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The least-squares solutions of the matrix equations𝐴𝑋𝐵+𝐶𝑌𝐷 = 𝐻 and𝐴𝑋𝐵+𝐶𝑋𝐷 = 𝐻 for symmetric arrowhead matrices are
discussed. By using the Kronecker product and stretching function of matrices, the explicit representations of the general solution
are given. Also, it is shown that the best approximation solution is unique and an explicit expression of the solution is derived.

1. Introduction

An 𝑛 × 𝑛 matrix 𝐴 is called an arrowhead matrix if it has the
following form:

𝐴 =

[
[
[
[
[
[

[

𝑎
1

𝑏
1

𝑏
2

⋅ ⋅ ⋅ 𝑏
𝑛−1

𝑐
1

𝑎
2

0 ⋅ ⋅ ⋅ 0

𝑐
2

0 𝑎
3

⋅ ⋅ ⋅ 0

...
...

... d
...

𝑐
𝑛−1

0 0 ⋅ ⋅ ⋅ 𝑎
𝑛

]
]
]
]
]
]

]

. (1)

If 𝑏
𝑖
= 𝑐
𝑖
, 𝑖 = 1, . . . , 𝑛 − 1, then 𝐴 is said to be a symmetric

arrowheadmatrix. We denote all real-valued symmetric 𝑛×𝑛

arrowhead matrices by SAR𝑛×𝑛. Such matrices arise in the
description of radiationless transitions in isolated molecules
[1], oscillators vibrationally coupled with a Fermi liquid [2]
and quantum optics [3], and so forth. Numerically efficient
algorithms for computing eigenvalues and eigenvectors of
arrowhead matrices were discussed in [4–8]. The inverse
problem of constructing the symmetric arrowhead matrix
from spectral data has been investigated by Xu [9], Peng
et al. [10], and Borges et al. [11]. In this paper, we will
further consider the least-squares solutions of the matrix

equations for symmetric arrowhead matrices and associated
approximation problems, which can be described as follows.

Problem 1. Given 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑛×𝑝, 𝐶 ∈ R𝑚×𝑞, 𝐷 ∈

R𝑞×𝑝, and 𝐻 ∈ R𝑚×𝑝, find nontrivial real-valued symmetric
arrowhead matrices𝑋 ∈ R𝑛×𝑛 and 𝑌 ∈ R𝑞×𝑞 such that

‖𝐴𝑋𝐵 + 𝐶𝑌𝐷 − 𝐻‖ = min . (2)

Problem 2. Given real-valued symmetric arrowheadmatrices
𝑋 ∈ R𝑛×𝑛, 𝑌̃ ∈ R𝑞×𝑞, find (𝑋, 𝑌̂) ∈ S

1
such that

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌̂ − 𝑌̃

󵄩󵄩󵄩󵄩󵄩

2

= min
(𝑋,𝑌)∈S

1

(
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑌̃

󵄩󵄩󵄩󵄩󵄩

2

) ,

(3)

where S
1
is the solution set of Problem 1.

Problem 3. Given 𝐴,𝐶 ∈ R𝑚×𝑛, 𝐵, 𝐷 ∈ R𝑛×𝑝, and 𝐻 ∈ R𝑚×𝑝,
find nontrivial real-valued symmetric arrowhead matrix 𝑋

such that

‖𝐴𝑋𝐵 + 𝐶𝑋𝐷 − 𝐻‖ = min . (4)
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Problem 4. Given a real-valued symmetric arrowheadmatrix
𝑋 ∈ R𝑛×𝑛, find𝑋 ∈ S

3
such that

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
= min
𝑋∈S
3

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
, (5)

where S
3
is the solution set of Problem 3.

Recently, Li et al. [12] considered the least-squares
solutions of the matrix equation 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐸 for
symmetric arrowhead matrices. By using Moore-Penrose
inverses and theKronecker product, theminimum-norm and
least-squares solution to the matrix equation for symmetric
arrowheadmatrices was provided. However, we can easily see
that the method used in [12] involves complicated computa-
tions for Moore-Penrose generalized inverses of partitioned
matrices, and the expression of the minimum-norm and
least-squares solution was not explicit. Compared with the
approach proposed in [12], the method in this paper is more
concise and easy to perform.

