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We give some improved convergence results about the smoothing-regularization approach to mathematical programs with
vanishing constraints (MPVC for short), which is proposed in Achtziger et al. (2013). We show that the Mangasarian-Fromovitz
constraints qualification for the smoothing-regularization problem still holds under the VC-MFCQ (see Definition 5) which is
weaker than the VC-LICQ (see Definition 7) and the condition of asymptotic nondegeneracy. We also analyze the convergence
behavior of the smoothing-regularization method and prove that any accumulation point of a sequence of stationary points for the
smoothing-regularization problem is still strongly-stationary under theVC-MFCQand the condition of asymptotic nondegeneracy.

1. Introduction

We consider the following mathematical program with van-
ishing constraints:

min 𝑓 (𝑧)
s.t. 𝑔

𝑖 (𝑧) ≤ 0, 𝑖 = 1, 2, . . . , 𝑚;
ℎ
𝑗 (𝑧) = 0, 𝑗 = 1, 2, . . . , 𝑝;

𝐻
𝑖 (𝑧) ≥ 0, 𝑖 = 1, 2, . . . , 𝑙;

𝐺
𝑖 (𝑧)𝐻𝑖 (𝑧) ≤ 0, 𝑖 = 1, 2, . . . , 𝑙,

(1)

where 𝑓 : 𝑅𝑛 → 𝑅, 𝑔 : 𝑅𝑛 → 𝑅𝑚, ℎ : 𝑅𝑛 → 𝑅𝑝 and
𝐺,𝐻 : 𝑅𝑛 → 𝑅𝑙 are all continuously differentiable functions.

The MPVC was firstly introduced to the mathematical
community in [1]. It plays an important role in some fields
such as optimization topology design problems in mechani-
cal structures [1] and robot path-finding problems with logic
communication constraints in robot motion planning [2].
The major difficulty in solving problem (1) is that it does
not satisfy some standard constraint qualifications at the
feasible points so that the standard optimizationmethods are
likely to fail for this problem. The MPVC has attracted much
attention in the recent years. Several theoretical properties

and different numerical approaches for MPVC can be found
in [1–12]. Very recently, in [3], the authors have proposed
a smoothing-regularization approach to mathematical pro-
grams with vanishing constraints. Their basic idea is to
reformulate the characteristic constraints of the MPVC via
a nonsmooth function and to eventually smooth it and
regularize the feasible set with the aid of a certain smoothing
and regularization parameter 𝜀 > 0 such that the resulting
problem is more tractable and coincides with the original
program for 𝜀 = 0. Under the VC-LICQ and the condition
of asymptotic nondegeneracy, the convergence behaviors of
a sequence of stationary points of the smoothing-regularized
problems have been investigated.

In this note, we give some improved convergence results
about the smoothing-regularization approach to mathemati-
cal programs with vanishing constraints in [3]. We show that
these properties still hold under the weaker VC-MFCQ and
the condition of asymptotic nondegeneracy. The smoothing-
regularization problems satisfy the standard MFCQ, which
guarantees the existence of Lagrange multipliers at local
minima; the sequence ofmultipliers is bounded, and the limit
point is still strongly-stationary.
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The rest of the note is organized as follows. In Section 2,
we review some concepts of the nonlinear programming and
theMPVCand present the smoothing-regularizationmethod
for (1), which is proposed in [3]. In Section 3, we give the
improved convergent properties. We close with some final
remarks in Section 4.

For convenience of discussion, some notations to be used
in this paper are given. The 𝑖th component of 𝐺 will be
denoted by 𝐺

𝑖
; 𝑋 denotes the feasible set of problem (1). For

a function 𝑔 : 𝑅𝑛 → 𝑅𝑚 and a given vector 𝛼 ∈ 𝑅𝑛, we use
𝐼
𝑔
(𝑧) = {𝑖 : 𝑔

𝑖
(𝑧) = 0} and supp(𝛼) = {𝑖 : 𝛼

𝑖
̸= 0} to denote

the active index set of 𝑔 at 𝑧 and the support of 𝛼, respectively.

