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We introduce and study a class of new general systems of set-valued variational inclusions involving (𝐴, 𝜂)-maximal relaxed
monotone operators in Hilbert spaces. By using the general resolvent operator technique associated with (𝐴, 𝜂)-maximal relaxed
monotone operators, we construct some new iterative algorithms for finding approximation solutions to the general system of set-
valued variational inclusion problem and prove the convergence of this algorithm. Our results improve and extend some known
results.

1. Introduction

It is well known that variational inequalities and variational
inclusions, which have been extended and generalized in
different directions by using novel and innovative techniques
and ideas, provide mathematical models to some problems
arising in economics, mechanics, engineering science, and
other pure and applied sciences. Among these methods,
the resolvent operator technique is very important. See, for
example, [1–17] and the references therein.

Recently, Huang and Fang [18] introduced a system
of order complementarity problems and established some
existence results for the system using fixed-point theory.
Verma [19] introduced and studied some systems of the
system variational inequalities and developed some iterative
algorithms for approximating the solutions of the systems
of variational inequalities. Cho et al. [20] introduced and
studied a new system of nonlinear variational inequalities
in Hilbert spaces. The authors also proved some existence
and uniqueness theorems of solutions for the system and
also constructed an iterative algorithm for approximating the
solution of the system of nonlinear variational inequalities.
Further, Fang et al. [1], Yan et al. [2], Fang and Huang [3],

and Cao [4] considered some new systems of variational
inclusions involving 𝐻-monotone operators and (𝐻, 𝜂)-
monotone operators in Hilbert space, respectively. Using
the corresponding resolvent operator associated with 𝐻-
monotone operators and (𝐻, 𝜂)-monotone operators, the
authors proved the existence of solutions for these new
systems of variational inclusions and constructed a new
algorithm for approximating the solution of this system
and discussed the convergence of the sequence of iterations
generated by the algorithm.

Very recently, Lan et al. [5] and Peng and Zhao [7] intro-
duced and studied a new system of nonlinear 𝐴-monotone
multivalued variational inclusions in Hilbert spaces, respec-
tively. By using the concept and properties of 𝐴-monotone
operators and the resolvent operator technique associated
with 𝐴-monotone operators due to Verma [8], the author
constructed a new iterative algorithm for solving this system
of nonlinear multivalued variational inclusions associated
with 𝐴-monotone operators in Hilbert spaces and proved
the existence of solutions for the nonlinear multivalued
variational inclusion systems and the convergence of iterative
sequences generated by the algorithm. For more details, see,
for example, [1–5, 7, 8, 10–19, 21–25].
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On the other hand, Lan [6] first introduced a new concept
of (𝐴, 𝜂)-monotone (the so-called (𝐴, 𝜂)-maximal relaxed
monotone [9]) operators, which generalizes the (𝐻, 𝜂)-
monotonicity,𝐴-monotonicity, and other existing monotone
operators as special cases, and studied some properties of
(𝐴, 𝜂)-monotone operators and defined resolvent operators
associated with (𝐴, 𝜂)-monotone operators.

Inspired and motivated by the above works, the purpose
of this paper is to consider the following new general
system of set-valued variational inclusions involving relative
(𝐴, 𝜂)-maximal monotone operators in Hilbert spaces: find
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Some special cases of the problem (1) had been studied by

many authors. Here, we mention some of them as follows.
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The problem (2) is called a nonlinear set-valued variational
inclusion system problem, which was considered and studied
by Agarwal and Verma [9].

Case 2. When 𝑚 = 2 and 𝑀
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following system of set-valuedmixed variational inequalities:
find (𝑥

∗

1
, 𝑥∗
2
) ∈ 𝐻

1
× 𝐻
2
and 𝑢

1
∈ 𝑈
1
(𝑥∗
1
) and 𝑢

2
∈ 𝑈
2
(𝑥∗
2
)

such that

⟨𝐹
1
(𝑥
∗

1
, 𝑢
2
) , 𝑥 − 𝑥

∗

1
⟩ + 𝜑
1
(𝑥) − 𝜑

1
(𝑥
∗

1
) ≥ 0, ∀𝑥 ∈ 𝐻

1
,

⟨𝐹
2
(𝑢
1
, 𝑥
∗

2
) , 𝑦 − 𝑥

∗

2
⟩ + 𝜑
2
(𝑦) − 𝜑

2
(𝑥
∗

2
) ≥ 0, ∀𝑦 ∈ 𝐻

2
.

(3)
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which is called the system of nonlinear variational inequal-
ities considered by Cho et al. [20]. Some specializations of
problem (4) are dealt by Kim and Kim [21].
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which was considered by Fang et al. [1].