The paper is organized as follows. In Section 2, using the
Kronecker product and stretching function vec(⋅) ofmatrices,
we give an explicit representation of the solution set S

1
of

Problem 1. Furthermore, we show that there exists a unique
solution in Problem 2 and present the expression of the
unique solution (𝑋, 𝑌̂) of Problem 2. In Section 3, we provide
an explicit representation of the solution set S

3
of Problem

3 and present the expression of the unique solution 𝑋 of
Problem 4. In Section 4, a numerical algorithm to acquire
the optimal approximation solution for Problem 2 under the
Frobenius norm sense is described and a numerical example
is provided. Some concluding remarks are given in Section 5.

Throughout this paper, we denote the real 𝑚 × 𝑛 matrix
space by R𝑚×𝑛 and the transpose and the Moore-Penrose
generalized inverse of a real matrix 𝐴 by 𝐴

⊤ and 𝐴
+,

respectively. 𝐼
𝑛
represents the identity matrix of size 𝑛. For

𝐴, 𝐵 ∈ Rm×𝑛, an inner product in R𝑚×𝑛 is defined by (𝐴, 𝐵) =

trace(𝐵⊤𝐴); thenR𝑚×𝑛 is aHilbert space.Thematrix norm ‖⋅‖

induced by the inner product is the Frobenius norm. Given
two matrices 𝐴 = [𝑎

𝑖𝑗
] ∈ R𝑚×𝑛 and 𝐵 = [𝑏

𝑖𝑗
] ∈ R𝑝×𝑞, the

Kronecker product of 𝐴 and 𝐵 is defined by 𝐴 ⊗ 𝐵 = [𝑎
𝑖𝑗
𝐵] ∈

R𝑚𝑝×𝑛𝑞. Also, for an 𝑚 × 𝑛 matrix 𝐴 = [𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
], where

𝑎
𝑖
, 𝑖 = 1, . . . , 𝑛, is the 𝑖th column vector of 𝐴, the stretching

function vec(𝐴) is defined by vec(𝐴) = [𝑎
⊤

1
, 𝑎
⊤

2
, . . . , 𝑎

⊤

𝑛
]
⊤.

2. The Solutions of Problems 1 and 2

To begin with, we introduce two lemmas.

Lemma 5 (see [13]). If 𝐿 ∈ R𝑚×𝑞, 𝑏 ∈ R𝑚, then the general
solution of ‖𝐿𝑦 − 𝑏‖ = min can be expressed as 𝑦 = 𝐿

+
𝑏 + (𝐼
𝑞
−

𝐿
+
𝐿)𝑧, where 𝑧 ∈ R𝑞 is an arbitrary vector.

Lemma 6 (see [14]). Let𝐷 ∈ R𝑚×𝑛, 𝐻 ∈ R𝑛×𝑙, 𝐽 ∈ R𝑙×𝑠. Then

vec (𝐷𝐻𝐽) = (𝐽
⊤
⊗ 𝐷) vec (𝐻) . (6)

Let 𝑑
1

= 2𝑛 − 1 and 𝑑
2

= 2𝑞 − 1. It is easily seen that
dim(SAR𝑛×𝑛) = 𝑑

1
and dim(SAR𝑞×𝑞) = 𝑑

2
. Define

𝑍
𝑖𝑗

=
{

{

{

√2

2
(𝑒
(𝑛)

𝑖
(𝑒
(𝑛)

𝑗
)
⊤

+ 𝑒
(𝑛)

𝑗
(𝑒
(𝑛)

𝑖
)
⊤

) , 𝑖 = 1; 𝑗 = 2, . . . , 𝑛,

𝑒
(𝑛)

𝑖
(𝑒
(𝑛)

𝑖
)
⊤

, 𝑖 = 𝑗 = 1, . . . , 𝑛,

(7)
𝑊
𝑘𝑙

=

{{

{{

{

√2

2
(𝑒
(𝑞)

𝑘
(𝑒
(𝑞)

𝑙
)
⊤

+ 𝑒
(𝑝)

𝑙
(𝑒
(𝑞)

𝑘
)
⊤

) , 𝑘 = 1; 𝑙 = 2, . . . , 𝑞,

𝑒
(𝑞)

𝑘
(𝑒
(𝑞)

𝑘
)
⊤

, 𝑘 = 𝑙 = 1, . . . , 𝑞,

(8)

where 𝑒(𝑛)
𝑖

is the 𝑖th column vector of the identity matrix 𝐼
𝑛
. It

is easy to verify that {𝑍
𝑖𝑗
} and {𝑊

𝑘𝑙
} form orthonormal bases

of the subspaces SAR𝑛×𝑛 and SAR𝑞×𝑞, respectively. That is,

(𝑍
𝑖𝑗
, 𝑍
𝑘𝑙
) = {

0, 𝑖 ̸= 𝑘 or 𝑗 ̸= 𝑙,

1, 𝑖 = 𝑘, 𝑗 = 𝑙,

(𝑊
𝑖𝑗
,𝑊
𝑘𝑙
) = {

0, 𝑖 ̸= 𝑘 or 𝑗 ̸= 𝑙,

1, 𝑖 = 𝑘, 𝑗 = 𝑙.