2. Preliminaries

Firstly, wewill introduce somedefinitions about the following
optimization problem:

min 𝑓 (𝑧)
s.t. 𝑔 (𝑧) ≤ 0,

ℎ (𝑧) = 0,
(2)

where 𝑓 : 𝑅𝑛 → 𝑅, 𝑔 : 𝑅𝑛 → 𝑅𝑚, ℎ : 𝑅𝑛 → 𝑅𝑝 are all
continuously differentiable functions. 𝐹 denotes the feasible
set of problem (2).

Definition 1. A point 𝑧 ∈ 𝐹 is called a stationary point if
there are multipliers 𝜆, 𝜇 such that (𝑧, 𝜆, 𝜇) is a KKT point
of (2); that is, the multipliers satisfy 𝜆 ∈ 𝑅𝑚

+
and 𝜇 ∈ 𝑅𝑝 with

𝜆
𝑖
𝑔
𝑖
(𝑧) = 0 for all 𝑖 = 1, 2, . . . , 𝑚, and

∇𝑓 (𝑧) +
𝑚

∑
𝑖=1

𝜆
𝑖
∇𝑔
𝑖 (𝑧) +

𝑝

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖 (𝑧) = 0. (3)

Definition 2. A feasible point 𝑧 of (2) is said to satisfy the
Mangasarian-Fromovitz constraint qualification (MFCQ for
short) if the gradients {∇ℎ

𝑖
(𝑧) | 𝑖 = 1, 2, . . . , 𝑝} are linearly

independent and there is a 𝑑 ∈ 𝑅𝑛 such that

∇𝑔
𝑖(𝑧)
𝑇𝑑 < 0 (𝑖 ∈ 𝐼

𝑔 (𝑧)) ,

∇ℎ
𝑖(𝑧)
𝑇𝑑 = 0 (𝑖 = 1, 2, . . . , 𝑝) .

(4)

Definition 3 (see [13]). A finite set of vectors {𝑎
𝑖
| 𝑖 ∈ 𝐼

1
}∪{𝑏
𝑖
|

𝑖 ∈ 𝐼
2
} is said to be positive-linearly dependent if there exists

(𝛼, 𝛽) ̸= 0 such that

∑
𝑖∈𝐼
1

𝛼
𝑖
𝑎
𝑖
+ ∑
𝑖∈𝐼
2

𝛽
𝑖
𝑏
𝑖
= 0, 𝛼

𝑖
≥ 0, ∀𝑖 ∈ 𝐼

1
. (5)

If the above system only has a solution (𝛼, 𝛽) = 0, we say
that these vectors are positive-linearly independent.

By using Motzkin’s theorem of the alternatives in [14], we
can obtain the following property.

Lemma 4. A point 𝑧 ∈ 𝐹 satisfies the MFCQ if and only if the
gradients

{∇𝑔
𝑖 (𝑧) | 𝑖 ∈ 𝐼

𝑔 (𝑧)} ∪ {∇ℎ
𝑖 (𝑧) | 𝑖 = 1, 2, . . . , 𝑝} (6)

are positive-linearly independent.

Now, we borrow notations from mathematical programs
with complementarity constraints to define the following sets
of active constraints in an arbitrary 𝑧 ∈ 𝑋 as follows:

𝐼
+ (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) > 0} ,

𝐼
0 (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) = 0} ,

𝐼
+0 (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) > 0, 𝐺
𝑖 (𝑧) = 0} ,

𝐼
+− (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) > 0, 𝐺
𝑖 (𝑧) < 0} ,

𝐼
0+ (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) = 0, 𝐺
𝑖 (𝑧) > 0} ,

𝐼
00 (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) = 0, 𝐺
𝑖 (𝑧) = 0} ,

𝐼
0− (𝑧) = {𝑖 | 𝐻

𝑖 (𝑧) = 0, 𝐺
𝑖 (𝑧) < 0} .

