plane. It follows from all of the above that
(22) has exactly twodistinct positive real roots𝜌

1
(𝛿) and𝜌

2
(𝛿)

on the right half of the complex plane. Hence, the lemma is
proved.

Remark 2. From Klimenok [21], we know that lim
𝛿→0

+

𝜌
1
(𝛿) = 0. Thereafter, we denote them by 𝜌

1
, 𝜌
2
for simplicity.

Since 𝜙(𝑠) is finite for all 𝑠 with Re(𝑠) > 0, we know 𝜌
𝑖
,

𝑖 = 1, 2, should also be zeros of the numerator in (19); that is,

(1 − 𝜌
𝑖
𝜇
𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜒
3
(𝜌
𝑖
) 𝜔̂ (𝜌
𝑖
) +

𝜆
2
𝑞 (1 − 𝜌

𝑖
𝜇
𝑋
) 𝜒
1
(𝜌
𝑖
)

𝜆
1
+ 𝜆
2
+ 𝛿

𝜔̂
∗
(𝜌
𝑖
)]

= 𝑙
1
(𝜌
𝑖
) , 𝑖 = 1, 2.

(28)
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By solving these linear equations, we get

𝜙(
1

𝜇
𝑋

) = (1 − 𝜌
1
𝜇
𝑋
) (1 − 𝜌

2
𝜇
𝑋
)

× (𝜆
1
[(1 − 𝜌

1
𝜇
𝑋
) 𝜒
1
(𝜌
1
) 𝜒
3
(𝜌
2
)

−(1 − 𝜌
2
𝜇
𝑋
)𝜒
1
(𝜌
2
)𝜒
3
(𝜌
1
)])
−1

⋅ [𝜒
1
(𝜌
1
) 𝜒
3
(𝜌
2
) 𝜔̂ (𝜌
2
) − 𝜒
1
(𝜌
2
) 𝜒
3
(𝜌
1
) 𝜔̂ (𝜌
1
)

+
𝜆
2
𝑞𝜒
1
(𝜌
1
) 𝜒
1
(𝜌
2
)

𝜆
1
+ 𝜆
2
+ 𝛿

⋅ ((1 − 𝜌
2
𝜇
𝑋
) 𝜔̂
∗
(𝜌
2
)

− (1 − 𝜌
1
𝜇
𝑋
) 𝜔̂
∗
(𝜌
1
)) ] ,

𝜙
1
(

1

𝜇
𝑋

) = ((𝜆
1
+ 𝜆
2
+ 𝛿) 𝜒

3
(𝜌
1
) 𝜔̂ (𝜌
1
)

+𝜆
2
𝑞 (1 − 𝜌

1
𝜇
𝑋
) 𝜒
1
(𝜌
1
) 𝜔̂
∗
(𝜌
1
))

× (𝜆
1
𝜆
2
𝑞𝜒
1
(𝜌
1
))
−1

−
𝜆
1
(𝜆
1
+ 𝜆
2
+ 𝛿) 𝜒

3
(𝜌
1
)

𝜆
1
𝜆
2
𝑞 (1 − 𝜌

1
𝜇
𝑋
) 𝜒
1
(𝜌
1
)
𝜙 (

1

𝜇
𝑋

) .

(29)

Then the explicit expression for the 𝜙(𝑠) and 𝜙
1
(𝑠) can be

obtained by (19) and (20), respectively.

4. The Defective Renewal Equation for the
Expected Discounted Penalty Function

In this section, we study the defective renewal equation
satisfied by the expected discounted penalty function. Note
that (19) can be rewritten as

𝜙 (𝑠) =
𝑓
1 (𝑠) + 𝑓

2 (𝑠)

ℎ̂
1 (𝑠) − ℎ̂

2 (𝑠)

, (30)

where

𝑓
1 (𝑠) = −

𝜆
1
𝜙 (1/𝜇

𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

(1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

) ,

𝑓
2 (𝑠) =

(1 − 𝑠𝜇
𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

× [𝜒
3 (𝑠) 𝜔̂ (𝑠) +

𝜆
2
𝑞 (1 − 𝑠𝜇

𝑋
) 𝜒
1 (𝑠)

