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This study presents a numerical convolution representation of a potential induced from a disk of surface density, which has
often been investigated in the center region of galaxies. The advantage of this representation is to release the softening length
for the 𝑁-body method and artificial boundary conditions for the spectral methods. With the help of fast Fourier transform, the
computational complexity is only 𝑂(𝑀

2
(log
2
𝑀)), where 𝑀 is the number of zones in one dimension. Numerical results show an

almost second order of accuracy on a Cartesian coordinate system. A comparison study also demonstrates that this method can
calculate the potential for disk surface density based on the uniform grids.

1. Introduction

Let us consider the Poisson equation with singular disk
surface density [1–3]

ΔΦ (x) = 4𝜋𝐺𝜌 (x) = 4𝜋𝐺𝜎 (𝑥, 𝑦) 𝛿 (𝑧) , in R
3
, (1)

where x = (𝑥, 𝑦, 𝑧), 𝐺, 𝛿, and

𝜌 (x) = 𝜎 (𝑥, 𝑦) 𝛿 (𝑧) , (2)

are position, gravitational constant, Dirac symbol, and den-
sity, respectively. Hereafter, we set 𝐺 = 1 without loss of
generality.

One possible method of solving (1) is to discretize the
partial differential equation (1) using the finite difference
method [4–6]. This discretization is

−

−Φ
𝑖+1,𝑗,𝑘

+ 2Φ
𝑖,𝑗,𝑘

− Φ
𝑖−1,𝑗,𝑘

(Δ𝑥)
2

,

−

−Φ
𝑖,𝑗+1,𝑘

+ 2Φ
𝑖,𝑗,𝑘

− Φ
𝑖,𝑗−1,𝑘

(Δ𝑦)
2

,

−

−Φ
𝑖,𝑗,𝑘+1

+ 2Φ
𝑖,𝑗,𝑘

− Φ
𝑖,𝑗,𝑘−1

(Δ𝑧)
2

= 𝑓
𝑖,𝑗,𝑘

,

(3)

where Φ
𝑖,𝑗,𝑘

= Φ(𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
), 𝑓
𝑖,𝑗,0

= 𝜎
𝑖,𝑗
, and 𝑓

𝑖,𝑗,𝑘
= 0 for 𝑘 ̸=

0, based on the uniformmesh grids (𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
) with themesh

sizes Δ𝑥, Δ𝑦, and Δ𝑧 in 𝑥, 𝑦, and 𝑧 directions, respectively.
In this approach, the values of the potential on imposed
boundaries should be calculated and a fully 3D calculation
must be performed. Any numerical solutions of this partial
differential problem involve 𝑂(𝑀

3
) unknowns, where 𝑀 is

the number of zones in one dimension.The linear complexity
of this approach is at least 𝑂(𝑀

3
), for example, [7]. It seems

unfeasible that a thin gaseous disk problem can directly solve
the partial differential equation.

The other approach for solving (1) uses the integral
form. The solution to (1) can be represented in terms of the
fundamental solution, (1/4𝜋)K(x), where

K (x) = 1

√𝑥2 + 𝑦2 + 𝑧2
, (4)

as

Φ(𝑥, 𝑦, 𝑧) = −∬K (𝑥 − 𝑥, 𝑦 − 𝑦, −𝑧) 𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

(5)

The difficulties encountered in the numerical approach for
solving (1) or (5) are related to the extent of the domain R3.
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The spectral method uses trigonometric bases functions and
the artificial periodic boundary conditions [8]. However, the
potential is not periodic in reality. A direct calculation using
the 𝑁-body method [1] has the total amount of complexity
𝑂(𝑀
4
) based on the number 𝑂(𝑀

2
) of mesh zones. For

the 𝑁-body method based on a uniform grid and using the
FFT technique, the numerical complexity can be reduced
from 𝑂(𝑀

4
) to 𝑂(𝑀

2
(log
2
(𝑀))
2
). In other words, this pro-

duces a fast algorithm of linear complexity. Unfortunately,
this method has a drawback, which is to introduce the
softening parameter to overcome the singular integration

∬
𝐷

K (𝑥, 𝑦, 0) 𝑑𝑥 𝑑𝑦, (6)

where 𝐷 contains the origin.
The proposed method does not require the artificial

periodic boundary condition and softening parameter and
further improves the accuracy of the 𝑁-body method. This
study uses the uniform and logarithmic grid generations
in Cartesian and polar coordinates, respectively. The other
treatment is linear approximation for the surface density on
the cell. This ensures that the proposed method is of second
order in Cartesian coordinates.This study uses two examples,
a 𝐷
2
disk [9] and its variation 𝐷

2,2
, to show numerically that

the method achieves second-order accuracy. A comparison
study also demonstrates that the proposed method is suitable
for potentials on a thin disk.

Before the end of the section, another approach for
an improvement of 𝑁-body method is the fast multipole
methods (FMM) [1, 10] which decomposes the region into
local interactions and far-field interactions for every position.
The FMM is efficient for fully three-dimensional calculations
under the assumption that the far field is smooth. The
FFM also relies on the ability to manipulate local multipole
expansions for every box in the tree hierarchy [11–13]. The
proposed presentation based on the uniform grids is without
the assumption of smoothness in the far-field region and does
not require extra efforts on the tree hierarchy.

This paper is organized as follows. Sections 2.1 and 2.2
present the numerical methods for Cartesian and spherical
coordinates, respectively. Section 4.1 presents the order of
accuracy of the proposed methods as verified by a family of
finite disks 𝐷

2
[9]. Section 4.2 presents a comparison with

the 𝑁-body calculation. Finally, we conclude this study in
Section 5.

2. Methods

2.1. Cartesian Coordinates. Assume that the numerical com-
putation domain 𝐷 = [−𝐿, 𝐿]×[−𝐿, 𝐿] for some number 𝐿 >

0, which contains the support of the surface density, and
further discretize the region uniformly as follows. Given a
positive integer 𝑀, define Δ𝑥 = 2𝐿/𝑀, 𝑥

𝑖+1/2
= −𝐿 + 𝑖Δ𝑥,

Δ𝑦 = Δ𝑥, and 𝑦
𝑗+1/2

= −𝐿 + 𝑗Δ𝑦, where 𝑖, 𝑗 = 0, . . . ,𝑀.
Next, define the center of the cell 𝐷

𝑖,𝑗
= [𝑥
𝑖−1/2

, 𝑥
𝑖+1/2

] ×

[𝑦
𝑗−1/2

, 𝑦
𝑗+1/2

] as 𝑥
𝑖
= (𝑥
𝑖−1/2

+ 𝑥
𝑖+1/2

)/2 and 𝑦
𝑗
= (𝑦
𝑗−1/2

+

𝑦
𝑗+1/2

)/2, where 𝑖, 𝑗 = 1, . . . ,𝑀. Hence, the domain 𝐷 is
discretized into the 𝑀

2 cells.