(7)

Definition 5 (see [1]). A feasible point 𝑧 for (1) satisfies the
vanishing constraints Mangasarian-Fromovitz constraints
qualification (VC-MFCQ for short) if

∇ℎ
𝑖 (𝑧) (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝐻
𝑖 (𝑧) (𝑖 ∈ 𝐼

0+ (𝑧) ∪ 𝐼
00 (𝑧))

(8)

are linearly independent and there exists a vector 𝑑 ∈ 𝑅𝑛 such
that

∇ℎ
𝑖(𝑧)
𝑇𝑑 = 0 (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝐻
𝑖(𝑧)
𝑇𝑑 = 0 (𝑖 ∈ 𝐼

0+ (𝑧) ∪ 𝐼
00 (𝑧)) ,

∇𝑔
𝑖(𝑧)
𝑇𝑑 < 0 (𝑖 ∈ 𝐼

𝑔 (𝑧)) ,

∇𝐻
𝑖(𝑧)
𝑇𝑑 > 0 (𝑖 ∈ 𝐼

0− (𝑧)) ,

∇𝐺
𝑖(𝑧)
𝑇𝑑 < 0 (𝑖 ∈ 𝐼

+0 (𝑧)) .

(9)

Similar to Lemma 4, we can also deduce the following result.

Lemma 6. A point 𝑧 ∈ 𝑋 satisfies the VC-MFCQ if and only
if the gradients

{∇𝑔
𝑖 (𝑧) | 𝑖 ∈ 𝐼

𝑔 (𝑧)}

∪ {∇ℎ
𝑖 (𝑧) | 𝑖 = 1, 2, . . . , 𝑝}

∪ {−∇𝐻
𝑖 (𝑧) | 𝑖 ∈ 𝐼

0− (𝑧)}

∪ {∇𝐺
𝑖 (𝑧) | 𝑖 ∈ 𝐼

+0 (𝑧)}

∪ {∇𝐻
𝑖 (𝑧) | 𝑖 ∈ 𝐼

00 (𝑧) ∪ 𝐼
0+ (𝑧)}

(10)

are positive-linearly independent. In other words, theMPVC at
𝑧 satisfies the VC-MFCQ if and only if there does not exist a
vector (𝜆

𝐼
𝑔
(𝑧)

, 𝜇, 𝛼
𝐼
0−
(𝑧)

, 𝛼
𝐼
00
(𝑧)∪𝐼
0+
(𝑧)

, 𝛽
𝐼
+0
(𝑧)

) ̸= 0 with 𝜆
𝑖
≥ 0
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for all 𝑖 ∈ 𝐼
𝑔
(𝑧), 𝛼

𝑖
≥ 0 for all 𝑖 ∈ 𝐼

0−
(𝑧), and 𝛽

𝑖
≥ 0 for all

𝑖 ∈ 𝐼
+0

(𝑧) such that

∑
𝑖∈𝐼
𝑔(𝑧)

𝜆
𝑖
∇𝑔
𝑖 (𝑧) +

𝑙

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖 (𝑧)

− ∑
𝑖∈𝐼
0−(𝑧)

𝛼
𝑖
∇𝐻
𝑖 (𝑧) + ∑

𝑖∈𝐼
00(𝑧)∪𝐼0+(𝑧)

𝛼
𝑖
∇𝐻
𝑖 (𝑧)

+ ∑
𝑖∈𝐼
+0
(𝑧)

𝛽
𝑖
∇𝐺
𝑖 (𝑧) = 0

(11)

holds true.

Definition 7 (see [1]). A feasible point 𝑧 for (1) satisfies the
vanishing linear independence constraints qualification (VC-
LICQ for short) if and only if

∇ℎ
𝑖 (𝑧) (𝑖 = 1, 2, . . . , 𝑝) ,

∇𝑔
𝑖 (𝑧) (𝑖 ∈ 𝐼

𝑔 (𝑧)) ,

∇𝐺
𝑖 (𝑧) (𝑖 ∈ 𝐼

+0 (𝑧)) ,

∇𝐻
𝑖 (𝑧) (𝑖 ∈ 𝐼

0 (𝑧))

(12)

are linearly independent.

Remark 8. It is easy to see that the VC-LICQ implies the VC-
MFCQ.Moreover, the VC-LICQ (VC-MFCQ) is weaker than
the MPVC-LICQ (MPVC-MFCQ) (See [7]).