𝜆
1
+ 𝜆
2
+ 𝛿

𝜔̂
∗
(𝑠)]

+ (𝜆
1
𝜆
2
𝑞 (1 − 𝑠𝜇

𝑋
) 𝜒
1 (𝑠)

× [𝑏̂
2 (𝑠) 𝜙 (

1

𝜇
𝑋

) − 𝜙
1
(

1

𝜇
𝑋

)])

× ((𝜆
1
+ 𝜆
2
+ 𝛿)
2
)

−1

,

ℎ̂
1 (𝑠) = (1 − 𝑠𝜇

𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

)

2

,

ℎ̂
2 (𝑠) = (1 − 𝑠𝜇

𝑋
)

×

𝜆
2
𝑏̂
1 (𝑠) (1 − 𝑞 + 𝑞𝑏̂

2 (𝑠))

𝜆
1
+ 𝜆
2
+ 𝛿

× (1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

) .

(31)

Lemma 3. The Laplace transform of the expected discounted
penalty function 𝜙(𝑠) satisfies

𝜙 (𝑠) =

𝑇
𝑠
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)

𝜇
2

𝑋

𝜙 (𝑠) +

𝑇
𝑠
𝑇
𝜌
1

𝑇
𝜌
2

𝑓
2 (0)

𝜇
2

𝑋

. (32)

Proof. Since 𝜙(𝑠) is analytic for all 𝑠 with Re(𝑠) ≥ 0, we know
𝜌
𝑖
, 𝑖 = 1, 2, are zeros of the numerator in (30). It means

𝑓
1
(𝜌
𝑖
) = −𝑓

2
(𝜌
𝑖
), 𝑖 = 1, 2. Because 𝑓

1
(𝑠) is a polynomial of

degree 1, using Lagrange interpolating theorem, we obtain

𝑓
1 (𝑠) = 𝑓

1
(𝜌
1
)

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

+ 𝑓
1
(𝜌
2
)

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

= −𝑓
2
(𝜌
1
)

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

− 𝑓
2
(𝜌
2
)

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

.

(33)

It yields

𝑓
1 (𝑠) + 𝑓

2 (𝑠)

= (−𝑓
2
(𝜌
1
) (𝑠 − 𝜌

2
) + 𝑓
2
(𝜌
2
) (𝑠 − 𝜌

1
)

+ (𝑠 − 𝜌
2
) 𝑓
2 (𝑠) − (𝑠 − 𝜌

1
) 𝑓
2 (𝑠))

× (𝜌
1
− 𝜌
2
)
−1

= ((𝑠 − 𝜌
2
) [𝑓
2 (𝑠) − 𝑓

2
(𝜌
1
)]

− (𝑠 − 𝜌
1
) [𝑓
2 (𝑠) − 𝑓

2
(𝜌
2
)])

× (𝜌
1
− 𝜌
2
)
−1

= (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

×

𝑇
𝑠
𝑇
𝜌
2

𝑓
2 (0) − 𝑇

𝑠
𝑇
𝜌
1

𝑓
2 (0)

𝜌
1
− 𝜌
2

= (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
) 𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝑓
2 (0) .

(34)

The denominator of (30) can be dealt with in a similar
way. From Lemma 1, we know that ℎ̂

1
(𝜌
𝑖
) = ℎ̂

2
(𝜌
𝑖
), 𝑖 = 1, 2.
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Because ℎ̂
1
(𝑠) is a polynomial of degree 2, using Lagrange

interpolating theorem, we obtain

ℎ̂
1 (𝑠) = ℎ̂

1 (0)
(𝑠 − 𝜌

1
) (𝑠 − 𝜌

2
)

𝜌
1
𝜌
2

+ 𝑠(
ℎ̂
1
(𝜌
1
)

𝜌
1

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

+
ℎ̂
1
(𝜌
2
)

𝜌
2

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

)

= ℎ̂
1 (0)

(𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

𝜌
1
𝜌
2

+ 𝑠(
ℎ̂
2
(𝜌
1
)

𝜌
1

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

+
ℎ̂
2
(𝜌
2
)

𝜌
2

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

)

= ℎ̂
1 (0)

(𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

𝜌
1
𝜌
2

+ ℎ̂
2
(𝜌
1
)

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

+ ℎ̂
2
(𝜌
2
)

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

+ (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

× (
ℎ̂
2
(𝜌
1
)

𝜌
1

1

𝜌
1
− 𝜌
2

+
ℎ̂
2
(𝜌
2
)

𝜌
2

1

𝜌
2
− 𝜌
1

) .