In brief, the problem (1) is the most general and unifying
system form, so long as, for appropriate and suitable choices
of positive integer 𝑚 and operators 𝐹

𝑖
, 𝐴
𝑖
, 𝜂
𝑖
, 𝑀
𝑖
, and 𝑈

𝑖𝑗

for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, one can know that the problem (1)
includes a number of known general problems of variational
character, including variational inequality (system) problems
and variational inclusion (system) problems as special cases.
For more details, see [1–5, 7–25] and the reference therein.

Furthermore, in this paper, we will construct some new
iterative algorithms to approximate the solution of the general
system of set-valued variational inclusions and prove the
convergence of the sequences generated by the algorithms in
Hilbert spaces.

2. Preliminaries

Thereafter, let 𝐻, 𝐻
𝑖
(𝑖 = 1, 2, . . . , 𝑚) be real Hilbert spaces

endowed with the norm ‖ ⋅ ‖ and inner product ⟨⋅, ⋅⟩. Let 2𝐻
and 𝐶(𝐻) denote the family of all the nonempty subsets of𝐻
and the family of all closed subsets of𝐻, respectively.

In order to get the main results of the paper, we need the
following concepts and lemmas.

Definition 1. Let 𝐴 : 𝐻 → 𝐻 be a single-valued operator.
Then the map 𝐴 is said to be

(i) 𝛼-strongly monotone, if there exists a constant 𝛼 > 0

such that

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝑥 − 𝑦⟩ ≥ 𝛼
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2

, ∀𝑥, 𝑦 ∈ 𝐻; (6)

(ii) 𝛽-Lipschitz continuous, if there exists a constant 𝛽 >
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󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻. (7)

Definition 2. Let 𝜂 : 𝐻×𝐻 → 𝐻 and𝐴 : 𝐻 → 𝐻 be single-
valued operators; let 𝑀 : 𝐻 → 2𝐻 be set-valued operator.
Then

(i) 𝜂 is said to be 𝜏-Lipschitz continuous, if there exists a
constant 𝜏 > 0 such that

󵄩󵄩󵄩󵄩𝜂 (𝑥, 𝑦)
󵄩󵄩󵄩󵄩 ≤ 𝜏

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻; (8)

(ii) 𝐴 is said to be 𝜂-monotone, if

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝐻; (9)

(iii) 𝐴 is said to be strictly 𝜂-monotone, if𝐴 is 𝜂-monotone
and

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ = 0 iff 𝑥 = 𝑦; (10)
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(iv) 𝐴 is said to be (𝑟, 𝜂)-stronglymonotone, if there exists
a constant 𝑟 > 0 such that

⟨𝐴 (𝑥) − 𝐴 (𝑦) , 𝜂 (𝑥, 𝑦)⟩ ≥ 𝑟
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, ∀𝑥, 𝑦 ∈ 𝐻; (11)

(v) 𝑀 is said to be (𝑚, 𝜂)-relaxed monotone, if there
exists a constant𝑚 > 0 such that

⟨𝑢 − V, 𝜂 (𝑥, 𝑦)⟩ ≥ (−𝑚)
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(12)
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Remark 4. When 𝑚 = 1, then Definition 3 reduces to the
corresponding concept of the relative strong monotonicity,
relative relaxed cocoercive, and Lipschitz continuity.

Definition 5. Let 𝜂 : 𝐻×𝐻 → 𝐻 be a single-valued operator,
let𝐴 : 𝐻 → 𝐻 be a strictly 𝜂-monotone operator, and let𝑀 :

𝐻 → 2𝐻 be an (𝐴, 𝜂)-maximal relaxed monotone operator.
Then general resolvent operator 𝑅

𝐴,𝜂

𝑀,𝜆
: 𝐻 → 𝐻 is defined

by

𝑅
𝐴,𝜂

𝑀,𝜆
(𝑧) = (𝐴 + 𝜆𝑀)

−1

(𝑧) , ∀𝑧 ∈ 𝐻, (17)

where 𝜆 > 0 is a constant.

Lemma 6 (see [6]). Let 𝜂 : 𝐻 × 𝐻 → 𝐻 be a 𝜏-Lipschitz
continuous operator, let 𝐴 : 𝐻 → 𝐻 be an (𝑟, 𝜂)-strongly
monotone operator, and let 𝑀 : 𝐻 → 2

𝐻 be an (𝐴, 𝜂)-
maximal relaxed monotone operator. Then general resolvent
operator 𝑅𝐴,𝜂

𝑀,𝜆
: 𝐻 → 𝐻 is 𝜏/(𝑟 − 𝜆𝑚)-Lipschitz continuous;

that is,

󵄩󵄩󵄩󵄩󵄩
𝑅
𝐴,𝜂

𝑀,𝜆
(𝑥) − 𝑅

𝐴,𝜂

𝑀,𝜆
(𝑦)

󵄩󵄩󵄩󵄩󵄩
≤

𝜏

𝑟 − 𝜆𝑚

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻,

(18)

where 𝑟 − 𝜆𝑚 > 0.