Definition 9. Let 𝑧 be a feasible point for the problem (1), then

(a) 𝑧 is said to be weak-stationary if there exist multiplier
vectors 𝜆 ∈ 𝑅𝑚, 𝜇 ∈ 𝑅𝑝, and 𝑢, V ∈ 𝑅𝑙 such that

∇𝑓 (𝑧) + ∇𝑔(𝑧)
𝑇𝜆 + ∇ℎ(𝑧)

𝑇𝜇

− ∇𝐻(𝑧)
𝑇V + ∇𝐺(𝑧)

𝑇𝑢 = 0,

𝜆 ≥ 0, 𝑧 ∈ 𝑋, 𝜆
𝑇

𝑔 (𝑧) = 0,

V
𝑖
= 0 (𝑖 ∈ 𝐼

+ (𝑧)) ,

V
𝑖
≥ 0 (𝑖 ∈ 𝐼

0− (𝑧)) ,

V
𝑖

free (𝑖 ∈ 𝐼
0+ (𝑧) ∪ 𝐼

00 (𝑧)) ,

𝑢
𝑖
= 0 (𝑖 ∈ 𝐼

+− (𝑧) ∪ 𝐼
0− (𝑧) ∪ 𝐼

0+ (𝑧)) ,

𝑢
𝑖
≥ 0 (𝑖 ∈ 𝐼

+0 (𝑧) ∪ 𝐼
00 (𝑧)) .

(13)

(b) 𝑧 is said to be strongly-stationary, if it is weak-
stationary and

𝑢
𝑖
= 0, V

𝑖
≥ 0, 𝑖 ∈ 𝐼

00 (𝑧) . (14)

Finally, we give the smoothing-regularization method
of Problem (1), which is proposed in [3]. According to
[3], with the help of a positive parameter, the MPVC (1)
is approximated by the following smoothing-regularization
problem:

min 𝑓 (𝑧)
s.t. 𝑔 (𝑧) ≤ 0, ℎ (𝑧) = 0,

𝑟
𝜀 (𝑧) ≤ 𝜀,

(15)

where

𝑟
𝜀 (𝑧) = (

𝑟
𝜀,1 (𝑧)
...

𝑟
𝜀,𝑙 (𝑧)

) ,

𝑟
𝜀,𝑖 (𝑧) =

1

2
(𝐺
𝑖 (𝑧)𝐻𝑖 (𝑧) + √(𝐺

𝑖 (𝑧)𝐻𝑖 (𝑧))
2
+ 𝜀2

+ √(𝐻
𝑖 (𝑧))
2
+ 𝜀2 − 𝐻

𝑖 (𝑧)) .

(16)

In order to give our improved convergence analysis, the
following concept of asymptotic nondegeneracy is necessary.

Definition 10 (see [3]). Let 𝑧 be feasible for the MPVC (1).
Then a sequence {𝑧

𝑘
} of feasible points for (15) converging

to 𝑧 as 𝜀
𝑘

↓ 0 is called asymptotically nondegenerate, if any
accumulation point of {∇𝑟

𝜀
𝑘
,𝑖
(𝑧
𝑘
)} is different from 0 for each

𝑖 ∈ 𝐼
+0

(𝑧) ∪ 𝐼
0
(𝑧).

3. Some Improved Convergence Properties

In this section, we will consider the improved conver-
gence properties of a sequence of stationary points for the
smoothing-regularization problem (15). Firstly, we discuss
the constraint qualification of (15).

For convenience of discussion, we give the following
notations:

𝑎
𝜀,𝑖 (𝑧) = 𝐻

𝑖 (𝑧) +
𝐺
𝑖 (𝑧)𝐻𝑖(𝑧)

2

√𝐺
𝑖(𝑧)
2𝐻
𝑖(𝑧)
2 + 𝜀2

,

𝑏
𝜀,𝑖 (𝑧) = 𝐺

𝑖 (𝑧) +
𝐺
𝑖(𝑧)
2𝐻
𝑖 (𝑧)

√𝐺
𝑖(𝑧)
2𝐻
𝑖(𝑧)
2 + 𝜀2

+
𝐻
𝑖 (𝑧)

√𝐻
𝑖(𝑧)
2 + 𝜀2

− 1,

𝐼
𝑟
𝜀
(𝑧) = {𝑖 : 𝑟

𝜀,𝑖 (𝑧) = 𝜀} .

(17)

To show that the Mangasarian-Fromovitz constraints qualifi-
cation for the problem (15) holds under some conditions, the
following lemma palys a very important role.