(35)

Then using Property 6 of the Dickson-Hipp operator
given in Li and Garrido [20], we have

ℎ̂
1 (𝑠) − ℎ̂

2 (𝑠) = ℎ̂
1 (0)

(𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

𝜌
1
𝜌
2

+ ℎ̂
2
(𝜌
1
)

𝑠 − 𝜌
2

𝜌
1
− 𝜌
2

+ ℎ̂
2
(𝜌
2
)

𝑠 − 𝜌
1

𝜌
2
− 𝜌
1

+ (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

× (
ℎ̂
2
(𝜌
1
)

𝜌
1

1

𝜌
1
− 𝜌
2

+
ℎ̂
2
(𝜌
2
)

𝜌
2

1

𝜌
2
− 𝜌
1

)

− ℎ̂
2 (𝑠)

= (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

× (
ℎ̂
1 (0)

𝜌
1
𝜌
2

+
ℎ̂
1
(𝜌
1
)

𝜌
1
(𝜌
1
− 𝜌
2
)

−
ℎ̂
1
(𝜌
2
)

𝜌
2
(𝜌
1
− 𝜌
2
)
+

ℎ̂
2
(𝜌
1
)

(𝜌
1
− 𝜌
2
) (𝑠 − 𝜌

1
)

−
ℎ̂
2
(𝜌
2
)

(𝜌
1
− 𝜌
2
) (𝑠 − 𝜌

2
)
−

ℎ̂
2 (𝑠)

(𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)
)

= (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
)

× (𝑇
0
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
1 (0) − 𝑇

𝑠
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)) .

(36)

It is easy to check that 𝑇
0
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
1
(0) = 𝜇

2

𝑋
which makes

(36) become

ℎ̂
1 (𝑠) − ℎ̂

2 (𝑠) = (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
) (𝜇
2

𝑋
− 𝑇
𝑠
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)) .

(37)

Invoking (34) and (37) into (30), we could obtain

𝜙 (𝑠) =

𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝑓
2 (0)

𝜇
2

𝑋
− 𝑇
𝑠
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)

, (38)

which leads to (32). This completes the proof.

Now, we are ready to derive the defective renewal equa-
tion for 𝜙(𝑢).

Theorem 4. 𝜙(𝑢) satisfies the following integral equation:

𝜙 (𝑢) = ∫

𝑢

0

𝜙 (𝑢 − 𝑦)

𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2
(𝑦)

𝜇
2

𝑋

𝑑𝑦 +

𝑇
𝜌
1

𝑇
𝜌
2

𝑓
2 (𝑢)

𝜇
2

𝑋

. (39)

Proof. Equation (39) follows easily from the inverse Laplace
transform in (32). We could like to point out that (39) is also
a defective renewal equation.This can be verified by showing
that

𝑇
0
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)

𝜇
2

𝑋

< 1. (40)

For 𝛿 > 0, putting 𝑠 = 0 in (36), it follows that

𝑇
0
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)

𝜇
2

𝑋

= 1 −
ℎ̂
1 (0) − ℎ̂

2 (0)

𝜇
2

𝑋
𝜌
1
𝜌
2

= 1 −
𝛿 (𝜆
2
+ 𝛿)

𝜇
2

𝑋
𝜌
1
𝜌
2
(𝜆
1
+ 𝜆
2
+ 𝛿)
2
< 1.

(41)

Now we consider the case 𝛿 = 0. Setting 𝑠 = 𝜌
1
(𝛿) in the

denominators of (19) and (20), we have

1 − 𝜌
1 (𝛿) 𝜇𝑋 −

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

−

𝜆
2
𝑏̂
1
(𝜌
1 (𝛿)) [1 − 𝑞 + 𝑞𝑏̂

2
(𝜌
1 (𝛿))]

𝜆
1
+ 𝜆
2
+ 𝛿

× (1 − 𝜌
1 (𝛿) 𝜇𝑋) = 0.

