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This paper presents a novel subband adaptive filter (SAF) for system identificationwhere an impulse response is sparse anddisturbed
with an impulsive noise. Benefiting from the uses of 𝑙

1
-norm optimization and 𝑙

0
-norm penalty of the weight vector in the cost

function, the proposed 𝑙
0
-norm sign SAF (𝑙

0
-SSAF) achieves both robustness against impulsive noise and remarkably improved

convergence behavior more than the classical adaptive filters. Simulation results in the system identification scenario confirm that
the proposed 𝑙

0
-norm SSAF is not only more robust but also faster and more accurate than its counterparts in the sparse system

identification in the presence of impulsive noise.

1. Introduction

Adaptive filtering algorithms have gained popularity and
proven to be efficient in various applications such as system
identification, channel equalization, and echo cancellation
[1–4]. The normalized least mean square (NLMS) algorithm
has become one of themost popular andwidely used adaptive
filtering algorithms because of its simplicity and robustness.
Despite these advantages, the use of NLMS has been limited
since it converges poorly for correlated input signals [2].
To address this problem, various approaches have been
presented, such as the recursive least squares algorithm [2],
the affine projection algorithm [2], and subband adaptive fil-
tering (SAF) [5–9]. Among these, the SAF algorithm allocates
the input signals and desired response into almost mutually
exclusive subbands. This prewhitening characteristic of SAF
allows each subband to converge almost separately so that
the subband algorithms obtain faster convergence behavior.
On the basis of these characteristics, Lee and Gan proposed
a normalized SAF (NSAF) algorithm in [8, 9]. This work
improves the convergence speed, while using almost the same
computational complexity as the NLMS algorithm. However,
the NSAF still suffers from the degradation of convergence
performance in cases when an underlying system to be
identified is sparse such as network echo path [10], under-
water channel [11], and digital TV transmission channel [12].

Motivated by the proportionate step-size adaptive filtering
[13, 14], the proportionateNSAF (PNSAF) has been presented
to combat poor convergence in sparse system identification
[15]. However, it does not exploit the sparsity condition
itself. Moreover, the NSAF and PNSAF algorithms are highly
sensitive to impulsive interference, leading to deteriorated
convergence behavior. Impulsive interference exits in various
applications such as acoustic echo cancellation [16], network
cancellation [17], and subspace tracking [18].

To address the robustness issue, the sign SAF (SSAF)
[19] has been developed based on the 𝑙

1
-norm optimization,

making it robust against impulsive interference. However,
its use is limited in case of sparse system identification.
Moreover, the SSAF converges poorly and fails to accelerate
the convergence rate with the number of subbands.

In recent years, motivated by compressive sensing frame-
work [20, 21] and the least absolute shrinkage and selec-
tion operator (LASSO) [22], a variety of adaptive filtering
algorithms which incorporate the sparsity of a system have
been developed unlike the proportionate adaptive filtering
approach [23–27]. Along this line, the SAF with the 𝑙

1
-norm

penalty has been recently presented as an alternative for
incorporating the sparsity of a system [28]. In particular, the
𝑙
0
-norm of a system is able to represent the actual sparsity

[24–26]. In this paper, a 𝑙
0
-norm constraint SSAF (𝑙

0
-SSAF) is
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Figure 1: Subband structure used in the proposed SAF.

presented, aiming at developing a sparsity-aware SSAF. With
this inmind, by integrating the 𝑙

0
-normpenalty of the current

weight vector into the 𝑙
1
-norm optimization criterion, the 𝑙

0
-

SSAF benefits both superior convergence for sparse system
identification and robustness against impulsive noise. In
addition, the 𝑙

0
-SSAF is derived from a 𝑙

1
-norm optimization

of the a priori error instead of the a posteriori error used
in the SSAF. Thus, there is no need to approximate the a
posteriori error with the a priori error to derive the update
recursion of the 𝑙

0
-SSAF. Simulation results show that the 𝑙

0
-

SSAF is superior to the conventional SAFs in identifying a
sparse system in the presence of severe impulsive noise.

The remainder of the paper is organized as follows.
Section 2 introduces the classical SAFs, followed by the
derivation of the proposed 𝑙

0
-SSAF algorithm in Section 3.

Section 4 illustrates the computer simulation results and
Section 5 concludes this study.