We recall the 𝑁-body method with fast Fourier trans-
form (FFT). Represent the potential function Φ of (1) as

Φ(𝑥, 𝑦, 𝑧)

= −∭K (𝑥 − 𝑥, 𝑦 − 𝑦, 𝑧 − 𝑧) 𝜌 (𝑥, 𝑦, 𝑧) 𝑑𝑥 𝑑𝑦 𝑑𝑧,
(7)

where K(𝑥, 𝑦, 𝑧) = 1/√𝑥2 + 𝑦2 + 𝑧2. According to (2), the
potential is

Φ(𝑥, 𝑦, 𝑧) = ∬K (𝑥 − 𝑥, 𝑦 − 𝑦, −𝑧) 𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦. (8)

Calculate (8) using a numerical approach for the plane 𝑧 =

0 assuming that the support of the surface density is compact.
Based on a restriction to the calculation of potentials on
the 𝑧 = 0 plane, derive the formulae for all 𝑧. Equation (8)
is equal to

Φ(𝑥, 𝑦, 𝑧)

=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

∬
𝐷
𝑖
󸀠
,𝑗
󸀠

K (𝑥 − 𝑥, 𝑦 − 𝑦, −𝑧) 𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.
(9)

The potential at (𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
) for the 𝑁-body method is

approximated by

Φ(𝑥
𝑖
, 𝑦
𝑗
, 𝑧
𝑘
)

≈

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

K (𝑥
𝑖
󸀠 − 𝑥
𝑖
, 𝑦
𝑗
󸀠 − 𝑦
𝑗
, −𝑧
𝑘
) 𝜎 (𝑥

𝑖
󸀠 , 𝑦
𝑗
󸀠) Δ𝑥Δ𝑦.

(10)

That is,

∬
𝐷
𝑖
󸀠
,𝑗
󸀠

K (𝑥 − 𝑥, 𝑦 − 𝑦, −𝑧) 𝜎 (𝑥, 𝑦)

≈ K (𝑥
𝑖
󸀠 − 𝑥
𝑖
, 𝑦
𝑗
󸀠 − 𝑦
𝑗
, −𝑧
𝑘
) 𝜎 (𝑥

𝑖
󸀠 , 𝑦
𝑗
󸀠) Δ𝑥Δ𝑦.

(11)

The approximated integral is of the first order and the
fundamental function K is singular whenever (𝑖

󸀠
, 𝑗
󸀠
, 0) =

(𝑖, 𝑗, 𝑘). The 𝑁-body method applies a softening parameter
technique for 𝑧 = 0 with 𝜖 > 0,

K ≈ K
𝜖
=

1

√𝑥2 + 𝑦2 + 𝜖2
(12)

to avoid the singularity.
To improve the calculation of (11), approximate the

surface density 𝜎 on 𝐷
𝑖,𝑗

in (8) linearly by

𝜎 (𝑥, 𝑦) ≈ 𝜎
𝑖,𝑗

+ 𝛿
𝑥

𝑖,𝑗
(𝑥 − 𝑥

𝑖
) + 𝛿
𝑦

𝑖,𝑗
(𝑦 − 𝑦

𝑗
) , (13)

where 𝜎
𝑖,𝑗

= 𝜎(𝑥
𝑖
, 𝑦
𝑗
) and 𝛿

𝑥

𝑖,𝑗
= (𝜕/𝜕𝑥)𝜎(𝑥

𝑖
, 𝑦
𝑗
) and 𝛿

𝑦

𝑖,𝑗
=

(𝜕/𝜕𝑦)𝜎(𝑥
𝑖
, 𝑦
𝑗
) are constant in the cell 𝐷

𝑖,𝑗
. The error of the

discretization is 𝑂((𝑥 − 𝑥
𝑖
)
2
+ (𝑦 − 𝑦

𝑗
)
2
). If a higher order

accuracy is required, additional terms in theTaylor expansion
in (13) can be considered.
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Let
K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
𝐷
𝑖
󸀠
,𝑗
󸀠

1

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦,

K
𝑥

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
𝐷
𝑖
󸀠
,𝑗
󸀠

𝑥 − 𝑥
𝑖
󸀠

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦,

K
𝑦

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
𝐷
𝑖
󸀠
,𝑗
󸀠

𝑦 − 𝑦
𝑗
󸀠

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦.

(14)

By substituting (13) into (9), the potential can be approxi-
mated by

Φ
𝑖,𝑗,𝑘

≈

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

∬
𝐷
𝑖
󸀠
,𝑗
󸀠

K (𝑥 − 𝑥
𝑖
, 𝑦 − 𝑦

𝑗
, −𝑧
𝑘
)

× (𝜎
𝑖
󸀠
,𝑗
󸀠 + 𝛿
𝑥

𝑖
󸀠
,𝑗
󸀠 (𝑥 − 𝑥

𝑖
󸀠)

+𝛿
𝑦

𝑖
󸀠
,𝑗
󸀠
(𝑦 − 𝑦

𝑗
󸀠))𝑑𝑥𝑑𝑦

≡ Φ
0

𝑖,𝑗,𝑘
+ Φ
𝑥

𝑖,𝑗,𝑘
+ Φ
𝑦

𝑖,𝑗,𝑘
,

(15)

where

Φ
0

𝑖,𝑗,𝑘
=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝜎
𝑖
󸀠
,𝑗
󸀠∬
𝐷
𝑖
󸀠
,𝑗
󸀠

1

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦

=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝜎
𝑖
󸀠
,𝑗
󸀠K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
,

Φ
𝑥

𝑖,𝑗,𝑘
=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑥

𝑖
󸀠
,𝑗
󸀠∬
𝐷
𝑖
󸀠
,𝑗
󸀠

𝑥 − 𝑥
𝑖
󸀠

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦

=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑥

𝑖
󸀠
,𝑗
󸀠K
𝑥

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
,

Φ
𝑦

𝑖,𝑗,𝑘
=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑦

𝑖
󸀠
,𝑗
󸀠
∬
𝐷
𝑖
󸀠
,𝑗
󸀠

𝑦 − 𝑦
𝑗
󸀠

√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

𝑑𝑥 𝑑𝑦

=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑦

𝑖
󸀠
,𝑗
󸀠
K
𝑦

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
.

(16)

Fortunately, the integrals of (14) can be obtained analyti-
cally with the help of the following simple formulae:

∬
1

√𝑥2 + 𝑦2 + 𝑧2
𝑑𝑥 𝑑𝑦

= 𝑦 ln(𝑥 + √𝑥2 + 𝑦2 + 𝑧2) + 𝑥 ln(𝑦 + √𝑥2 + 𝑦2 + 𝑧2)

− 𝑧 arctan(
𝑥𝑦

𝑧√𝑥2 + 𝑦2 + 𝑧2
) + 𝐶,

∬
𝑥

√𝑥2 + 𝑦2 + 𝑧2
𝑑𝑥 𝑑𝑦

=
1

2
𝑦√𝑥2 + 𝑦2 + 𝑧2

+
1

2
(𝑥
2
+ 𝑧
2
) ln(𝑦 + √𝑥2 + 𝑦2 + 𝑧2) + 𝐶.