(42)

Differentiating both sides of this equation with respect to
𝛿 and then setting 𝛿 = 0, we have

𝜌
󸀠

1
(0) =

1

𝜆
1
𝜇
𝑋
− 𝜆
2
(𝜇
𝑌
+ 𝑞𝜇
𝑍
)
> 0. (43)
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Then taking the limit 𝛿 → 0 in (41) and using L’Hôspital’s
rule, we obtain

𝑇
0
𝑇
𝜌
1

𝑇
𝜌
2

ℎ
2 (0)

𝜇
2

𝑋

= 1 −
1

𝜇
2

𝑋
𝜌
2 (0) (𝜆1 + 𝜆

2
+ 𝛿)
2

× lim
𝛿→0

+

(𝜆
2
+ 𝛿) 𝛿

𝜌
1 (0)

= 1 −
𝜆
2

𝜇
2

𝑋
𝜌
󸀠

1
(0) 𝜌2 (0) (𝜆1 + 𝜆

2
)
2
< 1.

(44)

Thus, (39) is a defective renewal equation, and the proof
is complete.

Remark 5. When 𝑞 ≡ 1 and 𝑃(𝑌
1

≥ 𝑀
1
) = 𝜃, then

𝜒
1
(𝑠) = 𝜃𝑏̂

1
(𝑠), 𝜒
2
(𝑠) = (1 − 𝜃)𝑏̂

1
(𝑠). In the case, each main

claim induces a byclaim, and its associated byclaim occurs
simultaneously with probability 1 − 𝜃, or the occurrence of
the byclaim may be delayed with probability 𝜃. Actually, the
risk model given by (1) will be the compound Poisson risk
model with delayed claims and random incomes studied by
Hao and Yang [16].Then, by some simple calculations, we can
find that (39) inTheorem 4 is consistent with (4.6) in [16].

Remark 6. The explicit analytic solution to the defective
renewal (39) can be obtained by compound geometric dis-
tribution (see Lin and Willmot [22]).

5. Explicit Results for Exponential
Claim Size Distributions

We now consider the case where both claim sizes are
exponentially distributed, that is, distribution functions 𝐹

𝑌
∼

Exp(]) and 𝐹
𝑍

∼ Exp(𝜔), where ] = 1/𝜇
𝑌
and 𝜔 = 1/𝜇

𝑍
.

Then we have

𝑏̂
1 (𝑠) =

]
] + 𝑠

, 𝑏̂
2 (𝑠) =

𝜔

𝜔 + 𝑠
,

𝑏̂
3 (𝑠) =

]𝜔
(] + 𝑠) (𝜔 + 𝑠)

, 𝑏̂
4 (𝑠) =

𝜔
2

(𝜔 + 𝑠)
2
.

(45)

For the special case 𝐹
𝑀

∼ Exp(𝜇), we obtain

𝜒
2 (𝑠) = ∫

∞

0

𝑒
−𝑠𝑦

𝑒
−𝜇𝑦

𝑑𝐹
𝑌
(𝑦) = 𝑏̂

1
(𝑠 + 𝜇) ,

𝜒
1 (𝑠) = 𝑏̂

1 (𝑠) − 𝑏̂
1
(𝑠 + 𝜇) .

(46)

So we have

𝜒
2 (𝑠) =

]
] + 𝑠 + 𝜇

,

𝜒
1 (𝑠) =

]
] + 𝑠

−
]

] + 𝑠 + 𝜇
=

]𝜇
(] + 𝑠) (] + 𝑠 + 𝜇)

.