Next, we define the Hausdorff pseudometric 𝐷 : 𝐶(𝐻) ×

𝐶(𝐻) → R ∪ {+∞} as follows:

𝐷 (𝑈,𝑉) = max{sup
𝑥∈𝑈

inf
𝑦∈𝑉

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , sup
𝑦∈𝑉

inf
𝑥∈𝑈

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} ,

∀𝑈,𝑉 ∈ 𝐶 (𝐻) .

(19)

Note that if 𝐶(𝐻) is restricted to closed bounded subsets
of the family 𝐶𝐵(𝐻), then the Hausdorff pseudometric 𝐷

reduces to Hausdorff metric 𝐻̂ : 𝐶𝐵(𝐻) × 𝐶𝐵(𝐻) → R

defined by

𝐻̂ (𝑈, 𝑉) = max{sup
𝑥∈𝑈

inf
𝑦∈𝑉

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , sup
𝑦∈𝑉

inf
𝑥∈𝑈

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} ,

∀𝑈,𝑉 ∈ 𝐶𝐵 (𝐻) .

(20)

Definition 7. A set-valued operator 𝑈 : 𝐻 → 2𝐻 is said to
be 𝐷-𝛾-Lipschitz continuous if there exists a constant 𝛾 > 0

such that

𝐷(𝑈 (𝑥) , 𝑈 (𝑦)) ≤ 𝛾
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 , ∀𝑥, 𝑦 ∈ 𝐻. (21)

Lemma 8. Let 𝜃 be a constant and 0 < 𝜔 < 1; then function
𝑓(𝜔) = 1 − 𝜔 + 𝜔𝜃, for 𝜔 ∈ [0, 1], is nonnegative and strictly
decreases and 𝑓(𝜔) ∈ [0, 1]. Further, if 𝜔 ̸= 0, then 𝑓(𝜔) ∈

(0, 1).

Proof. Since 𝑓(𝜔) is linear function, the conclusions imme-
diately hold.

3. Iterative Algorithm and Convergence

In this section, we first prove the equivalence between the
problem (1) and the problem of finding the fixed points of
the general resolvent operator 𝑅

𝐴,𝜂

𝑀,𝜆
associated with (𝐴, 𝜂)-

maximal relaxed monotone operators. This equivalence is
quite general and very important from a numerical point
of view. Then, by using the equivalence, some new iterative
algorithms for finding the approximation solutions of the
problem (1) are analyzed. Further, the convergence criteria for
the algorithms are also discussed.

Lemma 9. Let (𝑥
∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
) ∈ 𝐻

1
× 𝐻
2

× ⋅ ⋅ ⋅ ×

𝐻
𝑚

and 𝑢
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
) (𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖); then
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(𝑥∗
1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
, 𝑢
12
, . . . , 𝑢

1𝑚
, . . . , 𝑢

𝑚1
, . . . , 𝑢

𝑚𝑚−1
) (denoted by

(∗)) is a solution of the problem (1) if and only if (∗) satisfy

𝑥
∗

𝑖
= 𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
∗

𝑖
) − 𝜌
𝑖
𝐹
𝑖
(𝑢
𝑖1
, . . . , 𝑢

𝑖𝑖−1
, 𝑥
∗

𝑖
, 𝑢
𝑖𝑖+1

, . . . , 𝑢
𝑖𝑚
)] ,

(22)

where 𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
= (𝐴
𝑖
+ 𝜌
𝑖
𝑀
𝑖
)
−1 and 𝜌

𝑖
> 0 is a constant, for

𝑖 = 1, 2, ⋅ ⋅ ⋅ , 𝑚.

Proof. Let (∗) satisfy the relation (22). By Definition 5 of
general resolvent operator, the equality (22) holds if and only
if

𝐴
𝑖
(𝑥
∗

𝑖
) − 𝜌
𝑖
𝐹
𝑖
(𝑢
𝑖1
, . . . , 𝑢

𝑖𝑖−1
, 𝑥
∗

𝑖
, 𝑢
𝑖𝑖+1

, . . . , 𝑢
𝑖𝑚
)

∈ (𝐴
𝑖
+ 𝜌
𝑖
𝑀
𝑖
) (𝑥
∗

𝑖
) ;

(23)

that is,

0 ∈ 𝐹
𝑖
(𝑢
𝑖1
, . . . , 𝑢

𝑖𝑖−1
, 𝑥
∗

𝑖
, 𝑢
𝑖𝑖+1

, . . . , 𝑢
𝑖𝑚
) + 𝑀

𝑖
(𝑥
∗

𝑖
) , (24)

where 𝑖 = 1, 2, . . . , 𝑚. Hence (∗) are the solution of the
problem (1). This completes the proof.

By using formula (22) and Nadler [26], we can develop
the following new iterative algorithms.

Algorithm 10. Consider the following.