(17)

The value K0
𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
is then equal to

K0
𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= (𝑦 − 𝑦
𝑗
) ln ((𝑥 − 𝑥

𝑖
) + √(𝑥 − 𝑥

𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘
)

+ (𝑥 − 𝑥
𝑖
) ln ((𝑦 − 𝑦

𝑗
) + √(𝑥 − 𝑥

𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘
)

−𝑧
𝑘
arctan (

(𝑥 − 𝑥
𝑖
) (𝑦 − 𝑦

𝑗
)

𝑧
𝑘
√(𝑥 − 𝑥

𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖
󸀠
+1/2

𝑥
𝑖
󸀠
−1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑗
󸀠
+1/2

𝑦
𝑗
󸀠
−1/2

,

(18)

where the notation 𝑔(𝑥)|
𝑏

𝑎
= 𝑔(𝑏) − 𝑔(𝑎). The calcula-

tions of K𝑥
𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
and K

𝑦

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
are split into two parts by

the identity 𝑥 − 𝑥
𝑖
󸀠 = (𝑥 − 𝑥

𝑖
) + (𝑥

𝑖
− 𝑥
𝑖
󸀠) and 𝑦 − 𝑦

𝑗
󸀠 =

(𝑦 − 𝑦
𝑗
) + (𝑦

𝑗
− 𝑦
𝑗
󸀠), respectively. This leads to

K
𝑥

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= (𝑥
𝑖
− 𝑥
𝑖
󸀠)K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

+
1

2
(𝑦 − 𝑦

𝑗
)√(𝑥 − 𝑥

𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘

+
1

2
((𝑥 − 𝑥

𝑖
)
2

+ 𝑧
2

𝑘
)
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× ln((𝑦 − 𝑦
𝑗
)

+√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖
󸀠
+1/2

𝑥
𝑖
󸀠
−1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑗
󸀠
+1/2

𝑦
𝑗
󸀠
−1/2

,

K
𝑦

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= (𝑦
𝑗
− 𝑦
𝑗
󸀠)K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

+
1

2
(𝑥 − 𝑥

𝑖
)√(𝑦 − 𝑦

𝑗
)
2

+ (𝑥 − 𝑥
𝑖
)
2

+ 𝑧
2

𝑘

+
1

2
((𝑦 − 𝑦

𝑗
)
2

+ 𝑧
2

𝑘
)

× ln( (𝑥 − 𝑥
𝑖
)

+√(𝑥 − 𝑥
𝑖
)
2

+ (𝑦 − 𝑦
𝑗
)
2

+ 𝑧
2

𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑥
𝑖
󸀠
+1/2

𝑥
𝑖
󸀠
−1/2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑦
𝑗
󸀠
+1/2

𝑦
𝑗
󸀠
−1/2

.

(19)

The forms of Φ0
𝑖,𝑗,𝑘

, Φ𝑥
𝑖,𝑗,𝑘

, and Φ
𝑦

𝑖,𝑗,𝑘
in (16) are a type of

convolution and the computational complexity can be
reduced to 𝑂(𝑀log

2
𝑀) with the help of FFT in the 𝑥 and

𝑦 directions. In the 𝑧 direction, the computational com-
plexity is 𝑂(𝑀). This implies that the total complexity of
this method is 𝑂(𝑀

2
(log
2
𝑀)
2
) and 𝑂(𝑀

3
(log
2
𝑀)
2
) for the

plane 𝑧 = 0 and the whole 3D space, respectively.

2.2. Spherical and Polar Coordinates. While the method
appears to be second-order-accurate for discretization on a
Cartesian grid, it loses second-order accuracy using spherical
polar coordinates. An algorithm for solving the Poisson
equation in spherical polar coordinates has been used exten-
sively in protostellar collapse and fragmentation calculations,
where often a thin disk formed at the central core of the
collapsing cloud [14]. The algorithm implemented in [15]
is subsequently modified, see [16], to deal with filamentary
density distributions. This method in [16] employed finite
differences for the radial dependence of the potential and
spherical harmonics for the angular dependence, resulting in
a second-order method through convergence testing.

We are going to develop our approach for spherical coor-
dinates (𝑟, 𝜃, 𝜑), which can be reduced to polar coordinates
(𝜑 = 𝜋/2). The singular integral disappears, but the high
order of accuracy is not attained because there is no explicit
form for the integral of an elliptic function. Although the
proposed calculation of potential has some drawbacks, it
is still better than 𝑁-body calculations and the method in
[17].

The support of the surface density is compact, contained
in a region R = [0, 𝐿] × [0, 2𝜋] for some number 𝐿 > 0.
Confine the discretization on the radial region in logarith-
mic form and the azimuthal region uniformly as follows
to achieve a fast calculation. Given a positive integer 𝑀,

define Δ𝜃 = 2𝜋/𝑀, 0 < 𝛽
0

< 1, 𝛽 = 𝛽
0
(1 − Δ𝜃), 𝑟

𝑖+1/2
=

𝛽
𝑀−𝑖

𝐿, 𝜃
𝑗+1/2

= 𝑗Δ𝜃, 𝑖, 𝑗 = 0, . . . ,𝑀, 𝑟
𝑖

= (1/2)(𝑟
𝑖−1/2

+

𝑟
𝑖+1/2

), and 𝜃
𝑗

= (1/2)(𝜃
𝑗−1/2

+ 𝜃
𝑗+1/2

) where 𝑖, 𝑗 =

1, . . . ,𝑀. The effect of 𝛽
0
is to refine the mesh. Here, the

proposed method for polar coordinates is of first order
because a singular integration occurs (see below). Further-
more, the region R is discretized into the 𝑀

2 cells, R
𝑖𝑗

=

[𝑟
𝑖−1/2

, 𝑟
𝑖+1/2

] × [𝜃
𝑗−1/2

, 𝜃
𝑗+1/2

] for 𝑖, 𝑗 = 1, . . . ,𝑀. For 𝑗 =

1, . . . ,𝑀, the cells R
1,𝑗

do not cover the origin and extra
cells R̂

𝑗
= [0, 𝑟

1/2
] × [𝜃

𝑗−1/2
, 𝜃
𝑗+1/2

] should be included. To
simplify notation, denote R

0,𝑗
= R̂
𝑗
, 𝑗 = 1, . . . ,𝑀.