(47)

Let 𝐵
1
(𝑠) ≜ 𝜒

1
(𝑠)𝑏̂
2
(𝑠)𝜔̂(𝑠), 𝐵

2
(𝑠) ≜ 𝜒

1
(𝑠)𝜔̂
∗
(𝑠); then 𝑓

2
(𝑠)

can be written as

𝑓
2 (𝑠) =

(1 − 𝑠𝜇
𝑋
)

𝜆
1
+ 𝜆
2
+ 𝛿

× (1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

) 𝜔̂ (𝑠)

−
𝜆
2
𝑞(1 − 𝑠𝜇

𝑋
)
2

(𝜆
1
+ 𝜆
2
+ 𝛿)
2
[𝐵
1 (𝑠) − 𝐵

2 (𝑠)]

+
𝜆
1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× [𝜙(
1

𝜇
𝑋

)
𝜔]𝜇 (1 − 𝑠𝜇

𝑋
)

(𝜔 + 𝑠) (] + 𝑠) (] + 𝑠 + 𝜇)

− 𝜙
1
(

1

𝜇
𝑋

)
]𝜇 (1 − 𝑠𝜇

𝑋
)

(] + 𝑠) (] + 𝑠 + 𝜇)
] .

(48)

So we can derive

𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝑓
2 (0)

=
𝜇
𝑋

𝜆
1
+ 𝜆
2
+ 𝛿

× [(1 − 𝜇
𝑋
𝜌
1
) 𝑇
𝑠
𝑇
𝜌
1

𝜔 (0) + 𝜇
𝑋
𝑇
𝑠
𝜔 (0)]

−
𝜆
2

1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
4

× [𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝐵
1 (0) − 𝑇

𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝐵
2 (0)]

−
𝜆
2
𝑞𝜇
𝑋
[2 − 𝜇

𝑋
(𝜌
1
+ 𝜌
2
)]

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× [𝑇
𝑠
𝑇
𝜌
1

𝐵
1 (0) − 𝑇

𝑠
𝑇
𝜌
1

𝐵
2 (0)]

−
𝜆
2
𝑞𝜇
2

𝑋

(𝜆
1
+ 𝜆
2
+ 𝛿)
2
[𝑇
𝑠
𝐵
1 (0) − 𝑇

𝑠
𝐵
2 (0)]

+
𝜆
1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙(

1

𝜇
𝑋

)

⋅ [

[

𝜆
1

(𝜆
1
+ 𝜆
2
+ 𝛿)

×

𝜔]𝜇 [𝑐
0
𝑠
2
+ (𝑐
0
𝑎
2
+ 𝑐
1
) 𝑠 + 𝑐

0
𝑎
1
+ 𝑐
1
𝑎
2
+ 𝑐
2
]

𝑔 (𝑠) 𝑔 (𝜌
1
) 𝑔 (𝜌
2
)

+ 𝜇
𝑋

𝜔]𝜇 [𝑠
2
+ (𝑎
2
+ 𝜌
1
) 𝑠 + 𝜌

2

1
+ 𝑎
2
𝜌
1
+ 𝑎
1
]

𝑔 (𝑠) 𝑔 (𝜌
1
)

]

]

−
𝜆
1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙
1
(

1

𝜇
𝑋

)
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⋅ [
𝜆
1

(𝜆
1
+ 𝜆
2
+ 𝛿)

⋅ (]𝜇 [(2] + 𝜇 + 𝑠) (2] + 𝜇 + 𝜌
1
+ 𝜌
2
)

− ] (] + 𝜇) + 𝜌
1
𝜌
2
])

× ((] + 𝑠) (] + 𝜇 + 𝑠) (] + 𝜌
1
)

× (] + 𝜇 + 𝜌
1
)(] + 𝜌

2
)(] + 𝜇 + 𝜌

2
))
−1

+𝜇
𝑋

]𝜇 (2] + 𝜇 + 𝜌
1
+ 𝑠)

(] + 𝑠) (] + 𝜇 + 𝑠) (] + 𝜌
1
) (] + 𝜇 + 𝜌

1
)
] ,

(49)

where

𝑎
0
= 𝜔] (] + 𝜇) ,

𝑎
1
= 𝜔] + (𝜔 + ]) (] + 𝜇) ,

𝑎
2
= 𝜔 + 2] + 𝜇,

𝑐
0
= 𝑎
1
+ 𝑎
2
(𝜌
1
+ 𝜌
2
) + 𝜌
2

1
+ 𝜌
1
𝜌
2
+ 𝜌
2

2
,

𝑐
1
= −𝑎
0
+ 𝜌
1
𝜌
2
(𝑎
2
+ 𝜌
1
+ 𝜌
2
) ,

𝑐
2
= −𝑎
0
(𝜌
1
+ 𝜌
2
) − 𝑎
1
𝜌
1
𝜌
2
+ 𝜌
2

1
𝜌
2

2
,

𝑔 (𝑥) = (𝜔 + 𝑥) (] + 𝑥) (] + 𝜇 + 𝑥) .