Step 1. Choose (𝑥0
1
, 𝑥0
2
, . . . , 𝑥0

𝑚
) ∈ 𝐻

1
× 𝐻
2
× ⋅ ⋅ ⋅ × 𝐻

𝑚
and

𝑢0
𝑖𝑗
∈ 𝑈
𝑖𝑗
(𝑥0
𝑗
) for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖.

Step 2. Let

𝑥
𝑛+1

𝑖
= (1 − 𝜆

𝑛
− 𝛿
𝑛
) 𝑥
𝑛

𝑖

+ 𝜆
𝑛
𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
𝑛

𝑖
)

−𝜌
𝑖
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)] ,

(25)

for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑛 = 0, 1, 2, . . ., where 𝜆
𝑛
and 𝛿

𝑛

are nonnegative constants such that 0 < 𝜆
𝑛
+ 𝛿
𝑛

≤ 1 and
lim inf

𝑛≥0
𝜆
𝑛
> 0.

Step 3. Choose 𝑢𝑛+1
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥𝑛+1
𝑗

) (𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖)

such that

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
≤ (1 +

1

𝑛 + 1
)𝐷
𝑗
(𝑈
𝑖𝑗
(𝑥
𝑛+1

𝑗
) , 𝑈
𝑖𝑗
(𝑥
𝑛

𝑗
)) ,

(26)

where𝐷
𝑗
(⋅, ⋅) is the Hausdorff pseudometric on 𝐶(𝐻

𝑗
).

Step 4. If 𝑥𝑛+1
𝑖

and 𝑢𝑛+1
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑚) satisfy (25) to
sufficient accuracy, stop. Otherwise, set 𝑛 := 𝑛 + 1 and return
to Step 2.

Algorithm 11. Consider the following.

Step 1. Choose (𝑥
0

1
, 𝑥0
2
, . . . , 𝑥0

𝑚
) ∈ 𝐻

1
× 𝐻
2
× ⋅ ⋅ ⋅ × 𝐻

𝑚
and

𝑢0
𝑖𝑗
∈ 𝑈
𝑖𝑗
(𝑥0
𝑗
), for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖.

Step 2. Let

𝑥
𝑛+1

𝑖
= (1 − 𝜆 − 𝛿) 𝑥

𝑛

𝑖

+ 𝜆𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
𝑛

𝑖
)

−𝜌
𝑖
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)] ,

(27)

for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑛 = 0, 1, 2, . . ., where 𝜆 and 𝛿 are
nonnegative constants such that 0 < 𝜆 + 𝛿 ≤ 1.

Step 3. Choose 𝑢𝑛+1
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥𝑛+1
𝑗

) (𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖)

such that
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
≤ (1 +

1

𝑛 + 1
)𝐷
𝑗
(𝑈
𝑖𝑗
(𝑥
𝑛+1

𝑗
) , 𝑈
𝑖𝑗
(𝑥
𝑛

𝑗
)) ,

(28)

where𝐷
𝑗
(⋅, ⋅) is the Hausdorff pseudometric on 𝐶(𝐻

𝑗
).

Step 4. If 𝑥𝑛+1
𝑖

and 𝑢𝑛+1
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑚) satisfy (27) to
sufficient accuracy, stop. Otherwise, set 𝑛 := 𝑛 + 1 and return
to Step 2.

Algorithm 12. Consider the following.

Step 1. Choose (𝑥0
1
, 𝑥0
2
, . . . , 𝑥0

𝑚
) ∈ 𝐻

1
× 𝐻
2
× ⋅ ⋅ ⋅ × 𝐻

𝑚
and

𝑢0
𝑖𝑗
∈ 𝑈
𝑖𝑗
(𝑥0
𝑗
), for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖.

Step 2. Let

𝑥
𝑛+1

𝑖
= (1 − 𝜆) 𝑥

𝑛

𝑖

+ 𝜆𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
𝑛

𝑖
)

− 𝜌
𝑖
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)] ,

(29)

for all 𝑖 = 1, 2, . . . , 𝑚 and 𝑛 = 0, 1, 2, . . ., where 𝜆 is a
nonnegative constant such that 0 < 𝜆 ≤ 1.

Step 3. Choose 𝑢𝑛+1
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥𝑛+1
𝑗

) (𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖)

such that
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛+1

𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
≤ (1 +

1

𝑛 + 1
)𝐷
𝑗
(𝑈
𝑖𝑗
(𝑥
𝑛+1

𝑗
) , 𝑈
𝑖𝑗
(𝑥
𝑛

𝑗
)) ,

(30)

where𝐷
𝑗
(⋅, ⋅) is the Hausdorff pseudometric on 𝐶(𝐻

𝑗
).

Step 4. If 𝑥𝑛+1
𝑖

and 𝑢𝑛+1
𝑖𝑗

(𝑖, 𝑗 = 1, 2, . . . , 𝑚) satisfy (29) to
sufficient accuracy, stop. Otherwise, set 𝑛 := 𝑛 + 1 and return
to Step 2.