The potential function Φ of (1) under the assumption
𝐺 = 1 in spherical coordinates can be expressed as

Φ(𝑟, 𝜃, 𝜑)

= −∭K (𝑟, 𝑟, 𝜃 − 𝜃, 𝜑, 𝜑) 𝜌 (𝑟, 𝜃, 𝜑) 𝑟
2 sin𝜑𝑑𝑟 𝑑𝜃 𝑑𝜑,

(20)

where

K (𝑟, 𝑟, 𝜃 − 𝜃, 𝜑, 𝜑)

= 1 × (𝑟
2
− 2𝑟𝑟 cos (𝜃 − 𝜃) sin (𝜑) sin (𝜑)

+ 𝑟
2
− 2𝑟𝑟 cos (𝜑) cos (𝜑) )

−1/2

.

(21)

The surface density 𝜎 on R
𝑖,𝑗

in (20) can be linearly
approximated by

𝜎 (𝑟, 𝜃) ≈ 𝜎
𝑖,𝑗

+ 𝛿
𝑟

𝑖,𝑗
(𝑟 − 𝑟
𝑖
) + 𝛿
𝜃

𝑖,𝑗
(𝜃 − 𝜃

𝑗
) , (22)

where 𝜎
𝑖,𝑗

= 𝜎(𝑟
𝑖
, 𝜃
𝑗
) and 𝛿

𝑟

𝑖,𝑗
= (𝜕/𝜕𝑟)𝜎(𝑟

𝑖
, 𝜃
𝑗
) and 𝛿

𝜃

𝑖,𝑗
=

(𝜕/𝜕𝜃)𝜎(𝑟
𝑖
, 𝜃
𝑗
) are constants in the cell R

𝑖,𝑗
. Equation (22) is

the Taylor expansion in two dimensions and it follows that
the error of the discretization is 𝑂((𝑟 − 𝑟

𝑖
)
2
+ (𝜃 − 𝜃

𝑗
)
2
).

In this section, let

K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
R
𝑖
󸀠
,𝑗
󸀠

𝑟

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃,

(23)

𝑟
𝑖
K
𝑟

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
𝑅
𝑖
󸀠
,𝑗
󸀠

𝑟 (𝑟 − 𝑟
𝑖
󸀠)

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃,

(24)

K
𝜃

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∬
𝑅
𝑖
󸀠
,𝑗
󸀠

𝑟 (𝜃 − 𝜃
𝑗
󸀠)

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃.

(25)
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Similarly for K
0

𝑖,𝑗−𝑗
󸀠
,𝑘
, K
𝑟

𝑖,𝑗−𝑗
󸀠
,𝑘
, and K

𝜃

𝑖,𝑗−𝑗
󸀠
,𝑘
on the central

region R
0,𝑗
. The term 𝑟

𝑖
in (24) is for the formulation of a

convolution type. According to (20) and (22),

Φ
𝑖,𝑗,𝑘

≈

𝑀

∑

𝑖
󸀠
=0

𝑀

∑

𝑗
󸀠
=1

∬
𝑅
𝑖
󸀠
,𝑗
󸀠

K(𝑟, 𝑟
𝑖
, 𝜃 − 𝜃

𝑗
, 𝜑
𝑘
,
𝜋

2
)

× (𝜎
𝑖
󸀠
,𝑗
󸀠 + 𝛿
𝑟

𝑖
󸀠
,𝑗
󸀠 (𝑟 − 𝑟

𝑖
󸀠) + 𝛿
𝜃

𝑖
󸀠
,𝑗
󸀠 (𝜃 − 𝜃

𝑗
󸀠)) 𝑟𝑑𝑟 𝑑𝜃

:= Φ
0,𝑝

𝑖,𝑗,𝑘
+ Φ
𝑟

𝑖,𝑗,𝑘
+ Φ
𝜃

𝑖,𝑗,𝑘
,

(26)

where

Φ
0,𝑝

𝑖,𝑗,𝑘

=

𝑀

∑

𝑖
󸀠
=0

𝑀

∑

𝑗
󸀠
=1

𝜎
𝑖
󸀠
,𝑗
󸀠

× ∬
𝑅
𝑖
󸀠
,𝑗
󸀠

𝑟

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃,

Φ
𝑟

𝑖,𝑗,𝑘

=

𝑀

∑

𝑖
󸀠
=0

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑟

𝑖
󸀠
,𝑗
󸀠

× ∬
𝑅
𝑖
󸀠
,𝑗
󸀠

𝑟 (𝑟 − 𝑟
𝑖
󸀠)

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃,

Φ
𝜃

𝑖,𝑗,𝑘

=

𝑀

∑

𝑖
󸀠
=0

𝑀

∑

𝑗
󸀠
=1

𝛿
𝜃

𝑖
󸀠
,𝑗
󸀠

× ∬
𝑅
𝑖
󸀠
,𝑗
󸀠

𝑟 (𝜃 − 𝜃
𝑗
󸀠)

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃.

(27)

Equation (27) can then be rewritten as

Φ
0,𝑝

𝑖,𝑗,𝑘
=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝜎
𝑖
󸀠
,𝑗
󸀠K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
+

𝑀

∑

𝑗
󸀠
=1

𝜎
0,𝑗
󸀠K
0

𝑖,𝑗−𝑗
󸀠
,𝑘
,

Φ
𝑟

𝑖,𝑗,𝑘
= 𝑟
𝑖

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑟

𝑖
󸀠
,𝑗
󸀠K
𝑟

𝑖−𝑖,𝑗−𝑗
󸀠
,𝑘
+ 𝑟
𝑖

𝑀

∑

𝑗
󸀠
=1

𝛿
𝑟

0,𝑗
󸀠K
𝑟

𝑖,𝑗−𝑗
󸀠
,𝑘
,

Φ
𝜃

𝑖,𝑗,𝑘
=

𝑀

∑

𝑖
󸀠
=1

𝑀

∑

𝑗
󸀠
=1

𝛿
𝜃

𝑖
󸀠
,𝑗
󸀠K
𝜃

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
+

𝑀

∑

𝑗
󸀠
=1

𝛿
𝜃

0,𝑗
󸀠K
𝜃

𝑖,𝑗−𝑗
󸀠
,𝑘
.