(50)

From (32) and (37), we know that

𝜙 (𝑠) =

(𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
) 𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝑓
2 (0)

ℎ̂
1 (𝑠) − ℎ̂

2 (𝑠)

. (51)

It turns out that (51) can be transformed to another expression
by multiplying both denominator and numerator by 𝑔(𝑠):

𝜙 (𝑠) =

𝑔 (𝑠) (𝑠 − 𝜌
1
) (𝑠 − 𝜌

2
) 𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝑓
2 (0)

𝑔 (𝑠) (ℎ̂1 (𝑠) − ℎ̂
2 (𝑠))

. (52)

The common denominator of (52), denoted by 𝐷
5
(𝑠), is a

polynomial of degree 5 with the leading coefficient 𝜇2
𝑋
, given

by

𝐷
5 (𝑠) = (𝜔 + 𝑠) (] + 𝑠) (] + 𝜇 + 𝑠)

× (1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

)

2

− (] + 𝜇 + 𝑠) (1 − 𝑠𝜇
𝑋
)

×
𝜆
2
] ((1 − 𝑞) (𝜔 + 𝑠) + 𝑞𝜔)

𝜆
1
+ 𝜆
2
+ 𝛿

× (1 − 𝑠𝜇
𝑋
−

𝜆
1

𝜆
1
+ 𝜆
2
+ 𝛿

) .

(53)

Obviously, 𝐷
5
(𝑠) has five roots on the complex plane and all

the complex roots are in conjugate pairs. Noting that 𝑠 = 𝜌
1
,

𝑠 = 𝜌
2
, and 𝑠 = −(] + 𝜇) are three roots, we have

𝐷
5 (𝑠) = 𝜇

2

𝑋
(𝑠 − 𝜌

1
) (𝑠 − 𝜌

2
) (𝑠 + ] + 𝜇) (𝑠 + 𝑅

1
) (𝑠 + 𝑅

2
) .

(54)

Note also that all 𝑅
𝑖
s have positive real parts, since,

otherwise, they also are roots of (22) which is a contradiction
to the conclusion of Lemma 1.

Denote 𝑅
0
= ] + 𝜇. Furthermore, if 𝑅

0
, 𝑅
1
, and 𝑅

2
are

distinct, we obtain, by partial fractions, that

𝑎𝑠
2
+ 𝑏𝑠 + 𝑐

(𝑠 + 𝑅
0
) (𝑠 + 𝑅

1
) (𝑠 + 𝑅

2
)

=
𝑟
1 (𝑎, 𝑏, 𝑐)

𝑠 + 𝑅
0

+
𝑟
2 (𝑎, 𝑏, 𝑐)

𝑠 + 𝑅
1

+
𝑟
3 (𝑎, 𝑏, 𝑐)

𝑠 + 𝑅
2

,

(𝑠 + 𝜔) (𝑠 + ])
(𝑠 + 𝑅

1
) (𝑠 + 𝑅

2
)
= 1 +

ℎ
1

𝑠 + 𝑅
1

+
ℎ
2

𝑠 + 𝑅
2

,

(55)

where

𝑟
1 (𝑎, 𝑏, 𝑐) =

𝑎𝑅
2

0
− 𝑏𝑅
0
+ 𝑐

(𝑅
1
− 𝑅
0
) (𝑅
2
− 𝑅
0
)
,

𝑟
2 (𝑎, 𝑏, 𝑐) =

𝑎𝑅
2

1
− 𝑏𝑅
1
+ 𝑐

(𝑅
0
− 𝑅
1
) (𝑅
2
− 𝑅
1
)
,

𝑟
3 (𝑎, 𝑏, 𝑐) =

𝑎𝑅
2

2
− 𝑏𝑅
2
+ 𝑐

(𝑅
0
− 𝑅
2
) (𝑅
1
− 𝑅
2
)
,

ℎ
1
=

(] − 𝑅
1
) (𝜔 − 𝑅

1
)

𝑅
2
− 𝑅
1

,

ℎ
2
=

(] − 𝑅
2
) (𝜔 − 𝑅

2
)

𝑅
1
− 𝑅
2

.