Remark 13. Let 𝑚 = 2; then Algorithms 10–12 reduce to
Algorithms 4.1–4.3 of Agarwal and Verma [9], respectively.
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Now, we provide the main results concerning problem (1)
with respect to Algorithms 10–12.

Theorem 14. For 𝑖 = 1, 2, . . . , 𝑚, let 𝜂
𝑖
: 𝐻
𝑖
× 𝐻
𝑖

→ 𝐻
𝑖
be

𝜏
𝑖
-Lipschitz continuous operator, let 𝐴

𝑖
: 𝐻
𝑖

→ 𝐻
𝑖
be 𝛽
𝑖
-

Lipschitz continuous and (𝑟
𝑖
, 𝜂
𝑖
)-strongly monotone operator,

and let𝑀
𝑖
: 𝐻
𝑖
→ 2𝐻𝑖 be (𝐴

𝑖
, 𝜂
𝑖
)-maximal relaxed monotone

operator. Suppose that 𝑈
𝑖𝑗

: 𝐻
𝑗

→ 𝐶(𝐻
𝑗
) is 𝐷

𝑗
-𝛾
𝑖𝑗
-Lipschitz

continuous for 𝑗 = 1, 2, . . . , 𝑚 and 𝑗 ̸= 𝑖 and nonlinear operator
𝐹
𝑖
: 𝐻
1
×𝐻
2
×⋅ ⋅ ⋅×𝐻

𝑚
→ 𝐻
𝑖
is (𝑐
𝑖
, 𝜇
𝑖
)-relaxed cocoercive with

respect to 𝐴
𝑖
in the 𝑖th argument and 𝜁

𝑖𝑗
-Lipschitz continuous

in the 𝑗th argument for 𝑗 = 1, 2, . . . , 𝑚. If there exists constant
𝜌
𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑚, such that

𝜏
𝑗

𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

⋅ √𝛽2
𝑗
− 2𝜌
𝑗
𝜇
𝑗
+ 2𝜌
𝑗
𝑐
𝑗
𝜁2
𝑗𝑗

+ 𝜌2
𝑗
𝜁2
𝑗𝑗

+

𝑚

∑
𝑖=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

< 1,

(31)

where 𝑟
𝑗

− 𝜌
𝑗
𝑚
𝑗

> 0 for 𝑗 = 1, 2, . . . , 𝑚, then the
problem (1) admits a solution (𝑥∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
, 𝑢
12
, . . . ,

𝑢
1𝑚

, . . . , 𝑢
𝑚1

, . . . , 𝑢
𝑚𝑚−1

) (in short, (∗)), where 𝑥∗
𝑖

∈ 𝐻
𝑖
and

𝑢
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
), for any 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖, and sequences

{𝑥𝑛
𝑗
} and {𝑢𝑛

𝑖𝑗
} generated by Algorithm 10 strongly converge to

𝑥∗
𝑗
and 𝑢

𝑖𝑗
(𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖), respectively.

Proof. For 𝑖 = 1, 2, . . . , 𝑚, applying Algorithm 10 and Lemma
6, we have

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

𝑖
− 𝑥
𝑛

𝑖

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆
𝑛
− 𝛿
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+ 𝜆
𝑛

󵄩󵄩󵄩󵄩󵄩
𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
𝑛

𝑖
)

−𝜌
𝑖
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)]

− 𝑅
𝐴𝑖 ,𝜂𝑖

𝑀𝑖 ,𝜌𝑖
[𝐴
𝑖
(𝑥
𝑛−1

𝑖
)

−𝜌
𝑖
𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛−1

𝑖𝑚
)]

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜏
𝑖

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
(𝑥
𝑛

𝑖
) − 𝐴
𝑖
(𝑥
𝑛−1

𝑖
)

− 𝜌
𝑖
[𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜏
𝑖
𝜌
𝑖

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛−1

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩
.

(32)

Since 𝐴
𝑖
is 𝛽
𝑖
-Lipschitz continuous, 𝐹

𝑖
is (𝑐
𝑖
, 𝜇
𝑖
)-relaxed

cocoercivewith respect to𝐴
𝑖
in the 𝑖th argument, and𝐹

𝑖
is 𝜁
𝑖𝑗
-

Lipschitz continuous in the 𝑗-th argument for 𝑗 = 1, 2, . . . , 𝑚,
then we have

󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
(𝑥
𝑛

𝑖
) − 𝐴
𝑖
(𝑥
𝑛−1

𝑖
)

− 𝜌
𝑖
[𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

−𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)]