(28)

Define 𝐹(𝑟, 𝜃, 𝜑) = √1 + 𝑟2 − 2𝑟 cos(𝜃) sin(𝜑), where 𝑟 is
the dimensionless radius. The evaluation of (23), (24), and

(25) can be obtained with the help of the following simple
integrals:

∫
𝑟

√𝑟
2
+ 𝑟2 − 2𝑟𝑟 cos (𝜃) sin (𝜑)

𝑑𝑟

= 𝑟𝐹(
𝑟

𝑟
, 𝜃, 𝜑)

+ 𝑟 cos (𝜃) sin (𝜑) ln(− cos (𝜃) sin (𝜑) +
𝑟

𝑟
+ 𝐹(

𝑟

𝑟
, 𝜃, 𝜑))

+ 𝐶

:= 𝑟𝐻
1
(
𝑟

𝑟
, 𝜃, 𝜑) + 𝐶,

∫
𝑟
2

√𝑟
2
+ 𝑟2 − 2𝑟𝑟 cos (𝜃) sin (𝜑)

𝑑𝑟

= 𝑟
2
(
1

2

𝑟

𝑟
+

3

2
cos (𝜃) sin (𝜑))𝐹(

𝑟

𝑟
, 𝜃, 𝜑)

+ 𝑟
2
(
3

2
cos2 (𝜃) sin2 (𝜑) − 1

2
)

× ln(− cos (𝜃) sin (𝜑) +
𝑟

𝑟
+ 𝐹(

𝑟

𝑟
, 𝜃, 𝜑)) + 𝐶

:= 𝑟
2
𝐻
2
(
𝑟

𝑟
, 𝜃, 𝜑) + 𝐶.

(29)

The definitions of 𝑟
𝑖
󸀠
+1/2

and 𝑟
𝑖
lead to

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖

=
2𝛽
𝑖−𝑖
󸀠

1 + 𝛽
,

𝑟
𝑖
󸀠

𝑟
𝑖

= 𝛽
𝑖−𝑖
󸀠

. (30)

Calculate the value of the integral

K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

= ∫

𝜃
𝑗
󸀠
+1/2

𝜃
𝑗
󸀠
−1/2

∫

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖
󸀠
−1/2

𝑟

√𝑟
2
+ 𝑟
2

𝑖
− 2𝑟𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

𝑑𝑟 𝑑𝜃

= ∫

𝜃
𝑗
󸀠
+1/2

𝜃
𝑗
󸀠
−1/2

𝑟
𝑖
𝐹(

𝑟

𝑟
𝑖

, 𝜃 − 𝜃
𝑗
, 𝜑
𝑘
) + 𝑟
𝑖
cos (𝜃 − 𝜃

𝑗
) sin (𝜑

𝑘
)

× ln( − cos (𝜃) sin (𝜑
𝑘
)

+
𝑟

𝑟
𝑖

+ 𝐹(
𝑟

𝑟
𝑖

, 𝜃 − 𝜃
𝑗
, 𝜑
𝑘
))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖
󸀠
−1/2

𝑑𝜃.

(31)
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The last integral in this equation is an elliptic integral, and this
study uses a trapezoidal rule for its evaluation.This numerical
approach approximates the value K0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
as follows:

K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

≈
1

2
(𝑟
𝑖
𝐻
1
(
𝑟
𝑖
󸀠
+1/2

𝑟
𝑖

, 𝜃
𝑗
󸀠
+1/2

− 𝜃
𝑗
, 𝜑
𝑘
)

− 𝑟
𝑖
𝐻
1
(
𝑟
𝑖
󸀠
−1/2

𝑟
𝑖

, 𝜃
𝑗
󸀠
−1/2

− 𝜃
𝑗
, 𝜑
𝑘
)

+ 𝑟
𝑖
𝐻
1
(
𝑟
𝑖
󸀠
+1/2

𝑟
𝑖

, 𝜃
𝑗
󸀠
−1/2

− 𝜃
𝑗
, 𝜑
𝑘
)

−𝑟
𝑖
𝐻
1
(
𝑟
𝑖
󸀠
−1/2

𝑟
𝑖

, 𝜃
𝑗
󸀠
−1/2

− 𝜃
𝑗
, 𝜑
𝑘
))

× (𝜃
𝑗
󸀠
+1/2

− 𝜃
𝑗
󸀠
−1/2

)

:= 𝑟
𝑖
𝐻
1
(
𝑟

𝑟
𝑖

, 𝜃 − 𝜃
𝑗
, 𝜑
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖
󸀠
−1/2

]

]

𝜃
𝑗
󸀠
+1/2

𝜃
𝑗
󸀠
−1/2

,

(32)

where the notation 𝑓(⋅)]
𝑏

𝑎
= (1/2)(𝑓(𝑏) + 𝑓(𝑎))(𝑏 − 𝑎). Simi-

larly,

K
𝑟

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

≈ 𝑟
2

𝑖
(𝐻
2
(
𝑟

𝑟
𝑖

, 𝜃 − 𝜃
𝑗
, 𝜑
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖
󸀠
−1/2

]

]

𝜃
𝑗
󸀠
+1/2

𝜃
𝑗
󸀠
−1/2

−
𝑟
𝑖
󸀠

𝑟
𝑖

K
0

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘
),

K
𝜃

𝑖−𝑖
󸀠
,𝑗−𝑗
󸀠
,𝑘

≈ (𝜃 − 𝜃
𝑗
) 𝑟
𝑖
𝐻
1
(
𝑟

𝑟
𝑖

, 𝜃 − 𝜃
𝑗
, 𝜑
𝑘
)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑟
𝑖
󸀠
+1/2

𝑟
𝑖
󸀠
−1/2

]

]

𝜃
𝑗
󸀠
+1/2

𝜃
𝑗
󸀠
−1/2

.

(33)

3. Convergence Results

Let us denote |𝐴| as the area of the region 𝐴 in R2 and dis-
cuss the convergence of the proposed method. The integrals
of K(𝑥, 𝑦, 0) over a region 𝑅 = {(𝑥, 𝑦) : √𝑥2 + 𝑦2 ≤ 𝑎} and
𝐷 = {(𝑥, 𝑦) : −𝑎 ≤ 𝑥 ≤ 𝑎, −𝑎 ≤ 𝑦 ≤ 𝑎}, for some constant 𝑎,
are

∬
𝑅

K (𝑥, 𝑦, 0) 𝑑𝑥 𝑑𝑦 =
1

2
𝑎 =

1

2

√
|𝑅|

𝜋
= 𝐶√|𝑅|, (34)

∬
𝐷

K (𝑥, 𝑦, 0) 𝑑𝑥 𝑑𝑦

= 𝑦 ln(𝑥 + √𝑥2 + 𝑦2) + 𝑥 ln (𝑦 + √𝑥2 + 𝑦2)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎

−𝑎

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑎

−𝑎

= 4𝑎 ln (3 + 2√2) = 𝐶√|𝐷|,

(35)

where 𝐶 is a constant. Furthermore, if 𝐷 = 𝑅 = R2, then this
integral is ∞.

Lemma 1. If two compact disk densities 𝜎
1
and 𝜎

2
satisfy

|𝜎
1
(𝑥, 𝑦) − 𝜎

2
(𝑥, 𝑦)| < ℎ then their corresponding potentials

Φ
1
and Φ

2
, respectively, satisfy

󵄨󵄨󵄨󵄨Φ1 (𝑥, 𝑦) − Φ
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨 ≤ 𝐶ℎ, (36)

where 𝐶 is a positive constant and depends on the supports
of 𝜎
1
and 𝜎

2
.