(9)

Now, if 𝑋 ∈ SAR𝑛×𝑛 and 𝑌 ∈ SAR𝑞×𝑞, then 𝑋 and 𝑌 can be
expressed as

𝑋 = ∑

𝑖,𝑗

𝛼
𝑖𝑗
𝑍
𝑖𝑗
, 𝑌 = ∑

𝑘,𝑙

𝛽
𝑘𝑙
𝑊
𝑘𝑙
, (10)

where the real numbers 𝛼
𝑖𝑗
, 𝑖 = 1, 𝑗 = 2, . . . , 𝑛; 𝑖 = 𝑗 =

1, . . . , 𝑛, and 𝛽
𝑘𝑙
, 𝑘 = 1, 𝑙 = 2, . . . , 𝑞; 𝑘 = 𝑙 = 1, . . . , 𝑞, are

yet to be determined.
It follows from (10) that the relation of (2) can be

equivalently written as
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑖,𝑗

𝛼
𝑖𝑗
𝐴𝑍
𝑖𝑗
𝐵 + ∑

𝑘,𝑙

𝛽
𝑘𝑙
𝐶𝑊
𝑘𝑙
𝐷 − 𝐻

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= min . (11)

When setting

𝛼 = [𝛼
11
, . . . , 𝛼

𝑛,𝑛
, 𝛼
12
, . . . , 𝛼

1,𝑛
]
⊤

,

𝛽 = [𝛽
11
, . . . , 𝛽

𝑞,𝑞
, 𝛽
12
, . . . , 𝛽

1,𝑞
]
⊤

,

(12)

𝐺 = [vec (𝑍
11
) , . . . , vec (𝑍

𝑛,𝑛
) , vec (𝑍

12
) , . . . , vec (𝑍

1,𝑛
)]

∈ R𝑛
2
×𝑑
1

(13)

𝐿 = [vec (𝑊
11
) , . . . , vec (𝑊

𝑞,𝑞
) , vec (𝑊

12
) , . . . , vec (𝑊

1,𝑞
)]

∈ R𝑞
2
×𝑑
2 ,

(14)

𝑀 = (𝐵
⊤
⊗ 𝐴)𝐺, 𝑁 = (𝐷

⊤
⊗ 𝐶) 𝐿, ℎ = Vec (𝐻) .

(15)
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By Lemma 6, we see that the relation of (11) is equivalent to
󵄩󵄩󵄩󵄩𝑀𝛼 + 𝑁𝛽 − ℎ

󵄩󵄩󵄩󵄩 = min . (16)

We note that
󵄩󵄩󵄩󵄩𝑀𝛼 + 𝑁𝛽 − ℎ

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑀[𝛼 + 𝑀

+
(𝑁𝛽 − ℎ)] + 𝐸

𝑀
(𝑁𝛽 − ℎ)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑀[𝛼 + 𝑀

+
(𝑁𝛽 − ℎ)]

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝐸𝑀(𝑁𝛽 − ℎ)

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑀[𝛼 + 𝑀

+
(𝑁𝛽 − ℎ)]

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑀
𝑁[𝛽 − (𝐸

𝑀
𝑁)
+

𝐸
𝑀
ℎ]

− (𝐼
𝑚𝑝

− 𝐸
𝑀
𝑁(𝐸
𝑀
𝑁)
+

)𝐸
𝑀
ℎ
󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝑀[𝛼 + 𝑀

+
(𝑁𝛽 − ℎ)]

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝐸
𝑀
𝑁[𝛽 − (𝐸

𝑀
𝑁)
+

𝐸
𝑀
ℎ]

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
(𝐼
𝑚𝑝

− 𝐸
𝑀
𝑁(𝐸
𝑀
𝑁)
+

)𝐸
𝑀
ℎ
󵄩󵄩󵄩󵄩󵄩

2

,

(17)

where 𝐸
𝑀

= 𝐼
𝑚𝑝

− 𝑀𝑀
+. It follows from Lemma 5 and (17)

that ‖𝑀𝛼 + 𝑁𝛽 − ℎ‖ = min if and only if

𝛼 = −𝑀
+
𝑁𝛽 + 𝑀

+
ℎ + 𝐹
𝑀
V, (18)