󵄩󵄩󵄩󵄩󵄩

2

=
󵄩󵄩󵄩󵄩󵄩
𝐴
𝑖
(𝑥
𝑛

𝑖
) − 𝐴
𝑖
(𝑥
𝑛−1

𝑖
)
󵄩󵄩󵄩󵄩󵄩

2

− 2𝜌
𝑖
⟨𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
) ,

𝐴
𝑖
(𝑥
𝑛

𝑖
) − 𝐴
𝑖
(𝑥
𝑛−1

𝑖
)⟩

+ 𝜌
2

𝑖

󵄩󵄩󵄩󵄩𝐹𝑖 (𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

−𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

2

≤ 𝛽
2

𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

2

− 2𝜌
𝑖
[ (−𝑐
𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

2

+𝜇
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

2

] + 𝜌
2

𝑖
𝜁
2

𝑖𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

2

≤ (𝛽
2

𝑖
− 2𝜌
𝑖
𝜇
𝑖
+ 2𝜌
𝑖
𝑐
𝑖
𝜁
2

𝑖𝑖
+ 𝜌
2

𝑖
𝜁
2

𝑖𝑖
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

2

.

(33)

By𝐷
𝑗
-𝛾
𝑖𝑗
-Lipschitz continuity of 𝑈

𝑖𝑗
and (26), we get

󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛

𝑖1
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛−1

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛

𝑖1
, 𝑢
𝑛

𝑖2
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

−𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛

𝑖2
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

−𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

−𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩

+ ⋅ ⋅ ⋅ +
󵄩󵄩󵄩󵄩󵄩
𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛

𝑖𝑚
)

− 𝐹
𝑖
(𝑢
𝑛−1

𝑖1
, 𝑢
𝑛−1

𝑖2
, . . . , 𝑢

𝑛−1

𝑖𝑖−1
, 𝑥
𝑛−1

𝑖
, 𝑢
𝑛−1

𝑖𝑖+1
, . . . , 𝑢

𝑛−1

𝑖𝑚
)
󵄩󵄩󵄩󵄩󵄩
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≤ 𝜁
𝑖1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛

𝑖1
− 𝑢
𝑛−1

𝑖1

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ + 𝜁

𝑖𝑖−1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛

𝑖𝑖−1
− 𝑢
𝑛−1

𝑖𝑖−1

󵄩󵄩󵄩󵄩󵄩

+ 𝜁
𝑖𝑖+1

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛

𝑖𝑖+1
− 𝑢
𝑛−1

𝑖𝑖+1

󵄩󵄩󵄩󵄩󵄩
+ ⋅ ⋅ ⋅ + 𝜁

𝑖𝑚

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛

𝑖𝑚
− 𝑢
𝑛−1

𝑖𝑚

󵄩󵄩󵄩󵄩󵄩

=

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜁
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑢
𝑛

𝑖𝑗
− 𝑢
𝑛−1

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜁
𝑖𝑗
(1 +

1

𝑛
)𝐷
𝑗
(𝑈
𝑖𝑗
(𝑥
𝑛

𝑗
) , 𝑈
𝑖𝑗
(𝑥
𝑛−1

𝑗
))

≤ (1 +
1

𝑛
)

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜁
𝑖𝑗
𝛾
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩
.

(34)

It follows from (32)–(34) that
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

𝑖
− 𝑥
𝑛

𝑖

󵄩󵄩󵄩󵄩󵄩

≤ (1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜏
𝑖

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

[

[

√𝛽2
𝑖
− 2𝜌
𝑖
𝜇
𝑖
+ 2𝜌
𝑖
𝑐
𝑖
𝜁2
𝑖𝑖
+ 𝜌2
𝑖
𝜁2
𝑖𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+ (1 +
1

𝑛
) 𝜌
𝑖

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜁
𝑖𝑗
𝛾
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩
]

]

,

(35)

which implies that
𝑚

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

𝑗
− 𝑥
𝑛

𝑗

󵄩󵄩󵄩󵄩󵄩
=

𝑚

∑
𝑖=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛+1

𝑖
− 𝑥
𝑛

𝑖

󵄩󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑖=1

[

[

(1 − 𝜆
𝑛
)
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+
𝜆
𝑛
𝜏
𝑖

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

(√𝛽2
𝑖
− 2𝜌
𝑖
𝜇
𝑖
+ 2𝜌
𝑖
𝑐
𝑖
𝜁2
𝑖𝑖
+ 𝜌2
𝑖
𝜁2
𝑖𝑖

×
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩
+ (1 +

1

𝑛
) 𝜌
𝑖

×

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜁
𝑖𝑗
𝛾
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩
)]

]

=

𝑚

∑
𝑖=1

[ (1 − 𝜆
𝑛
) +

𝜆
𝑛
𝜏
𝑖

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

×√𝛽2
𝑖
− 2𝜌
𝑖
𝜇
𝑖
+ 2𝜌
𝑖
𝑐
𝑖
𝜁2
𝑖𝑖
+ 𝜌2
𝑖
𝜁2
𝑖𝑖
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑖
− 𝑥
𝑛−1