(56)

Then (52) can be simplified to

𝜙 (𝑠)

=
1

𝜇
2

𝑋

(1 +

2

∑

𝑖=1

ℎ
𝑖

𝑠 + 𝑅
𝑖

)

× {
𝜇
𝑋

𝜆
1
+ 𝜆
2
+ 𝛿

× [(1 − 𝜇
𝑋
𝜌
1
) 𝑇
𝑠
𝑇
𝜌
1

𝜔 (0) + 𝜇
𝑋
𝑇
𝑠
𝜔 (0)]

−
𝜆
2

1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
4

× [𝑇
𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝐵
1 (0) − 𝑇

𝑠
𝑇
𝜌
2

𝑇
𝜌
1

𝐵
2 (0)]
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−
𝜆
2
𝑞𝜇
𝑋
[2 − 𝜇

𝑋
(𝜌
1
+ 𝜌
2
)]

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× [𝑇
𝑠
𝑇
𝜌
1

𝐵
1 (0) − 𝑇

𝑠
𝑇
𝜌
1

𝐵
2 (0)]

−
𝜆
2
𝑞𝜇
2

𝑋

(𝜆
1
+ 𝜆
2
+ 𝛿)
2
[𝑇
𝑠
𝐵
1 (0) − 𝑇

𝑠
𝐵
2 (0)]}

+
𝜆
1
𝜆
2
𝑞

𝜇
2

𝑋
(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙(

1

𝜇
𝑋

)

⋅ [

[

𝜆
1
𝜔]𝜇

(𝜆
1
+ 𝜆
2
+ 𝛿) 𝑔 (𝜌

1
) 𝑔 (𝜌
2
)

×

2

∑

𝑗=0

𝑟
𝑗
(𝑐
0
, 𝑐
0
𝑎
2
+ 𝑐
1
, 𝑐
0
𝑎
1
+ 𝑐
1
𝑎
2
+ 𝑐
2
)

𝑠 + 𝑅
𝑗

+ 𝜇
𝑋

𝜔]𝜇
𝑔 (𝜌
1
)

2

∑

𝑗=0

𝑟
𝑗
(1, 𝑎
2
+ 𝜌
1
, 𝜌
2

1
+ 𝑎
2
𝜌
1
+ 𝑎
1
)

𝑠 + 𝑅
𝑗

]

]

−
𝜆
1
𝜆
2
𝑞

𝜇
2

𝑋
(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙
1
(

1

𝜇
𝑋

)

⋅ [

[

(𝜆
1
]𝜇) × ((𝜆

1
+ 𝜆
2
+ 𝛿) (] + 𝜌

1
)

× (] + 𝜇 + 𝜌
1
) (] + 𝜌

2
)

× (] + 𝜇 + 𝜌
2
))
−1

×

2

∑

𝑗=0

𝑟
𝑗
(𝑑
1
, 𝑑
2
, 𝑑
3
)

𝑠 + 𝑅
𝑗

+ 𝜇
𝑋

]𝜇
(] + 𝜌

1
) (] + 𝜇 + 𝜌

1
)

×

2

∑

𝑗=0

𝑟
𝑗
(1, 2] + 𝜇 + 𝜔 + 𝜌

1
, 𝜔 (2] + 𝜇 + 𝜌

1
))

𝑠 + 𝑅
𝑗

]

]

,

(57)

where

𝑑
1
= 2] + 𝜇 + 𝜌

1
+ 𝜌
2
,

𝑑
2
= (2] + 𝜇 + 𝜔) 𝑑

1
− ] (] + 𝜇) + 𝜌

1
𝜌
2
,

𝑑
3
= 𝜔 (𝑑

2
− 𝜔𝑑
1
) .