𝛽 = (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ + 𝑊𝑢, (19)

where 𝐹
𝑀

= 𝐼
𝑑
1

− 𝑀
+
𝑀, 𝑊 = 𝐼

𝑑
2

− (𝐸
𝑀
𝑁)
+
𝐸
𝑀
𝑁, and 𝑢 ∈

R𝑑2 , V ∈ R𝑑1 are arbitrary vectors.
Substituting (19) into (18), we obtain

𝛼 = 𝛼̃ − 𝑀
+
𝑁𝑊𝑢 + 𝐹

𝑀
V, (20)

where 𝛼̃ = 𝑀
+
ℎ − 𝑀

+
𝑁(𝐸
𝑀
𝑁)
+
𝐸
𝑀
ℎ.

In summary of the above discussion, we have proved the
following result.

Theorem 7. Suppose that 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑛×𝑝, 𝐶 ∈

R𝑚×𝑞,𝐷 ∈ R𝑞×𝑝, and𝐻 ∈ R𝑚×𝑝. Let {𝑍
𝑖𝑗
}, {𝑊
𝑘𝑙
}, 𝐺, 𝐿,𝑀,𝑁, ℎ

be given as in (7), (8), (13), (14), and (15), respectively. Write
𝑑
1

= 2𝑛 − 1, 𝑑
2

= 2𝑞 − 1, 𝐸
𝑀

= 𝐼
𝑚𝑝

− 𝑀𝑀
+
, 𝐹
𝑀

=

𝐼
𝑑
1

− 𝑀
+
𝑀, 𝑊 = 𝐼

𝑑
2

− (𝐸
𝑀
𝑁)
+
𝐸
𝑀
𝑁, and 𝛼̃ = 𝑀

+
ℎ −

𝑀
+
𝑁(𝐸
𝑀
𝑁)
+
𝐸
𝑀
ℎ. Then the solution set S

1
of Problem 1 can

be expressed as

S
1
= { (𝑋, 𝑌) ∈ SAR𝑛×𝑛 × SAR𝑞×𝑞 |

𝑋 = 𝐾
1
(𝛼 ⊗ 𝐼

𝑛
) , 𝑌 = 𝐾

2
(𝛽 ⊗ 𝐼

𝑞
)} ,

(21)

where

𝐾
1
= [𝑍
11
, . . . , 𝑍

𝑛,𝑛
, 𝑍
12
, . . . , 𝑍

1,𝑛
] ∈ R𝑛×𝑛𝑑1 , (22)

𝐾
2
= [𝑊
11
, . . . ,𝑊

𝑞,𝑞
,𝑊
12
, . . . ,𝑊

1,𝑞
] ∈ R𝑞×𝑞𝑑2 , (23)

𝛼, 𝛽 are, respectively, given by (20) and (19) with 𝑢 ∈ R𝑑2 , V ∈

R𝑑1 being arbitrary vectors.

From (17), we can easily obtain the following corollary.

Corollary 8. Under the same assumptions as in Theorem 7,
the matrix equation

𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐻 (24)

has a solution if and only if

𝐸
𝑀
𝑁(𝐸
𝑀
𝑁)
+

𝐸
𝑀
𝑁 = 𝐸

𝑀
ℎ. (25)

In this case, the solution set S
1
of (24) is given by (21).

It follows from Theorem 7 that the solution set S
1
is

always nonempty. It is easy to verify thatS
1
is a closed convex

subset of SAR𝑛×𝑛 × SAR𝑞×𝑞. From the best approximation
theorem [15], we know there exists a unique solution (𝑋, 𝑌̂)

in S
1
such that (3) holds.

We now focus our attention on seeking the unique solu-
tion (𝑋, 𝑌̂) in S

1
. For the real-valued symmetric arrowhead

matrices𝑋 and 𝑌̃, it is easily seen that𝑋, 𝑌̃ can be expressed
as the linear combinations of the orthonormal bases {𝑍

𝑖𝑗
} and

{𝑊
𝑖j}; that is,

𝑋 = ∑

𝑖,𝑗

𝛾
𝑖𝑗
𝑍
𝑖𝑗
, 𝑌̃ = ∑

𝑘,𝑙

𝛿
𝑘𝑙
𝑊
𝑘𝑙
, (26)

where 𝛾
𝑖𝑗
, 𝑖 = 1, 𝑗 = 2, . . . , 𝑛; 𝑖 = 𝑗 = 1, . . . , 𝑛, and 𝛿

𝑘𝑙
, 𝑘 =

1, 𝑙 = 2, . . . , 𝑞; 𝑘 = 𝑙 = 1, . . . , 𝑞, are uniquely determined by
the elements of𝑋 and 𝑌̃. Let

𝛾 = [𝛾
11
, . . . , 𝛾

𝑛,𝑛
, 𝛾
12
, . . . , 𝛾

1,𝑛
]
⊤

,

𝛿 = [𝛿
11
, . . . , 𝛿

𝑞,𝑞
, 𝛿
12
, . . . , 𝛿

1,𝑞
]
⊤

.