Lemma 11. Let 𝑧 be feasible for (1) such that the VC-MFCQ is
satisfied at 𝑧 and the sequence {𝑧

𝑘
} of feasible points for (15)
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converging to 𝑧 as 𝜀
𝑘

↓ 0 is asymptotically nondegenerate.
Then, for sufficiently large 𝑘, the set of vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔 (𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0− (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0 (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+ (𝑧) ∪ 𝐼

00 (𝑧))

(18)

are positive-linearly independent.

Proof. Since𝑔, ℎ, 𝐺,𝐻 are all continuous, for sufficiently large
𝑘, we have

𝐼
𝑔
(𝑧
𝑘
) ⊆ 𝐼
𝑔 (𝑧) , 𝐼

ℎ
(𝑧
𝑘
) ⊆ 𝐼
ℎ (𝑧) . (19)

Because the VC-MFCQ holds, the gradients

{∇𝑔
𝑖 (𝑧) | 𝑖 ∈ 𝐼

𝑔 (𝑧)}

∪ {∇ℎ
𝑖 (𝑧) | 𝑖 = 1, 2, . . . , 𝑝}

∪ {−∇𝐻
𝑖 (𝑧) | 𝑖 ∈ 𝐼

0− (𝑧)}

∪ {∇𝐺
𝑖 (𝑧) | 𝑖 ∈ 𝐼

+0 (𝑧)}

∪ {∇𝐻
𝑖 (𝑧) | 𝑖 ∈ 𝐼

00 (𝑧) ∪ 𝐼
0+ (𝑧)}

(20)

are positive-linearly independent by Lemma 6, taking into
account that

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0− (𝑧)) ⊆ 𝐼

0− (𝑧) ,

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0 (𝑧)) ⊆ 𝐼

+0 (𝑧) ,

(𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0+ (𝑧)) ∪ (𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
00 (𝑧))

⊆ 𝐼
00 (𝑧) ∪ 𝐼

0+ (𝑧) .

(21)

In view of the condition of asymptotic nondegeneracy, we
know that 𝑎

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0, 𝑏

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ≈ 0 for all 𝑖 ∈ 𝐼

+0
(𝑧) and

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ≈ 0, 𝑏

𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0 for 𝑖 ∈ 𝐼

0
for all sufficiently large 𝑘.

Similar to the proof of Proposition 2.2 in [15], we know that
the set of vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔 (𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0− (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0 (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+ (𝑧) ∪ 𝐼

00 (𝑧))

(22)

are positive-linearly independent for all sufficiently large 𝑘.
The proof is completed.

Based on the above lemma, we can show the following
theorem.

Theorem 12. Let 𝑧 be feasible for (1) such that the VC-MFCQ
is satisfied at 𝑧 and the sequence {𝑧

𝑘
} of feasible points for (15)

converging to 𝑧 as 𝜀
𝑘

↓ 0 is asymptotically nondegenerate.
Then, for sufficiently large 𝑘, Problem (15) satisfies the standard
MFCQ at 𝑧

𝑘
.

Proof. Taking Lemma 11 into account, we know that the set of
vectors

∇𝑔
𝑖
(𝑧
𝑘
) , 𝑖 ∈ 𝐼

𝑔 (𝑧) ,

∇ℎ
𝑖
(𝑧
𝑘
) , 𝑖 = 1, 2, . . . , 𝑝,

− (𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
0− (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0 (𝑧) ,

𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) ,

𝑖 ∈ 𝐼
𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ (𝐼
0+ (𝑧) ∪ 𝐼

00 (𝑧))

(23)

are positive-linearly independent for sufficiently large 𝑘.
We now prove that the standard MFCQ holds at 𝑧

𝑘
for

Problem (15) for sufficiently large 𝑘. In view of Lemma 4, we
have to show that

0 = ∑
𝑖∈𝐼
𝑔(𝑧𝑘)

𝜆𝑘
𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇𝑘
𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+
𝑙

∑
𝑖=1

𝛾𝑘
𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) + 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

(24)
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with 𝜇𝑘 ∈ 𝑅𝑝 and 𝜆𝑘, 𝛾𝑘 ≥ 0 holds for the zero vector. To see
this, we rewrite (24) as

0 = ∑
𝑖∈𝐼
𝑔(𝑧𝑘)

𝜆𝑘
𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇𝑘
𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

− ∑
𝑖∈𝐼
𝑟𝜀
𝑘
(𝑧𝑘)∩𝐼0−(𝑧)

𝛾𝑘
𝑖
(−𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

−𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

+ ∑
𝑖∈𝐼
𝑟𝜀
𝑘
(𝑧𝑘)∩𝐼+0(𝑧)

𝛾𝑘
𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
))

+ ∑
𝑖∈𝐼
𝑟𝜀
𝑘
(𝑧𝑘)∩(𝐼0+(𝑧)∪𝐼00(𝑧))

𝛾𝑘
𝑖
(𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ 𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)) .