2. Conventional SAFs

Consider a desired signal 𝑑(𝑛) that arises from the system
identification model

𝑑 (𝑛) = u (𝑛)w∘ + V (𝑛) , (1)

where w∘ is a column vector for the impulse response of an
unknown system that we wish to estimate, V(𝑛) accounts for
measurement noise with zero mean and variance 𝜎

2

V , and
u(𝑛) = [𝑢(𝑛)𝑢(𝑛 − 1) ⋅ ⋅ ⋅ 𝑢(𝑛 −𝑀+1)] is a 1 ×𝑀 input vector.

Figure 1 shows the structure of the NSAF, where the
desired signal 𝑑(𝑛) and output signal 𝑢(𝑛) are partitioned into
𝑁 subbands by the analysis filters𝐻

0
(𝑧),𝐻

1
(𝑧), . . . , 𝐻

𝑁−1
(𝑧).

The resultant subband signals, 𝑑
𝑖
(𝑛) and 𝑦

𝑖
(𝑛) for 𝑖 =

0, 1, . . . , 𝑁 − 1, are critically decimated to a lower sampling
rate commensurate with their bandwidth. Here, the variables
𝑛 to index the original sequences and 𝑘 to index the decimated
sequences are used for all signals.Then, the decimated desired
signal and the decimated filter output signal at each subband
are defined as 𝑑

𝑖,𝐷
(𝑘) = 𝑑

𝑖
(𝑘𝑁) and 𝑦

𝑖,𝐷
(𝑘) = u

𝑖
(𝑘)w(𝑘),

where u
𝑖
(𝑘) is the input data vector for the 𝑖th subband such

that

u
𝑖
(𝑘) = [𝑢

𝑖
(𝑘𝑁) , 𝑢

𝑖
(𝑘𝑁 − 1) , . . . , 𝑢

𝑖
(𝑘𝑁 − 𝑀 + 1)] (2)

andw(𝑘) = [𝑤
0
(𝑘), 𝑤

1
(𝑘), . . . , 𝑤

𝑀−1
(𝑘)]
𝑇 denotes an estimate

for w∘. Then, the decimated subband error vector is given by

𝑒
𝑖,𝐷

(𝑘) = 𝑑
𝑖,𝐷

(𝑘) − 𝑦
𝑖,𝐷

(𝑘) = 𝑑
𝑖,𝐷

(𝑘) − u
𝑖
(𝑘)w (𝑘) . (3)

In [8], the authors have presented that the update recur-
sion of the NSAF algorithm is given by

w (𝑘 + 1) = w (𝑘) + 𝜇

𝑁−1

∑

𝑖=0

u𝑇
𝑖
(𝑘)

u𝑖 (𝑘)

2
𝑒
𝑖,𝐷

(𝑘) , (4)

where 𝜇 is a step-size parameter.Then, the estimation error in
all the 𝑁 subbands, that is, e

𝐷
(𝑘) = [𝑒

0,𝐷
(𝑘), . . . , 𝑒

𝑁−1,𝐷
(𝑘)]
𝑇,

can be written in a compact form as

e
𝐷
(𝑘) = d

𝐷
(𝑘) − U (𝑘)w (𝑘) , (5)

where the 𝑁 × 𝑀 subband data matrix U(𝑘) and the 𝑁 × 1

desired response vector d(𝑘) are given by

U (𝑘) = [u
0
(𝑘) , u

1
(𝑘) , . . . , u

𝑁−1
(𝑘)]
𝑇

,

d
𝐷
(𝑘) = [𝑑

0,𝐷
(𝑘) , 𝑑

1,𝐷
(𝑘) , . . . , 𝑑

𝑁−1,𝐷
(𝑘)]
𝑇

.