(27)

Then, for any pair of matrices (𝑋, 𝑌) ∈ S
1
in (21), by the

relations of (9) and (26), we see that

𝑓 =
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
𝑌 − 𝑌̃

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)𝑊
𝑘𝑙

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= (∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗
,∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗
)

+ (∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)𝑊
𝑘𝑙
,∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)𝑊
𝑘𝑙
)

= ∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)(𝑍
𝑖𝑗
,∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗
)

+ ∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)(𝑊
𝑘𝑙
,∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)𝑊
𝑘𝑙
)

= ∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)
2

+ ∑

𝑘,𝑙

(𝛽
𝑘𝑙
− 𝛿
𝑘𝑙
)
2

=
󵄩󵄩󵄩󵄩𝛼 − 𝛾

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩𝛽 − 𝛿

󵄩󵄩󵄩󵄩

2

.

(28)
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Substituting (19) and (20) into the function of 𝑓, we have

𝑓 =
󵄩󵄩󵄩󵄩𝛼̃ − 𝑀

+
𝑁𝑊𝑢 + 𝐹

𝑀
V − 𝛾

󵄩󵄩󵄩󵄩

2

+
󵄩󵄩󵄩󵄩󵄩
(𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ + 𝑊𝑢 − 𝛿

󵄩󵄩󵄩󵄩󵄩

2

= 𝑢
⊤
𝑊𝑁
⊤
(𝑀𝑀

⊤
)
+

𝑁𝑊𝑢 + 2(𝛾 − 𝛼̃)
⊤

𝑀
+
𝑁𝑊𝑢

− 2(𝛾 − 𝛼̃)
⊤

𝐹
𝑀
V + V⊤𝐹

𝑀
V + (𝛾 − 𝛼̃)

⊤

(𝛾 − 𝛼̃) + 𝑢
⊤
𝑊𝑢

− 2(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ)
⊤

𝑊𝑢

+ (𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ)
⊤

(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ) .

(29)

Therefore,
𝜕𝑓

𝜕𝑢
= 2𝑊𝑁

⊤
(𝑀𝑀

⊤
)
+

𝑁𝑊𝑢 + 2𝑊𝑁
⊤
(𝑀
+
)
⊤

(𝛾 − 𝛼̃)

+ 2𝑊𝑢 − 2𝑊(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ) ,

𝜕𝑓

𝜕V
= 2𝐹
𝑀
V − 2𝐹

𝑀
(𝛾 − 𝛼̃) .

(30)

Clearly, ‖𝑋 − 𝑋‖
2

+ ‖𝑌 − 𝑌̃‖
2

= min if and only if

𝜕𝑓

𝜕𝑢
= 0,

𝜕𝑓

𝜕V
= 0 (31)

which yields

𝑊𝑢 = (𝐼
𝑑
2

+ 𝑊𝑁
⊤
(𝑀𝑀

⊤
)
+

𝑁𝑊)
−1

× 𝑊(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ − 𝑁

⊤
(𝑀
+
)
⊤

(𝛾 − 𝛼̃)) ,

𝐹
𝑀
V = 𝐹
𝑀

(𝛾 − 𝛼̃) .

(32)

Upon substituting (32) into (19) and (20), we obtain

𝛼̂ = − 𝑀
+
𝑁𝑊(𝐼

𝑑
2

+ 𝑊𝑁
⊤
(𝑀𝑀

⊤
)
+

𝑁𝑊)
−1

× 𝑊(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ − 𝑁

⊤
(𝑀
+
)
⊤

(𝛾 − 𝛼̃))

+ 𝛼̃ + 𝐹
𝑀
𝛾,

(33)

𝛽 = (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ + (𝐼

𝑑
2

+ 𝑊𝑁
⊤
(𝑀𝑀

⊤
)
+

𝑁𝑊)
−1

× 𝑊(𝛿 − (𝐸
𝑀
𝑁)
+

𝐸
𝑀
ℎ − 𝑁

⊤
(𝑀
+
)
⊤

(𝛾 − 𝛼̃)) .