(25)

In view of the condition of asymptotic nondegeneracy,
applying the positive linear independence of vectors from
(23) to (25) and (19), one gets

𝜆𝑘
𝑖
= 0 (𝑖 ∈ 𝐼

𝑔
(𝑧
𝑘
)) ,

𝜇𝑘
𝑖
= 0 (𝑖 = 1, 2, . . . , 𝑝) ,

𝛾𝑘
𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧𝑘) ∩ 𝐼
0− (𝑧)) ,

𝛾𝑘
𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘
) ∩ 𝐼
+0 (𝑧)) ,

𝛾𝑘
𝑖
= 0 (𝑖 ∈ 𝐼

𝑟
𝜀
𝑘

(𝑧𝑘) ∩ (𝐼
0+ (𝑧) ∪ 𝐼

00 (𝑧))) .

(26)

The proof is completed.

Remark 13. In Theorem 12, by relaxing the condition of the
VC-LICQ, we show that the VC-MFCQ and the condition
of asymptotic nondegeneracy imply that the smoothing-
regularization problems satisfy the standard MFCQ. Hence,
Theorem 12 is an improved version of Lemma 5.6 in [3].

To establish the relations between the solutions of the
original problem and those of the smoothing-regularization
problem under the VC-MFCQ and the condition of asymp-
totic nondegeneracy, we give the following key lemma.

Lemma 14. Let 𝜀
𝑘

> 0 be convergent to zero. Suppose that
{𝑧
𝑘
} is a sequence of stationary points of Problem (15) with

𝜀 = 𝜀
𝑘
and (𝜆𝑘, 𝜇𝑘, 𝛾𝑘) being the corresponding multiplier

vectors. If 𝑧 is an accumulation point of the sequence {𝑧
𝑘
} such

that the VC-MFCQ holds at 𝑧 and the condition of asymptotic
nondegeneracy for {𝑧

𝑘
} is satisfied, then the sequence of

multipliers {(𝜆𝑘, 𝜇𝑘, 𝛾𝑘)} is bounded.

Proof. It follows from Theorem 12 that, for sufficiently large
𝑘, there exist lagrangian multiplier vectors (𝜆𝑘, 𝜇𝑘, 𝛾𝑘) such
that

∇𝑓 (𝑧
𝑘
) +
𝑚

∑
𝑖=1

𝜆𝑘
𝑖
∇𝑔
𝑖
(𝑧
𝑘
) +

𝑝

∑
𝑖=1

𝜇𝑘
𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+
𝑙

∑
𝑖=1

𝛾𝑘
𝑖
∇𝑟
𝜀
𝑘
,𝑖
(𝑧
𝑘
) = 0,

(27)

𝜆
𝑘
≥ 0, supp (𝜆𝑘) ⊆ 𝐼

𝑔
(𝑧
𝑘
) ,

𝛾
𝑘
≥ 0, supp (𝛾𝑘) ⊆ 𝐼

𝑟
𝜀
𝑘

(𝑧
𝑘
) .

(28)

From (27), we have

∇𝑓 (𝑧
𝑘
) + ∑
𝑖∈supp(𝜆

𝑘
)

𝜆𝑘
𝑖
∇𝑔
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝜇

𝑘
)

𝜇𝑘
𝑖
∇ℎ
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
0−
(𝑧)

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
0−
(𝑧)

𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
+0
(𝑧)

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
+0
(𝑧)

𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
) = 0.