Proof. Let the supports of 𝜎
1
and 𝜎

2
be contained in a finite

region 𝐷. Following (5) and (35), it yields that

󵄨󵄨󵄨󵄨Φ1 (𝑥, 𝑦) − Φ
2
(𝑥, 𝑦)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
∬
𝐷

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0) (𝜎
1
(𝑥, 𝑦) − 𝜎

2
(𝑥, 𝑦)) 𝑑𝑥 𝑑𝑦

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ ∬
𝐷

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0)
󵄨󵄨󵄨󵄨(𝜎1 (𝑥, 𝑦) − 𝜎

2
(𝑥, 𝑦))

󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

≤ 𝐶ℎ.

(37)

Since |𝐷| is finite and the lemma is obtained.

The order of accuracy between analytic and numerical
solutions can be observed from the truncated errors of the
disk surface 𝜎(𝑥, 𝑦) and truncated density 𝜎

𝑛
(𝑥, 𝑦),

󵄨󵄨󵄨󵄨𝜎𝑛 (𝑥, 𝑦) − 𝜎 (𝑥, 𝑦)
󵄨󵄨󵄨󵄨 ≤ 𝐶(Δ𝑥)

𝑠
. (38)

The potential calculated numerically is denoted
by Φ
𝑛
and the analytic solution is Φ. We estimate

󵄨󵄨󵄨󵄨Φ𝑛 (𝑥, 𝑦) − Φ (𝑥, 𝑦)
󵄨󵄨󵄨󵄨

≤

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

∬
𝐷
𝑖,𝑗

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0)

×
󵄨󵄨󵄨󵄨(𝜎1 (𝑥, 𝑦) − 𝜎

2
(𝑥, 𝑦))

󵄨󵄨󵄨󵄨 𝑑𝑥 𝑑𝑦

≤ 𝐶(Δ𝑥)
2

𝑀

∑

𝑖=1

𝑀

∑

𝑗=1

∬
𝐷
𝑖,𝑗

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0) 𝑑𝑥 𝑑𝑦

≤ 𝐶(Δ𝑥)
𝑠
∬
𝐷

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0) 𝑑𝑥 𝑑𝑦

≤ 𝐶(Δ𝑥)
𝑠
.

(39)

We deduce the following theorem by aforementioned
argument and Lemma 1.

Theorem 2. If the truncated errors of the Taylor series of the
disk surface density 𝜎(𝑥, 𝑦) are 𝑂(ℎ

𝑠
), where ℎ is the mesh

size in one dimension and 𝑠 > 0, then the errors between the
numerical and analytic potential also are 𝑂(ℎ

𝑠
).
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Figure 1: A simulation of the 𝐷
2
(up row) and 𝐷

2,2
(down row) disks for 𝑁 = 512. The profiles are surface density (left), the potential on

the plane 𝑧 = 0 (middle), and the residual between analytic and numerical solutions in natural common logarithm, respectively.

4. Numerical Results

This study verifies that the proposed method achieved is of
second-order accuracy through the following two examples:
a 𝐷
2
disk [9] and a nonaxisymmetric disk 𝐷

2,2
consisting

of two superposed 𝐷
2
disks. The 𝐷

2
disk has the surface

density

Σ
𝐷
2

(𝑅; 𝛼) =
{

{

{

𝜎
0
(1 −

𝑅

𝛼2
)

3/2

for𝑅 < 𝛼,

0 for𝑅 > 𝛼,

(40)

where 𝑅 = √𝑥2 + 𝑦2 and 𝛼 is a given constant. The corre-
sponding potential is

Φ
𝐷
2

(𝑅, 𝑧; 𝛼)

= −
𝜋𝜎
0
𝐺

64𝛼3
[6 (8𝛼

4
− 8𝛼
2
𝑅
2
+ 16𝛼

2
𝑧
2

+3𝑅
4
− 24𝑅

2
𝑧
2
+ 8𝑧
4
) sin−1 (

𝑓
1
− 𝑓
2

2𝑅
)

+ √2𝛼 (18𝛼
2
− 9𝑅
2
+ 26𝑧

2
)√𝑓
1
𝑓
2
− 𝑓
3

−√2 |𝑧| (58𝛼
2
− 55𝑅

2
+ 50𝑧

2
)√𝑓
1
𝑓
2
+ 𝑓
3
] ,

(41)

where

𝑓
1
= √𝑧2 + (𝑅 + 𝛼)

2
, 𝑓

2
= √𝑧2 + (𝑅 − 𝛼)

2
,

𝑓
3
= 𝛼
2
− 𝑅
2
− 𝑧
2
.

(42)

4.1. Order of Accuracy. This study investigates the order of
accuracy of the proposed method in norms 𝐿

1, 𝐿2, and
𝐿
∞ to demonstrate the convergence in total variation,

energy, and pointwise senses, respectively. These norms for
a function 𝑓 on a domain Ω are defined as

󵄩󵄩󵄩󵄩𝑓
󵄩󵄩󵄩󵄩𝑝

= (∫
Ω

󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨
𝑝

𝑑x)
1/𝑝

,

for 𝑝 = 1, 2,
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩∞
= ess
Ω
sup 󵄨󵄨󵄨󵄨𝑓 (x)󵄨󵄨󵄨󵄨 .

(43)

Without loss of generality for studying the order of accuracy,
set the computational domain Ω = [−1, 1] × [−1, 1], and
𝜎
0

= 𝐺 = 1. Set 𝛼 = 0.25 for a 𝐷
2
disk simulation and

𝛼 = 0.4 for a 𝐷
2,2

disk simulation, where Σ
𝐷
2,2

=

Σ
𝐷
2

(𝑅
1
; 𝛼) + Σ

𝐷
2

(𝑅
2
; 𝛼) with 𝑅

1
= √(𝑥 − 0.2)

2
+ 𝑦2 and

𝑅
2

= √(𝑥 + 0.2)
2
+ 𝑦2. Figure 1 presents the profiles of the

surface density, the potential on 𝑧 = 0 plane and the residual
between analytic and numerical solutions for 𝑁 = 512. In
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Table 1:The errors and order accuracy of the proposed method on Cartesian coordinates for various number of zones,𝑁 = 2
𝑘 from 𝑘 = 5 to

9 for the𝐷
2
(up table) and𝐷

2,2
(down table) disks. This table shows that the accuracy is nearly second order.