(34)

By now, we have proved the following result.

Theorem 9. Let the real-valued symmetric arrowhead matri-
ces 𝑋 and 𝑌̃ be given. Then Problem 2 has a unique solution
and the unique solution of Problem 2 can be expressed as

𝑋 = 𝐾
1
(𝛼̂ ⊗ 𝐼

𝑛
) ,

𝑌̂ = 𝐾
2
(𝛽 ⊗ 𝐼

𝑞
) ,

(35)

where 𝛼̂, 𝛽 are given by (33) and (34), respectively.

3. The Solutions of Problems 3 and 4

It follows from (10) that the minimization problem of (4) can
be equivalently written as

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑖,𝑗

𝛼
𝑖𝑗
𝐴𝑍
𝑖𝑗
𝐵 + ∑

𝑖,𝑗

𝛼
𝑖𝑗
𝐶𝑍
𝑖𝑗
𝐷 − 𝐻

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

= min . (36)

Using Lemma 6, we see that the relation of (36) is equivalent
to

‖𝑀𝛼 + 𝑄𝛼 − ℎ‖ = min, (37)

where 𝑄 = (𝐷
⊤

⊗ 𝐶)𝐺. It follows from Lemma 5 that the
general solution of ‖𝑀𝛼 + 𝑄𝛼 − ℎ‖ = min with respect to
𝛼 can be expressed as

𝛼 = 𝑈
+
ℎ + (𝐼

𝑑
1

− 𝑈
+
𝑈) 𝑧, (38)

where 𝑈 = 𝑀 + 𝑄 and 𝑧 ∈ R𝑑1 is an arbitrary vector.
To summarize, we have obtained the following result.

Theorem 10. Suppose that 𝐴 ∈ R𝑚×𝑛, 𝐵 ∈ R𝑛×𝑝, 𝐶 ∈

R𝑚×𝑞, 𝐷 ∈ R𝑞×𝑝, and𝐻 ∈ R𝑚×𝑝. Let {𝑍
𝑖𝑗
}, 𝐺,𝑀, ℎ be given as

in (7), (13), and (15), respectively. Write 𝑄 = (𝐷
⊤
⊗ 𝐶)𝐺, 𝑑

1
=

2𝑛 − 1, and 𝑈 = 𝑀+𝑄. Then the solution setS
3
of Problem 3

can be expressed as

S
3
= {𝑋 ∈ SAR𝑛×𝑛 | 𝑋 = 𝐾

1
(𝛼 ⊗ 𝐼

𝑛
)} , (39)

where 𝐾
1
and 𝛼 are given by (22) and (38) with 𝑧 ∈ R𝑑1 being

arbitrary vectors.

Similarly, for the real-valued symmetric arrowhead
matrix 𝑋, it is easily seen that 𝑋 can be expressed as the
linear combination of the orthonormal basis {𝑍

𝑖𝑗
}; that is,

𝑋 = ∑
𝑖,𝑗

𝛾
𝑖𝑗
𝑍
𝑖𝑗
, where 𝛾

𝑖𝑗
, 𝑖 = 1, 𝑗 = 2, . . . , 𝑛; 𝑖 = 𝑗 = 1, . . . , 𝑛,

are uniquely determined by the elements of 𝑋. Then, for any
matrix𝑋 ∈ S

3
in (39), by the relation of (9), we have

󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩

2

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

2

= (∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛿
𝑖𝑗
)𝑍
𝑖𝑗
,∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗
)

= ∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)(𝑍
𝑖𝑗
,∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)𝑍
𝑖𝑗
)

= ∑

𝑖,𝑗

(𝛼
𝑖𝑗
− 𝛾
𝑖𝑗
)
2

=
󵄩󵄩󵄩󵄩𝛼 − 𝛾

󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩𝐽𝑧 − (𝛾 − 𝑈

+
ℎ)

󵄩󵄩󵄩󵄩

2

,

(40)

where 𝐽 = 𝐼
𝑑
1

− 𝑈
+
𝑈, 𝛾 = [𝛾

11
, . . . , 𝛾

𝑛,𝑛
, 𝛾
12
, . . . , 𝛾

1,𝑛
]
⊤.

In order to solve Problem 4, we need the following lemma
[16].
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Lemma 11. Suppose that 𝑃 ∈ R𝑞×𝑚, Δ ∈ R𝑞×𝑞, and Γ ∈ R𝑚×𝑚
where Δ2 = Δ = Δ

⊤ and Γ
2
= Γ = Γ

⊤. Then

‖𝑃 − Δ𝐷Γ‖ = min
𝐸∈R𝑞×𝑚

‖𝑃 − Δ𝐸Γ‖ (41)

if and only if Δ(𝑃 − 𝐷)Γ = 0, in which case, ‖𝑃 − Δ𝐷Γ‖ =

‖𝑃 − Δ𝑃Γ‖.