(58)

Taking the inverse Laplace transforms, we can derive
explicit expressions for 𝜙(𝑢):

𝜙 (𝑢)

=
1

𝜇
2

𝑋

Λ (𝑢) +
1

𝜇
2

𝑋

2

∑

𝑖=1

ℎ
𝑖
𝑒
−𝑅
𝑖
𝑢
∗Λ (𝑢)

+
𝜆
1
𝜆
2
𝑞

𝜇
2

𝑋
(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙(

1

𝜇
𝑋

)

⋅ [

[

𝜆
1
𝜔]𝜇

(𝜆
1
+ 𝜆
2
+ 𝛿) 𝑔 (𝜌

1
) 𝑔 (𝜌
2
)

×

2

∑

𝑗=0

𝑟
𝑗
(𝑐
0
, 𝑐
0
𝑎
2
+ 𝑐
1
, 𝑐
0
𝑎
1
+ 𝑐
1
𝑎
2
+ 𝑐
2
) 𝑒
−𝑅
𝑗
𝑢

+ 𝜇
𝑋

𝜔]𝜇
𝑔 (𝜌
1
)

2

∑

𝑗=0

𝑟
𝑗
(1, 𝑎
2
+ 𝜌
1
, 𝜌
2

1
+ 𝑎
2
𝜌
1
+ 𝑎
1
) 𝑒
−𝑅
𝑗
𝑢]

]

−
𝜆
1
𝜆
2
𝑞

𝜇
2

𝑋
(𝜆
1
+ 𝜆
2
+ 𝛿)
2
𝜙
1
(

1

𝜇
𝑋

)

⋅ [

[

(𝜆
1
]𝜇) × ((𝜆

1
+ 𝜆
2
+ 𝛿) (] + 𝜌

1
)

× (] + 𝜇 + 𝜌
1
) (] + 𝜌

2
) (] + 𝜇 + 𝜌

2
))

×

2

∑

𝑗=0

𝑟
𝑗
(𝑑
1
, 𝑑
2
, 𝑑
3
) 𝑒
−𝑅
𝑗
𝑢

+ 𝜇
𝑋

]𝜇
(] + 𝜌

1
) (] + 𝜇 + 𝜌

1
)

×

2

∑

𝑗=0

𝑟
𝑗
(1, 2] + 𝜇 + 𝜔 + 𝜌

1
, 𝜔 (2] + 𝜇 + 𝜌

1
)) 𝑒
−𝑅
𝑗
𝑢]

]

,

(59)

where ∗ denotes the operation of convolution which is dif-
ferent from the distribution functions convolution:

Λ (𝑢)

=
𝜇
𝑋

𝜆
1
+ 𝜆
2
+ 𝛿

× [(1 − 𝜇
𝑋
𝜌
1
) 𝑇
𝜌
1

𝜔 (𝑢) + 𝜇
𝑋
𝜔 (𝑢)]

−
𝜆
2

1
𝜆
2
𝑞

(𝜆
1
+ 𝜆
2
+ 𝛿)
4

× [𝑇
𝜌
2

𝑇
𝜌
1

𝐵
1 (𝑢) − 𝑇

𝜌
2

𝑇
𝜌
1

𝐵
2 (𝑢)]

−
𝜆
2
𝑞𝜇
𝑋
[2 − 𝜇

𝑋
(𝜌
1
+ 𝜌
2
)]

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× [𝑇
𝜌
1

𝐵
1 (𝑢) − 𝑇

𝜌
1

𝐵
2 (𝑢)]

−
𝜆
2
𝑞𝜇
2

𝑋

(𝜆
1
+ 𝜆
2
+ 𝛿)
2

× [𝐵
1 (𝑢) − 𝐵

2 (𝑢)] .

(60)

Equation (59) is the explicit expression for 𝜙(𝑢) with the
case where both the claim sizes are exponentially distributed.
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6. Conclusions

We have generalized the results in [11, 16]. It is assumed
that the premium income process is a compound Poisson
process; moreover, every main claim will produce a byclaim
with a certain probability and the occurrence of the byclaim
may be delayed depending on associatedmain claim amount.
We not only derive the integral equation satisfied by the
expected discounted penalty function, but also obtain the
explicit expression for the Laplace transform of the expected
discounted penalty function when the premium size is expo-
nentially distributed. Finally, for the exponential claim sizes,
we present the explicit formula for the expected discounted
penalty function.
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