𝑖

󵄩󵄩󵄩󵄩󵄩

+ (1 +
1

𝑛
) 𝜆
𝑛

𝑚

∑
𝑖=1

𝑚

∑
𝑗=1,𝑗 ̸= 𝑖

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

=

𝑚

∑
𝑗=1

[(1 − 𝜆
𝑛
) +

𝜆
𝑛
𝜏
𝑗

𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

×√𝛽2
𝑗
− 2𝜌
𝑗
𝜇
𝑗
+ 2𝜌
𝑗
𝑐
𝑗
𝜁2
𝑗𝑗

+ 𝜌2
𝑗
𝜁2
𝑗𝑗
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

+ (1 +
1

𝑛
) 𝜆
𝑛

𝑚

∑
𝑗=1

𝑚

∑
𝑖=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

=

𝑚

∑
𝑗=1

[

[

(1 − 𝜆
𝑛
) + 𝜆
𝑛

× (
𝜏
𝑗

𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

√𝛽2
𝑗
− 2𝜌
𝑗
𝜇
𝑗
+ 2𝜌
𝑗
𝑐
𝑗
𝜁2
𝑗𝑗

+ 𝜌2
𝑗
𝜁2
𝑗𝑗

+ (1 +
1

𝑛
)

𝑚

∑
𝑖=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

)]

]

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

=

𝑚

∑
𝑗=1

[(1 − 𝜆
𝑛
) + 𝜆
𝑛
𝜃
𝑛

𝑗
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

≤

𝑚

∑
𝑗=1

[(1 − 𝜔) + 𝜔𝜃
𝑛

𝑗
]
󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩

≤ 𝑓
𝑛
(𝜔)

𝑚

∑
𝑗=1

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
𝑛−1

𝑗

󵄩󵄩󵄩󵄩󵄩
,

(36)

where

𝜔 = lim inf
𝑛≥0

𝜆
𝑛
> 0, 𝑓

𝑛
(𝜔) = max

1≤𝑗≤𝑚

{(1 − 𝜔) + 𝜔𝜃
𝑛

𝑗
} ,

𝜃
𝑛

𝑗
=

𝜏
𝑗

𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

√𝛽2
𝑗
− 2𝜌
𝑗
𝜇
𝑗
+ 2𝜌
𝑗
𝑐
𝑗
𝜁2
𝑗𝑗

+ 𝜌2
𝑗
𝜁2
𝑗𝑗

+ (1 +
1

𝑛
)

𝑚

∑
𝑖=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

.

(37)

By condition (31), we know sequence {𝜃𝑛
𝑗
} is monotonely

decreasing and 𝜃𝑛
𝑗

→ 𝜃
𝑗
as 𝑛 → ∞. Therefore,

𝑓 (𝜔) = lim
𝑛→∞

𝑓
𝑛
(𝜔) = max

1≤𝑗≤𝑚

{(1 − 𝜔) + 𝜔𝜃
𝑗
} . (38)

Since 0 < 𝜃
𝑗

< 1, for 𝑗 = 1, 2, . . . , 𝑚, we get 𝜃 =

max
1≤𝑗≤𝑚

{𝜃
𝑗
} ∈ (0, 1). By Lemma 8, we have 𝑓(𝜔) = 1 −

𝜔 + 𝜔𝜃 ∈ (0, 1). From (36), it follows that {𝑥𝑛
𝑗
} are Cauchy

sequences and there exists 𝑥∗
𝑗

∈ 𝐻
𝑗
such that 𝑥𝑛

𝑗
→ 𝑥∗
𝑗
as

𝑛 → ∞, for 𝑗 = 1, 2, . . . , 𝑚.
Next, we show that 𝑢𝑛

𝑖𝑗
→ 𝑢
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
) as 𝑛 → ∞ for

𝑖, 𝑗 = 1, 2, . . . , 𝑚 and 𝑗 ̸= 𝑖.
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It follows from (34) that {𝑢𝑛
𝑖𝑗
} are also Cauchy sequences.

Hence, there exists 𝑢
𝑖𝑗
∈ 𝐻
𝑗
such that 𝑢𝑛

𝑖𝑗
→ 𝑢
𝑖𝑗
as 𝑛 → ∞,

for 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖. Furthermore,

𝑑 (𝑢
𝑖𝑗
, 𝑈
𝑖𝑗
(𝑥
∗

𝑗
))

= inf {󵄩󵄩󵄩󵄩󵄩𝑢𝑖𝑗 − 𝑡
󵄩󵄩󵄩󵄩󵄩
: 𝑡 ∈ 𝑈

𝑖𝑗
(𝑥
∗

𝑗
)}

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
+ 𝑑 (𝑢

𝑛

𝑖𝑗
, 𝑈
𝑖𝑗
(𝑥
∗

𝑗
))

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
+ 𝐷
𝑗
(𝑈
𝑖𝑗
(𝑥
𝑛

𝑗
) , 𝑈
𝑖𝑗
(𝑥
∗

𝑗
))

≤
󵄩󵄩󵄩󵄩󵄩
𝑢
𝑖𝑗
− 𝑢
𝑛

𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
+ 𝛾
𝑖𝑗

󵄩󵄩󵄩󵄩󵄩
𝑥
𝑛

𝑗
− 𝑥
∗

𝑗

󵄩󵄩󵄩󵄩󵄩
→ 0 (𝑛 → ∞) .