(29)

We can define

𝛽𝑘
𝑖
= {

−𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ 𝐼

0− (𝑧) ;

0, otherwise,

𝛾𝑘
𝑖
= {

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ 𝐼

+0 (𝑧) ;

0, otherwise,

]𝑘
𝑖
= {

𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) , 𝑖 ∈ supp (𝛾𝑘) ∩ (𝐼

0+ (𝑧) ∪ 𝐼
00 (𝑧)) ;

0, otherwise.
(30)
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Noting that with 𝛽𝑘
𝑖
, 𝛾𝑘
𝑖
, and ]𝑘

𝑖
, (27) can be rewritten as

0 = ∇𝑓 (𝑧
𝑘
) +
𝑚

∑
𝑖=1

𝜆𝑘
𝑖
∇𝑔
𝑖
(𝑧
𝑘
)

+

𝑝

∑
𝑖=1

𝜇𝑘
𝑖
∇ℎ
𝑖
(𝑧
𝑘
) +
𝑙

∑
𝑖=1

𝛽𝑘
𝑖
(−∇𝐻

𝑖
(𝑧
𝑘
))

+
𝑙

∑
𝑖=1

𝛾𝑘
𝑖
∇𝐺
𝑖
(𝑧
𝑘
) +
𝑙

∑
𝑖=1

]𝑘
𝑖
∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩(𝐼
0+
(𝑧)∪𝐼
00
(𝑧))

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
+0
(𝑧)

𝛾𝑘
𝑖
𝑏
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐻
𝑖
(𝑧
𝑘
)

+ ∑
𝑖∈supp(𝛾

𝑘
)∩𝐼
0−
(𝑧)

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ∇𝐺
𝑖
(𝑧
𝑘
) .

(31)

The following objective is to prove that the sequence
{(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘, 𝛾𝑘

𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is bounded.
Assume that the sequence {(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘,

𝛾𝑘
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is unbounded. Then, there exists a
subset 𝐾 such that

(𝜆
𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘, 𝛾𝑘

𝐼
+0(𝑧)∪𝐼0+(𝑧)∪𝐼00(𝑧)∪𝐼0−(𝑧)

)
𝐾



→ +∞ (𝑘 → +∞) .
(32)

So the corresponding normed sequence converges:

(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘, 𝛾𝑘
𝐼
+0(𝑧)∪𝐼0+(𝑧)∪𝐼00(𝑧)∪𝐼0−(𝑧)

)

(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘, 𝛾𝑘

𝐼
+0(𝑧)∪𝐼0+(𝑧)∪𝐼00(𝑧)∪𝐼0−(𝑧)

)


→
𝑘∈𝐾

(𝜆, 𝜇, 𝛽, 𝛾, ], 𝛾
𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

) ̸= 0.

(33)

Combined with (31), it yields

0 =
𝑚

∑
𝑖=1

𝜆
𝑖
∇𝑔
𝑖 (𝑧) +

𝑝

∑
𝑖=1

𝜇
𝑖
∇ℎ
𝑖 (𝑧)

+
𝑙

∑
𝑖=1

𝛽
𝑖
(−∇𝐻

𝑖 (𝑧)) +
𝑙

∑
𝑖=1

𝛾
𝑖
∇𝐺
𝑖 (𝑧) +

𝑙

∑
𝑖=1

]
𝑖
∇𝐻
𝑖 (𝑧) ,

(34)

that is,

0 = ∑
𝑖∈supp(𝜆)

𝜆
𝑖
∇𝑔i (𝑧) + ∑

𝑖∈supp(𝜇)
𝜇
𝑖
∇ℎ
𝑖 (𝑧)

+ ∑
𝑖∈supp(𝛽)

𝛽
𝑖
(−∇𝐻

𝑖 (𝑧)) + ∑
𝑖∈supp(𝛾)

𝛾
𝑖
∇𝐺
𝑖 (𝑧)

+ ∑
𝑖∈supp(])

]
𝑖
∇𝐻
𝑖 (𝑧) ,

(35)

where 𝜆 ≥ 0 and, for all 𝑘 ∈ 𝐾 being large enough,

supp (𝜆) ⊆ 𝐼
𝑔
(𝑧
𝑘
) ⊆ 𝐼
𝑔 (𝑧) ,

supp (𝛽) ⊆ supp (𝛽𝑘) ⊆ (supp (𝛾𝑘) ∩ 𝐼
0− (𝑧)) ⊆ 𝐼

0− (𝑧) ,

supp (𝛾) ⊆ supp (𝛾𝑘)

⊆ (supp (𝛾𝑘) ∩ 𝐼
+0 (𝑧)) ⊆ 𝐼

+0 (𝑧) ,

supp (]) ⊆ supp (]𝑘)

⊆ (supp (𝛾𝑘) ∩ (𝐼
00 (𝑧) ∪ 𝐼

0+ (𝑧)))

⊆ 𝐼
00 (𝑧) ∪ 𝐼

0+ (𝑧) .