𝑁
𝑘

𝐸
1

𝐸
2

𝐸
∞

𝑁
𝑘−1

/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 5.617𝐸 − 3 5.836𝐸 − 3 1.309𝐸 − 2

64 1.573𝐸 − 3 1.555𝐸 − 3 3.435𝐸 − 3 32/64 1.836 1.908 1.930
128 3.990𝐸 − 4 4.022𝐸 − 4 8.841𝐸 − 4 64/128 1.979 1.951 1.958
256 1.025𝐸 − 4 1.023𝐸 − 4 2.322𝐸 − 4 128/256 1.961 1.975 1.928
512 2.584𝐸 − 5 2.578𝐸 − 5 5.614𝐸 − 5 256/512 1.988 1.988 2.048
𝑁
𝑘

𝐸
1

𝐸
2

𝐸
∞

𝑁
𝑘−1

/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 8.008𝐸 − 3 7.331𝐸 − 3 1.822𝐸 − 2

64 2.129𝐸 − 3 2.046𝐸 − 3 5.179𝐸 − 3 32/64 1.911 1.841 1.815
128 5.344𝐸 − 4 5.415𝐸 − 4 1.374𝐸 − 3 64/128 1.994 1.918 1.914
256 1.396𝐸 − 4 1.374𝐸 − 4 3.468𝐸 − 4 128/256 1.937 1.979 1.986
512 3.516𝐸 − 5 3.462𝐸 − 5 8.734𝐸 − 5 256/512 1.989 1.989 1.989
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Figure 2: The numerical solutions of the 𝐷
2
disk for 𝑁 = 512 to investigate the calculation of potentials in polar coordinates. From left to

right, the profiles are surface density, the potential on the plane 𝑧 = 0, and the difference between analytic and numerical solutions in natural
common logarithm, respectively.

Table 1, column 𝐸
𝑝 represents the error between the analytic

and numerical solutions in 𝑝-norm, 𝑝 = 1, 2, and ∞.
Column 𝑂

𝑝 in Table 1 represents the order of accuracy as
measured by log

2
(𝐸
𝑝
(2
𝑘−1

)/𝐸
𝑝
(2
𝑘
)) for 𝑘 = 6 to 9 and sim-

ilarly for 𝑂
𝑝. These errors show that the proposed method

achieves nearly second-order accuracy. More precisely, the
order of convergence is approximately 1.9 or 2.0.

Continue to use the 𝐷
2
disk as an example and a unit

disk 𝐷(0, 1) = Ω = [0, 1] × [0, 2𝜋] as the computational
domain to investigate the potential in polar coordinates. Set
the value 𝛽

0
= 0.99. Figure 2 presents the profiles of the sur-

face density, potential, and the difference between analytic
and numerical solutions for 𝑁 = 512. According to Table 2,
the order of accuracy is only approximately 1. Although the
surface density at the origin is smooth, the singular elliptic
integral introduces significant error there.

4.2. A Comparison Study. Start with

Φ(𝑥, 𝑦, 0)

= −𝐺∬K (𝑥 − 𝑥, 𝑦 − 𝑦, 0) 𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦

= −𝐺

𝑁

∑

𝑖=1

𝑁

∑

𝑗=1

∬
𝐷
𝑖,𝑗

K (𝑥 − 𝑥, 𝑦 − 𝑦, 0) 𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

(44)

And introduce a softening parameter 𝜖 to approximate

∬
𝐷
𝑖,𝑗

K (𝑥 − 𝑥, 𝑦 − 𝑦) 𝜎 (𝑥, 𝑦)

≈ −
𝐺

√𝜖2 + (𝑥
𝑖
󸀠 − 𝑥
𝑖
)
2

+ (𝑦
𝑗
󸀠 − 𝑦
𝑗
)
2

∬
𝐷
𝑖,𝑗

𝜎 (𝑥, 𝑦) 𝑑𝑥 𝑑𝑦.

(45)

For polar coordinates [1], the value ofKcan be approximated
by

K
𝑖
󸀠
−𝑖,𝑗
󸀠
−𝑗

:= −
𝐺

√2 (cosh (𝑢
𝑖
󸀠 − 𝑢
𝑖
) − cos (𝜃

𝑗
󸀠 − 𝜃
𝑗
))

, (46)

where 𝑢
𝑖
󸀠 = ln(𝑥

𝑖
󸀠) and 𝑢

𝑖
= ln(𝑥

𝑖
). Note that when (𝑖

󸀠
, 𝑗
󸀠
) =

(𝑖, 𝑗), K is undefined. Previous research has presented a way
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Table 2: The errors and order accuracy of the proposed method on polar coordinates for various number of zones, 𝑁 = 2
𝑘 from 𝑘 = 5 to 9

for the𝐷
2
disk. This table shows that the accuracy is only first order.

𝑁
𝑘

𝐸
1

𝐸
2

𝐸
∞

𝑁
𝑘−1

/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 4.43𝐸 − 2 3.62𝐸 − 2 5.25𝐸 − 2

64 1.38𝐸 − 2 1.47𝐸 − 2 2.33𝐸 − 2 32/64 1.68 1.30 1.17
128 5.89𝐸 − 3 7.00𝐸 − 3 1.13𝐸 − 2 64/128 1.23 1.07 1.04
256 2.77𝐸 − 3 3.42𝐸 − 3 5.58𝐸 − 3 128/256 1.08 1.03 1.02
512 1.48𝐸 − 3 1.68𝐸 − 4 2.76𝐸 − 3 256/512 0.90 1.03 1.02

Table 3: The top (bottom) table demonstrates the errors and order accuracy of the𝑁-body simulations in Cartesian coordinates for various
number of zones,𝑁 = 2

𝑘 from 𝑘 = 5 to 9 for the𝐷
2
(𝐷
2,2
) disk. This table shows that the accuracy is only first order.

𝑁
𝑘

𝐸
1

𝐸
2

𝐿
∞

𝑁
𝑘−1

/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 1.199𝐸 − 1 1.532𝐸 − 1 3.362𝐸 − 1

64 6.069𝐸 − 2 8.141𝐸 − 2 1.818𝐸 − 1 32/64 0.9823 0.9121 0.8870
128 3.058𝐸 − 2 4.203𝐸 − 2 9.446𝐸 − 1 64/128 0.9889 0.9538 0.9446
256 1.535𝐸 − 2 2.136𝐸 − 2 4.813𝐸 − 1 128/256 0.9943 0.9765 0.9728
512 7.687𝐸 − 2 1.077𝐸 − 2 2.429𝐸 − 2 256/512 0.9977 0.9879 0.9866
𝑁
𝑘

𝐸
1

𝐸
2

𝐿
∞

𝑁
𝑘−1

/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 1.522𝐸 − 1 1.904𝐸 − 1 4.227𝐸 − 1

64 7.762𝐸 − 2 1.016𝐸 − 1 2.326𝐸 − 1 32/64 0.9714 0.9065 0.8617
128 3.916𝐸 − 2 5.252𝐸 − 2 1.218𝐸 − 1 64/128 0.9871 0.9514 0.9333
256 1.964𝐸 − 2 2.671𝐸 − 2 6.228𝐸 − 2 128/256 0.9949 0.9756 0.9676
512 9.839𝐸 − 3 1.347𝐸 − 2 3.149𝐸 − 2 256/512 0.9973 0.9875 0.9839

to avoid the singularity problem [1]. However, the proposed
method avoids the singularity problem by directly evaluating
the forces, thereby increasing the order of accuracy.