(39)

Since 𝑈
𝑖𝑗
(𝑥∗
𝑗
) is closed, we have 𝑢

𝑖𝑗
∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
), for 𝑗 =

1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖.
Using continuity, (∗) that is, (𝑥∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
) ∈ 𝐻
1
×𝐻
2
×

⋅ ⋅ ⋅ × 𝐻
𝑚
and 𝑢

𝑖𝑗
∈ 𝑈
𝑖𝑗

(𝑥∗
𝑗
) (𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖) satisfy

(22) and so, in light of Lemma 9, (∗), is a solution to problem
(1). This completes the proof.

Remark 15. If 𝑚 = 2, then Theorem 14 reduces to Theo-
rem 4.2 in [9].

FromTheorem 14, we have the following results.

Corollary 16. For 𝑖, 𝑗 = 1, 2, . . . , 𝑚 and 𝑗 ̸= 𝑖, assume that 𝜂
𝑖
,

𝐴
𝑖
, 𝑀
𝑖
, 𝑈
𝑖𝑗
, and 𝐻

𝑖
are the same as in Theorem 14. Let 𝐹

𝑖
:

𝐻
1
×𝐻
2
×⋅ ⋅ ⋅×𝐻

𝑚
→ 𝐻
𝑖
be 𝜇
𝑖
-strongly monotone with respect

to𝐴
𝑖
in the 𝑖th argument and 𝜁

𝑖𝑗
-Lipschitz continuous in the 𝑗th

argument for 𝑖, 𝑗 = 1, 2, . . . , 𝑚 and 𝑗 ̸= 𝑖. If there exist constants
𝜌
𝑖
> 0, for 𝑖 = 1, 2, . . . , 𝑚, such that

𝜏
𝑗

𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

⋅ √𝛽2
𝑗
− 2𝜌
𝑗
𝜇
𝑗
+ 𝜌2
𝑗
𝜁2
𝑗𝑗

+

𝑚

∑
𝑖=1,𝑖 ̸= 𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗
𝛾
𝑖𝑗

𝑟
𝑖
− 𝜌
𝑖
𝑚
𝑖

< 1,

(40)

where 𝑟
𝑗
− 𝜌
𝑗
𝑚
𝑗

> 0, for 𝑗 = 1, 2, . . . , 𝑚, then problem
(1) admits a solution (𝑥∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
, 𝑢
12
, . . . , 𝑢

1𝑚
, . . . , 𝑢

𝑚1
,

. . . , 𝑢
𝑚𝑚−1

), where, for any 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖, 𝑥∗
𝑖

∈ 𝐻
𝑖

and 𝑢
𝑖𝑗

∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
) and sequences {𝑥𝑛

𝑗
}, {𝑢𝑛
𝑖𝑗
} generated by

Algorithm 11 strongly converge to 𝑥∗
𝑗
and 𝑢

𝑖𝑗
, respectively.

Corollary 17. For 𝑖, 𝑗 = 1, 2, . . . , 𝑚 and 𝑗 ̸= 𝑖, let 𝜂
𝑖
, 𝐴
𝑖
,

𝑀
𝑖
, 𝐹
𝑖
, and 𝐻

𝑖
be the same as in Corollary 16 and let 𝑈

𝑖𝑗
:

𝐻
𝑗

→ 𝐶𝐵(𝐻
𝑗
) be 𝐻̂-𝛾

𝑖𝑗
-Lipschitz continuous. If condition

(40) in Corollary 16 holds, then problem (1) admits a solution
(𝑥
∗

1
, 𝑥∗
2
, . . . , 𝑥∗

𝑚
, 𝑢
12
, . . . , 𝑢

1𝑚
, . . . , 𝑢

𝑚1
, . . . , 𝑢

𝑚𝑚−1
), where 𝑥∗

𝑖
∈

𝐻
𝑖
and 𝑢

𝑖𝑗
∈ 𝑈
𝑖𝑗
(𝑥∗
𝑗
), and sequences {𝑥𝑛

𝑗
}, {𝑢𝑛
𝑖𝑗
} (𝑖, 𝑗 =

1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖) generated by Algorithm 12 strongly converge
to 𝑥∗
𝑗
and 𝑢

𝑖𝑗
, for any 𝑖, 𝑗 = 1, 2, . . . , 𝑚, 𝑗 ̸= 𝑖, respectively.
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