(6)

More recently, the SSAF [19] has been obtained from the
following optimization criterion:

min
w(𝑘+1)

d𝐷 (𝑘) − U (𝑘)w (𝑘 + 1)
1

subject to ‖w (𝑘 + 1) − w (𝑘)‖
2

2
≤ 𝜇
2
,

(7)

where ‖ ⋅ ‖
1
denotes the 𝑙

1
-norm and 𝜇

2 is a parameter which
prevents the weight coefficient vectors from abrupt change.
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Using Lagrangemultipliers to solve the constrained optimiza-
tion problem and utilizing the accessible e

𝐷
(𝑘) instead of

unavailable a posteriori error, that is, d
𝐷
(𝑘) − U(𝑘)w(𝑘 + 1),

the update recursion of the SSAF is formulated as

w (𝑘 + 1) = w (𝑘) + 𝜇
U𝑇 (𝑘) sgn [e

𝐷
(𝑘)]

√∑
𝑁−1

𝑖=0
u
𝑖
(𝑘) u𝑇
𝑖
(𝑘) + 𝛿

, (8)

where 𝛿 is a regularization parameter and sgn(⋅)
denotes the sign function, where sgn[e

𝐷
(𝑘)] =

[sgn(𝑒
0,𝐷

(𝑘)), . . . , sgn(𝑒
𝑁−1,𝐷

(𝑘))]
𝑇.

3. Proposed 𝑙
0
-Norm Constraint

SSAF (𝑙
0
-SSAF)

Our objective is to cope with the sparsity of an underlying
system while inheriting robustness from the 𝑙

1
-norm opti-

mization criterion. Our approach is to find a new weight
vector, w(𝑘 + 1), that minimizes the 𝑙

1
-norm of the a priori

error vector with the 𝑙
0
-norm penalty of the current weight

vector w(𝑘) as follows:
minw 𝐽 (𝑘) ≜ minw [

e𝐷 (𝑘)
1 + 𝛾‖w (𝑘)‖

0
] , (9)

where ‖ ⋅ ‖
0
denotes the 𝑙

0
-norm and 𝛾(> 0) is a regularization

parameter which governs the compromise between the effect
of the 𝑙

0
-norm penalty term and the error vector related term.

Note that the a priori error e
𝐷
(𝑘) is used unlike the SSAF,

leading to no approximation of the a posteriori error with the
a priori error.

Taking derivative of 𝐽(𝑘), with respect to w(𝑘), it leads to

∇w(𝑘)𝐽 (𝑘) = −U𝑇 (𝑘) sgn (e
𝐷
(𝑘)) + 𝛾

𝜕‖w (𝑘)‖0

𝜕w (𝑘)

≜ −U𝑇 (𝑘) sgn (e
𝐷
(𝑘)) + 𝛾f

𝛽
(w (𝑘)) ,

(10)

where f
𝛽
(w(𝑘)) ≜ [𝑓

𝛽
(𝑤
0
(𝑘)), 𝑓

𝛽
(𝑤
1
(𝑘)), . . . , 𝑓

𝛽
(𝑤
𝑀−1

(𝑘))]
𝑇.

To avoid a nonpolynomial hard problem from the 𝑙
0
-norm

minimization, the 𝑙
0
-norm penalty is often approximated as

follows [29]:

‖w (𝑘)‖
0
≈

𝑀−1

∑

𝑖=0

(1 − 𝑒
−𝛽|𝑤𝑖(𝑘)|) , (11)

where the parameter 𝛽 plays a role adjusting the degree of
zero attraction. A 𝑚th component of the gradient for (11) is
given by

𝜕‖w (𝑘)‖0

𝜕𝑤
𝑚

(𝑘)
= 𝑓
𝛽
(𝑤
𝑚

(𝑘))

= 𝛽 sgn [𝑤
𝑚

(𝑘)] 𝑒
−𝛽|𝑤𝑚(𝑘)| ∀0 ≤ 𝑚 ≤ 𝑀 − 1.

(12)

To reduce the computational cost in (12), the first-order Tay-
lor series expansion of the exponential function is employed:

𝑒
−𝛽|𝑥|

≈
{

{

{

1 − 𝛽 |𝑥| , |𝑥| ≤
1

𝛽

0, elsewhere.
(13)

Then, a gradient (12) is computed as

𝑓
𝛽
(𝑤
𝑚

(𝑘)) =

{{{{{

{{{{{

{

𝛽
2
𝑤
𝑚

(𝑘) + 𝛽, −
1

𝛽
≤ 𝑤
𝑚

(𝑘) < 0

𝛽
2
𝑤
𝑚

(𝑘) − 𝛽, 0 < 𝑤
𝑚

(𝑘) ≤
1

𝛽

0, elsewhere.