This study compares the proposed method with the 𝑁-
body method using the simulations of the 𝐷

2
and 𝐷

2,2
disks

in the previous section. For Cartesian coordinates, choose
the softening parameters as the mesh size 𝜖 = Δ𝑥.
Table 3 shows the errors for the disks 𝐷

2
and 𝐷

2,2
that

the accuracy when using the softening parameter approach
for the 𝐷

2
and 𝐷

2,2
disks is of first order. This comparison

confirms that the proposed method is more accurate and has
a higher order of accuracy.

This study calculates potentials on a disk of surface den-
sity with as few restrictions as possible. Alternatively, it is
possible to solve the reduced equation given by

Φ(𝑥, 𝑦, 0) = −𝐺∬
𝜎 (𝑥, 𝑦)

√(𝑥 − 𝑥)
2
+ (𝑦 − 𝑦)

2

𝑑𝑥 𝑑𝑦 (47)

or

Φ (𝑟, 𝜃, 0) = −𝐺∬

𝜎(𝑟, 𝜃)

√𝑟
2
+ 𝑟2 − 2𝑟𝑟 cos (𝜃 − 𝜃)

𝑟𝑑𝑟 𝑑𝜃.

(48)

The approach in [17] transforms the polar coordinate (𝑟,

𝜃) into the coordinate (𝑢, 𝜃) by setting 𝑟 = 𝑒
𝑢 or 𝑢 = ln(𝑟).

The potential-density pair in terms of the reduced surface
density and reduced potential is given in [17], and it is

𝑒
3𝑢/2

𝜎 (𝑒
𝑢
, 𝜃) =

1

4𝜋2
∑

𝑚

∫

∞

−∞

𝐴
𝑚
(𝛼) 𝑒
𝑖(𝑚𝜃+𝛼𝑢)

𝑑𝛼, (49)

𝑒
𝑢/2

Φ(𝑒
𝑢
, 𝜃)

= −
1

2𝜋
𝐺∑

𝑚

∫

∞

−∞

𝐾 (𝛼,𝑚)𝐴
𝑚
(𝛼) exp [𝑖 (𝑚𝜃 + 𝛼𝑢)] 𝑑𝛼,

(50)

where 𝐾 is real and positive and is defined as

𝐾 (𝛼,𝑚) ≡
1

2

Γ [(𝑚 + 1/2 + 𝑖𝛼) /2] Γ [(𝑚 + 1/2 − 𝑖𝛼) /2]

Γ [(𝑚 + 3/2 + 𝑖𝛼) /2] Γ [(𝑚 + 3/2 − 𝑖𝛼) /2]
.

(51)

The bounded unit disk 𝐷(0, 1) = [0, 1]×[0, 2𝜋] can be trans-
formed to the unbounded domain 𝑈 = (−∞, 0] × [0, 2𝜋]

and apply this method to the 𝐷
2
disk using the polar coordi-

nates. In this special case, compute 𝑚 = 0 and truncate

𝐴
0
(𝛼) = ∫

0

−∞

𝑒
3𝑢/2

𝜎 (𝑒
𝑢
) 𝑒
−𝑖𝛼𝑢

𝑑𝑢

≈ ∫

0

𝑢min

𝑒
3𝑢/2

𝜎 (𝑒
𝑢
) 𝑒
−𝑖𝛼𝑢

𝑑𝑢,

(52)
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Figure 3: The variation of the potential with respect to radius using the Kalnajs method (a) and the proposed method (b). The residuals
appear in the small window in each panel and show that the Kalnajs method produces significant errors near the origin, which are eliminated
by the proposed method.

Table 4: The errors of the potential on the 𝑧-axis and order accuracy of the proposed method on Cartesian coordinates for various zones,
𝑁 = 2

𝑘 from 𝑘 = 5 to 9 for the𝐷
2
disk. This table shows that the accuracy is nearly second order.

𝑁
𝑘

𝐸
1
(𝑧) 𝐸

2
(𝑧) 𝐸

∞
(𝑧) 𝑁

𝑘−1
/𝑁
𝑘

𝑂
1

𝑂
2

𝑂
∞

32 1.175𝐸 − 2 1.129𝐸 − 2 1.518𝐸 − 2

64 2.998𝐸 − 3 3.093𝐸 − 3 5.230𝐸 − 3 32/64 1.971 1.868 1.537
128 7.672𝐸 − 4 7.963𝐸 − 4 1.541𝐸 − 4 64/128 1.966 1.958 1.958
256 1.910𝐸 − 4 2.000𝐸 − 4 4.171𝐸 − 4 128/256 2.006 1.993 1.993
512 4.775𝐸 − 5 5.006𝐸 − 5 1.085𝐸 − 4 256/512 2.000 1.988 1.998

where the value 𝑢min is to approximately −∞. The trun-
cation process produces a hole in the unit disk and can
introduce significant errors at the origin. Given a positive
integer 𝑁 and based on the discretization for the radial
region in the previous subsection, calculate (52) and (50)
using the trapzoidal rule. Figure 3 shows the variation of
the potential with respect to radius. The profile on the left
panel shows that the numerical and analytic solutions for the
Kalnajs method agree well except for those close to the origin
of 𝑁 = 512. The small window embedded within the panel
zooms in on the residuals between the numerical and ana-
lytic solutions to the interval [0, 0.3]. The truncated portion
contributes to significant errors near the origin. In contrast,
the application of the proposed method to the calculation
of potentials leads to the results shown in the right panel of
Figure 3. Although the singular integration remains because
of the unbounded domain, the proposedmethod is preferable
for both Cartesian and polar coordinates because a hole near
the origin is not introduced.

4.3. Potentials on 𝑧-Axis. Although this study concentrates
on the calculation of potentials for a disk, the proposed
method can also calculate the forces on the whole space com-
pared with [18]. The simulation of Example 1 in Section 4.1
shows that the order of accuracy for the 𝑧-axis is of nearly
second order (see Table 4), and Figure 4 shows the profiles,
the potential on 𝑧-axis and the residual between analytic and
numerical solutions.

5. Conclusion

This study presents an improved method of the 𝑁-body
calculation for solving Poisson equation induced by a disk
of surface density. The proposed method does not require
artificial boundary conditions and it also does not require a
softening length parameter and the computational complex-
ity is 𝑂(𝑁

2
(log
2
(𝑁)
2
)), which is the same order as the 𝑁-

body method. The proposed method also achieves second-
order accuracy.
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Figure 4: The simulation of a 𝐷
2
disk for 𝑁 = 512. The profiles are the potential on 𝑧-axis (a) and the residuals between analytic and

numerical solutions (b) in natural common logarithm.
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