It follows from Lemma 11 and 𝐽
2
= 𝐽 = 𝐽

⊤ that
󵄩󵄩󵄩󵄩󵄩
𝑋 − 𝑋

󵄩󵄩󵄩󵄩󵄩
=

󵄩󵄩󵄩󵄩𝐽𝑧 − (𝛾 − 𝑈
+
ℎ)

󵄩󵄩󵄩󵄩 = min (42)

if and only if 𝐽(𝛾 − 𝑈
+
ℎ − 𝑧) = 0; that is,

𝐽𝑧 = 𝐽 (𝛾 − 𝑈
+
ℎ) . (43)

Substituting (43) into (38), we obtain

𝛼̂ = 𝑈
+
ℎ + 𝐽 (𝛾 − 𝑈

+
ℎ) . (44)

By now, we have proved the following result.

Theorem 12. Let the real-valued symmetric arrowheadmatrix
𝑋 be given. Then Problem 4 has a unique solution and the
unique solution of Problem 4 can be expressed as

𝑋 = 𝐾
1
(𝛼̂ ⊗ 𝐼

𝑛
) , (45)

where 𝐽 = 𝐼
𝑑
1

− 𝑈
+
𝑈, 𝛾 = [𝛾

11
, . . . , 𝛾

𝑛,𝑛
, 𝛾
12
, . . . , 𝛾

1,𝑛
]
⊤, and 𝛼̂

is given by (44).

4. A Numerical Example

Based on Theorems 7 and 9 we can state the following
algorithm.

Algorithm 13 (an algorithm for solving the optimal approxi-
mation solution of Problem 2). Consider the following.

(1) Input 𝐴, 𝐵, 𝐶,𝐷,𝐻,𝑋, 𝑌̃.

(2) Form the orthonormal bases {𝑍
𝑖𝑗
} and {𝑊

𝑘𝑙
} by (7)

and (8), respectively.

(3) Compute 𝐺, 𝐿,𝑀,𝑁, ℎ according to (13), (14) and
(15), respectively.

(4) Compute 𝐸
𝑀

= 𝐼
𝑚𝑝

− 𝑀𝑀
+, 𝐹
𝑀

= 𝐼
𝑑
1

− 𝑀
+
𝑀, 𝑊 =

𝐼
𝑑
2

− (𝐸
𝑀
𝑁)
+
𝐸
𝑀
𝑁, 𝛼̃ = 𝑀

+
ℎ − 𝑀

+
𝑁(𝐸
𝑀
𝑁)
+
𝐸
𝑀
ℎ.

(5) Form the vectors 𝛾, 𝛿 by (26), (27).

(6) Compute𝐾
1
, 𝐾
2
by (22) and (23), respectively.

(7) Compute 𝛼̂, 𝛽 by (33) and (34), respectively.

(8) Compute the unique optimal approximation solution
(𝑋, 𝑌̂) of (2) by (35).

Example 14. Given

𝐴 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

9.9733 3.8706 2.0328 6.1573 3.1647 0.0822 9.9417 5.1706

1.0809 0.7027 0.6888 5.9745 1.9242 5.8168 3.8545 1.5801

4.5676 6.8105 8.0014 6.8524 2.3317 5.5635 7.8625 7.4438

1.3305 8.5615 4.2306 9.7382 2.1984 6.8938 8.6961 4.8908

7.0384 0.971 8.9232 2.8033 0.7944 7.6095 0.852 6.4964

3.0627 3.9186 9.9191 1.7397 1.2387 8.2429 4.8371 0.4176

0.6432 3.7595 4.0088 9.2191 5.3758 5.2769 8.4455 3.3482

1.7377 5.1552 3.4069 2.6024 6.8886 3.4151 4.6584 4.3336

1.925 8.9427 3.1674 3.7506 7.2012 0.6829 5.9924 0.9859

6.7035 6.4182 3.6429 6.4474 9.388 2.6404 2.0815 6.8092

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝐵 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