(14)

Finally, the update recursion of the 𝑙
0
-SSAF is given by

w (𝑘 + 1) = w (𝑘) + 𝜇U𝑇 (𝑘) sgn (e
𝐷
(𝑘)) − 𝜅f

𝛽
(w (𝑘)) ,

(15)

where 𝜇 is the step-size parameter and 𝜅 = 𝜇𝛾.

4. Simulation Results

To validate the performance of the proposed 𝑙
0
-SSAF, com-

puter simulations are carried out in a system identification
scenario in which the unknown system is randomly gen-
erated. The length of the unknown system is 𝑀 = 128,
where 𝑆 of them are nonzero. The nonzero filter weights
are positioned randomly and their values are taken from a
Gaussian distribution N(0, 1/𝑆). Here, the sparse systems of
the sparsity 𝑆 = 4, 8, 16, 32 are considered. The adaptive
filter and the unknown system are assumed to have the
same number of taps. The input signals 𝑢(𝑛) are obtained
by filtering a white, zero mean, Gaussian random sequence
through a first-order system,

𝐺
1
(𝑧) =

1

1 − 0.9𝑧−1
, (16)

or a second-order system,

𝐺
2
(𝑧) =

1 + 0.5𝑧
−1

+ 0.8𝑧
−2

1 − 0.9𝑧−1
. (17)

A measurement noise V(𝑛) with white Gaussian distribu-
tion is added to the system output 𝑦(𝑛) such that the signal-
to-noise ratio (SNR) is 20 dB, where the SNR is defined as

SNR = 10 log
10

(
𝐸 [𝑦
2
(𝑛)]

𝐸 [V2 (𝑛)]
) , (18)

where 𝑦(𝑛) = u(𝑛)w∘. An impulsive noise 𝑧(𝑛) is added to
the system output 𝑦(𝑛) with the signal-to-interference ratio
(SIR) of −30 or −10 dB correspondingly. The impulsive noise
is modeled by a Bernoulli-Gaussian (BG) distribution [16],
which is obtained as the product of a Bernoulli distribution
and a Gaussian one; that is, 𝑧(𝑛) = 𝜔(𝑛)𝜂(𝑛), where 𝜔(𝑛) is a
Bernoulli process with a probability mass function given by
𝑃(𝜔) = 1−𝑃𝑟 for𝜔 = 0 and 𝑃(𝜔) = 𝑃𝑟 for𝜔 = 1. In addition,
𝜂(𝑛) is an additive white Gaussian noise with zero mean and
variance 𝜎

2

𝜂
= 1000𝜎

2

𝑦
. Here, 𝑃𝑟 = 0.01 is used. In order to

compare the convergence performance, the normalizedmean
square deviation (NMSD),

Normalized MSD = 𝐸[

w
∘
− w (𝑘)


2

‖w∘‖2
] , (19)
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Figure 2: NMSD learning curves of the NSAF, PNSAF, SSAF, and
𝑙
0
-SSAF algorithms [𝑁 = 4, SIR = −30 dB, input: Gaussian AR(1)

with pole at 0.9].

is taken and averaged over 50 independent trials.The cosine-
modulated filter banks [30]with the subbandnumbers of𝑁 =

4 are used in the simulations. The prototype filter of length
𝐿 = 32 is used. The parameters used in simulations are as
follows: NSAF (𝜇 = 0.0005 or 0.0001), SSAF (𝜇 = 0.0005,
𝛿 = 0.001), PNSAF (𝜇 = 0.0005, 𝜌 = 0.01), and 𝑙

0
-SSAF

(𝜇 = 0.0003, 𝛽 = 20). The 𝛾 of the 𝑙
0
-norm SSAF is obtained

by repeated trials tominimize the steady-stateNMSD.Weuse
the input signals generated by𝐺

1
(𝑧) and𝐺

2
(𝑧) for Figures 2–

7 and Figures 8 and 9, respectively.
Figure 2 shows the NMSD learning curves of the NSAF,

PNSAF, SSAF, and 𝑙
0
-norm SSAF algorithms in the case

of SIR = −30 dB. For the 𝑙
0
-SSAF, 𝛾 = 5 × 10

−5 is
chosen. Compared to the conventional SAF algorithms, the
proposed 𝑙

0
-SSAF yields remarkably improved convergence

performance in terms of the convergence rate and the steady-
state misalignment.