(36)

We can prove that (𝜆, 𝜇, 𝛽, 𝛾, ]) ̸= 0. Actually, if (𝜆, 𝜇,
𝛽, 𝛾, ]) = 0, then, for at least one 𝑖 ∈ 𝐼

+0
(𝑧) ∪ 𝐼

0+
(𝑧) ∪

𝐼
00
(𝑧) ∪ 𝐼

0−
(𝑧), 𝛾
𝑖

̸= 0. Without loss of generality, assume
that 𝛾

𝑖
̸= 0 for an 𝑖 ∈ 𝐼

+0
(𝑧), then, for all 𝑘 sufficiently large,

𝛾𝑘
𝑖

̸= 0. Consequently, 𝛾𝑘
𝑖

= 𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) for those 𝑘. Taking

into account the condition of asymptotic nondegeneracy, for
𝑖 ∈ 𝐼
+0

(𝑧), we have

𝛾
𝑖
= lim
𝑘∈𝐾

𝛾𝑘
𝑖
= lim
𝑘∈𝐾

𝛾𝑘
𝑖
𝑎
𝜀
𝑘
,𝑖
(𝑧
𝑘
) ̸= 0, (37)

which contradicts the assumption 𝛾 = 0.
By Lemma 6, we know that (𝜆, 𝜇, 𝛽, 𝛾, ]) ̸= 0 contradicts

the fact that the VC-MFCQ holds at 𝑧. Thus, the sequence
{(𝜆𝑘, 𝜇𝑘, 𝛽𝑘, 𝛾𝑘, ]𝑘, 𝛾𝑘

𝐼
+0
(𝑧)∪𝐼
0+
(𝑧)∪𝐼
00
(𝑧)∪𝐼
0−
(𝑧)

)} is bounded.
Again, noting the condition of asymptotic nondegeneracy

and the definitions of 𝛽𝑘
𝑖
, 𝛾𝑘
𝑖
, ]𝑘
𝑖
, we can prove that the

sequence of multipliers {(𝜆𝑘, 𝜇𝑘, 𝛾𝑘)} are bounded. The proof
is completed.

Based on Lemma 14, similar to the proof of Theorem 5.3
in [3], we can obtain the following convergence result.

Theorem 15. Let 𝜀
𝑘

> 0 be convergent to zero. Suppose
that {𝑧

𝑘
} is a sequence of stationary points of Problem (15)

with 𝜀 = 𝜀
𝑘
. If 𝑧 is an accumulation point of the sequence

{𝑧
𝑘
} such that the VC-MFCQ holds at 𝑧 and the condition

of asymptotic nondegeneracy for {𝑧
𝑘
} is satisfied, then 𝑧 is a

strongly-stationary point of Problem (1).

Remark 16. In Theorem 15, by replacing the condition of
the VC-LICQ, we prove that any accumulation point of
stationary points for the smoothing-regularization problem
is still strongly-stationary under the VC-MFCQ and the
condition of asymptotic nondegeneracy. Hence, Theorem 15
includes Theorem 5.3 in [3] as a special case.

4. Concluding Remarks

In this note, we have shown that the VC-LICQ assumption
can be replaced by the weaker VC-MFCQ condition in order
to get the strong stationarity for the smoothing-regularization
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approach to mathematical programs with vanishing con-
straints, which is proposed in [3].Wehave also shown that the
VC-MFCQ implies that the smoothing-regularization prob-
lems satisfy the standard MFCQ. While it seems possible to
prove that many other VC-tailored constraint qualifications
imply that the corresponding standard constraint qualifica-
tion holds for the smoothing-regularization problem, it is an
open question whether one can further relax the VC-MFCQ
assumption to get strong stationarity in the limit.
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