0.2712 0.8096 1.0469 2.7236

3.2085 3.0149 3.2898 4.2318

0.5248 1.8002 2.6111 6.9898

3.6956 7.1617 3.884 8.1743

3.8388 7.9026 8.9737 8.2547

3.3588 3.3133 7.6678 4.0326

8.9069 7.8162 2.4429 6.516

2.3814 7.7666 4.5465 1.5243

]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

, 𝐶 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

3.3991 4.2993 5.1435 1.0278 8.3341 7.1445

0.1929 0.4898 0.4551 3.8017 4.7598 2.015

7.6829 9.0488 9.9136 7.5245 3.4013 1.0817

4.5788 9.7823 3.0961 1.4917 5.4221 7.3803

0.4356 6.5778 2.5647 6.6088 5.615 7.6202

0.9956 7.2696 6.101 2.3694 9.2522 2.7898

9.5692 4.8863 4.4698 7.2761 2.7439 8.4522

6.088 6.8578 4.1844 2.5853 2.9564 6.2439

2.4675 3.6294 4.1184 4.6951 6.1255 6.2167

9.2952 4.01 7.1406 8.5751 8.9064 9.5489

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,
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𝐷 =

[
[
[
[
[
[
[
[
[

[

2.9541 4.8815 6.0597 0.6076

6.3182 9.4265 8.1108 8.4724

5.3129 3.4653 4.6176 4.5411

8.7117 1.9969 0.9372 2.4818

5.8446 0.981 1.027 9.8858

6.0263 6.5212 8.7454 5.6432

]
]
]
]
]
]
]
]
]

]

, 𝐻 =

[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[
[

[

2.2053 6.8314 1.5734 7.5244

8.7751 8.7539 9.8088 6.155

7.2756 5.0769 2.9875 2.5417

8.5308 4.6789 1.546 3.5041

1.7768 2.4484 9.3574 6.1301

5.403 5.6603 6.7386 3.3772

4.7218 7.6072 4.2791 6.3599

7.3239 3.4517 8.3281 5.166

9.806 4.4755 1.7132 5.1954

6.6682 5.1579 4.4064 6.2645

]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑋 =

[
[
[
[
[
[
[
[
[
[

[

−4 1 −7 10 −6 13 −2 11

1 −3 0 0 0 0 0 0

−7 0 6 0 0 0 0 0

10 0 0 −2 0 0 0 0

−6 0 0 0 −4 0 0 0

13 0 0 0 0 18 0 0

−2 0 0 0 0 0 −7 0

11 0 0 0 0 0 0 −24

]
]
]
]
]
]
]
]
]
]

]

, 𝑌̃ =

[
[
[
[
[
[
[

[

−7 2 19 9 3 −15

2 −13 0 0 0 0

19 0 8 0 0 0

9 0 0 −6 0 0

3 0 0 0 −3 0

−15 0 0 0 0 28

]
]
]
]
]
]
]

]

.

(46)

According to Algorithm 13, we can figure out

𝑋 =

[
[
[
[
[
[
[
[
[
[
[
[
[

[

1.6112 −0.34773 −0.19013 −0.3608 0.0018101 0.043733 0.12845 0.24356

−0.34773 0.087563 0 0 0 0 0 0

−0.19013 0 0.020941 0 0 0 0 0

−0.3608 0 0 0.070032 0 0 0 0

0.0018101 0 0 0 0.10853 0 0 0

0.043733 0 0 0 0 0.1462 0 0

0.12845 0 0 0 0 0 0.048087 0

0.24356 0 0 0 0 0 0 −0.055789

]
]
]
]
]
]
]
]
]
]
]
]
]

]

,

𝑌̂ =

[
[
[
[
[
[
[
[

[

0.032787 0.030243 −0.064815 0.038152 0.00093986 −0.072695

0.030243 −0.030004 0 0 0 0

−0.064815 0 −0.0048278 0 0 0

0.038152 0 0 0.025828 0 0

0.00093986 0 0 0 0.03291 0

−0.072695 0 0 0 0 −0.0038235

]
]
]
]
]
]
]
]

]

.

(47)

5. Concluding Remarks

The symmetric arrowhead matrix arises in many important
practical applications. In this paper, the least-squares
solutions of the matrix equations 𝐴𝑋𝐵 + 𝐶𝑌𝐷 = 𝐻 and
𝐴𝑋𝐵 + 𝐶𝑋𝐷 = 𝐻 for symmetric arrowhead matrices are
provided by using the Kronecker product and stretching
function of matrices. The explicit representations of the
general solution are given.Thebest approximation solution to
the givenmatrices is derived. A simple recipe for constructing

the optimal approximation solution of Problem 2 is
described, which can serve as the basis for numerical
computation. The approach is demonstrated by a numerical
example and reasonable results are produced.
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