In Figure 3, to verify the effect of 𝛾 on convergence
performance, the NMSD curves of the 𝑙

0
-SSAF for different

𝛾 values are illustrated in the case of SIR = −30 dB. With
different 𝛾 values (𝛾 = 3 × 10

−4
, 1 × 10

−4
, 7 × 10

−5, and
5 × 10

−5), the 𝑙
0
-SSAF is not excessively sensitive to 𝛾. The

analysis for an optimal 𝛾 value remains a future work.
Figure 4 illustrates the NMSD learning curves of the

NSAF, PNSAF, SSAF, and 𝑙
0
-norm SSAF algorithms under

SIR = −10 dB. The same 𝛾 value with Figure 2 is chosen. In
the figure, similar results shown in Figure 2 are observed.

Figure 5 depicts the NMSD learning curves of the NSAF,
PNSAF, SSAF, and 𝑙

0
-SSAF algorithms for difference sparsity.

Here, 𝑆 = 8, 16, 32 were chosen. The same parameters as in
Figure 2 are used. As can be seen, the more sparse the system,
the better the convergence performance of the 𝑙

0
-SSAF.
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Figure 3: NMSD learning curves of the 𝑙
0
-SSAF algorithm with

various 𝛾 values [𝑁 = 4, SIR = −30 dB, input: Gaussian AR(1) with
pole at 0.9].

0 0.5 1 1.5 2 2.5 3
Number of iterations

PNSAF SSAF
NSAF (𝜇 = 0.0005) NSAF (𝜇 = 0.0001)

×104

0

5

N
M

SD
 (d

B)

−25

−20

−15

−10

−5

Proposed l0-SSAF
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𝑙
0
-SSAF algorithms [𝑁 = 4, SIR = −10 dB, input: Gaussian AR(1)

with pole at 0.9].

Figure 6 shows the NMSD learning curves of the NSAF,
PNSAF, SSAF, and 𝑙

0
-SSAF algorithms with difference values

of 𝛽 in the case of 𝑆 = 4. The values of 𝛽 = 1, 20, 50, 100
were used. Also, the same step-size parameter 𝜇 = 0.0003 is
chosen. In the figure, it is apparent that the larger the value
of 𝛽, the higher the steady-state MSD. However, the optimal
value of 𝛽 remains a future issue.
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Next, the tracking capabilities of the algorithms to a
sudden change in the system are tested for SIR = −30 dB.
Figure 7 shows the results in case when an unknown system
is right-shifted for 20 taps. The same value of 𝛾 of Figure 2 is
used.The figure shows that the 𝑙

0
-SSAF keeps track of weight

change while achieving a faster convergence rate and a low
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SIR = −30 dB, input: Gaussian AR(1) with pole at 0.9].
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Figure 8: NMSD learning curves of the NSAF, PNSAF, SSAF, and
𝑙
0
-SSAF algorithms [𝑁 = 4, SIR = −30 dB, input: GaussianAR(2,2)].

steady-statemisalignment compared to the conventional SAF
algorithms.

Finally, Figures 8 and 9 show the simulation results with
the different input signal generated by𝐺

2
(𝑧) for SIR = −30 dB

and −10 dB, respectively. The same parameters of all SAF
algorithms in Figure 2 are chosen in Figures 8 and 9. We can
see similar results in previous figures, implying the capability
of the 𝑙

0
-norm SSAF over the classical SAF algorithms for

different input signal.
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Figure 9: NMSD learning curves of the NSAF, PNSAF, SSAF, and
𝑙
0
-SSAF algorithms [𝑁 = 4, SIR = −10 dB, input: GaussianAR(2,2)].

5. Conclusion

This paper has proposed a robust and sparse-aware SSAF
algorithm which incorporates the sparsity condition of a
system into the 𝑙

1
-norm optimization criterion of the a priori

error vector. By utilizing the 𝑙
0
-norm penalty of the current

weight vector and approximating it to avoid a nonpolynomial
hard problem, the update recursion of the proposed 𝑙

0
-norm

SSAF is obtainedwhile reducing the computational cost using
Taylor series expansion. The simulation results indicate that
the proposed 𝑙

0
-SSAF achieves highly improved convergence

performance over the conventional SAF algorithms where a
system is not only sparse but also disturbed with impulsive
noise.
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