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The modified generalized Laguerre-Gauss collocation (MGLC) method is applied to obtain an approximate solution of fractional
neutral functional-differential equations with proportional delays on the half-line. The proposed technique is based on modified
generalized Laguerre polynomials and Gauss quadrature integration of such polynomials. The main advantage of the present
method is to reduce the solution of fractional neutral functional-differential equations into a system of algebraic equations.
Reasonable numerical results are achieved by choosing few modified generalized Laguerre-Gauss collocation points. Numerical
results demonstrate the accuracy, efficiency, and versatility of the proposed method on the half-line.

1. Introduction

The fractional calculus which means the calculus of deriva-
tives and integral of any order started to be used as a powerful
tool in various disciplines from science and engineering [1,
2]. The models involving fractional derivatives and integrals
have memory; therefore it has proven to be very suitable for
the description of memory and hereditary properties of vari-
ous processes [3–11]. Interested readers can also see [12–21].

Neutral functional-differential equations play an impor-
tant role in the mathematical modeling of several phenom-
ena. It is well known that most of delay differential equations
cannot be solved exactly. Therefore, numerical methods
would be presented and developed to get approximate solu-
tions of these equations. The rational approximation scheme
has been proposed by Ishiwata andMuroya [22], for approxi-
mating the solution of delay differential equations. Moreover,
the authors of [23] investigated the variational iteration
method to find a closed form analytical solution of a class
of the neutral functional-differential equations. Recently,

the authors of [24] proposed the Chebyshev cardinal func-
tions in combination of operational matrices for numerical
solution of delay differential equations which arise in elec-
trodynamics. Very recently, Tohidi et al. [25] proposed and
developed an efficient collocation method which depends on
Bernoulli operational matrix for numerical solution of a class
of delay differential equations. Meanwhile, Doha et al. [26]
proposed an accurate approximate solution of generalized
pantograph equations on the half-line using Jacobi rational-
Gauss collocation method. In this paper we propose an
approximate solution of a class of delay differential equations,
namely, fractional neutral functional-differential equations
(FNFDEs) with proportional delay.

In the last decade or so, comprehensive research has been
accomplished on the development of numerical algorithms
which are numerically stable for both linear and nonlinear
FDEs. Tripathi et al. [27] presented a new operational matrix
of hat functions to solve linear FDEs.The spectral taumethod
was proposed in [28] to achieve an accurate solution of linear
and nonlinear FDEs subject tomultipoint conditions. In [29],
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Ma and Huang developed spectral collocation method for
solving linear fractional integrodifferential equations. Yang
and Huang [30] analyzed and developed the Jacobi col-
location scheme for pantograph integrodifferential equa-
tions with fractional orders in finite interval. In [31], Yin
et al. proposed a new fractional-order Legendre function
with spectral method to solve partial FDEs; based on the
operational matrix of these functions, the same authors
developed their approach in combination with variational
iteration formula to solve a class of FDEs; see [32]. More
recently, the Jacobi Galerkin method was extended in [33]
to solve stochastic FDEs, for fractional differential equations
in unbounded domains. The operation matrices of fractional
derivatives and fractional integrals of generalized Laguerre
polynomials were investigated for solving multiterm FDEs
on a semi-infinite interval; see [11, 12]. The generalized
Laguerre spectral tau and collocation techniques were given
in [12] to solve linear and nonlinear FDEs on the half- line.
These spectral techniques were developed and generalized
by using the modified generalized Laguerre polynomials in
[34–36].

Our fundamental goal of this paper is to develop a
suitable way to approximate the neutral fractional functional-
differential equationswith proportional delays on the interval
(0,∞) using the modified generalized Laguerre polynomials;
we propose the spectral modified generalized Laguerre-
Gauss collocation (MGLC) method to find the solution
𝑢
𝑁
(𝑥). The modified generalized Laguerre spectral collo-

cation (MGLC) approximation, which is more reliable, is
employed to obtain approximate solution of neutral frac-
tional functional-differential equations with proportional
delays of order ] (𝑚 − 1 < ] < 𝑚) and 𝑚 initial conditions.
For suitable collocation points we use the (𝑁 − 𝑚 + 1) nodes
of the modified generalized Laguerre-Gauss interpolation on
(0,∞). These equations together with initial conditions gen-
erate (𝑁+1) algebraic equations which can be solved. Finally,
the accuracy of the proposedmethods is demonstrated by test
problems; numerical results are presented in which the usual
exponential convergence behavior of spectral approximations
is exhibited.

This paper is organized as follows. In Section 2 we give an
overview of modified generalized Laguerre polynomials and
their relevant properties needed hereafter, and in Section 3,
the way of constructing the collocation technique for neutral
fractional functional-differential equationswith proportional
delays is described using the modified generalized Laguerre
polynomials. In Section 4, we present some numerical results
exhibiting the accuracy and efficiency of our numerical
algorithms.The last section offers some obtained conclusions.

2. Some Basic Preliminaries

We give some definitions and properties of fractional deriva-
tives and modified generalized Laguerre polynomials.

2.1. The Fractional Derivative in the Caputo Sense. The two
most commonly used definitions are the Riemann-Liouville
operator and the Caputo operator.

Definition 1. TheRiemann-Liouville fractional integral oper-
ator of order ] (] > 0) is defined as

𝐽
]
𝑓 (𝑥) =

1

Γ (])
∫
𝑥

0

(𝑥 − 𝑡)
]−1
𝑓 (𝑡) 𝑑𝑡, ] > 0, 𝑥 > 0,

𝐽
0
𝑓 (𝑥) = 𝑓 (𝑥) .

(1)

Definition 2. The Caputo fractional derivatives of order ] are
defined as

𝐷
]
𝑓 (𝑥) = 𝐽

𝑚−]
𝐷
𝑚
𝑓 (𝑥)

=
1

Γ (𝑚 − ])
∫
𝑥

0

(𝑥 − 𝑡)
𝑚−]−1 𝑑

𝑚

𝑑𝑡𝑚
𝑓 (𝑡) 𝑑𝑡,

𝑚 − 1 < ] < 𝑚, 𝑥 > 0,

(2)

where𝐷𝑚 is the classical differential operator of order𝑚.

For the Caputo derivative we have

𝐷
]
𝐶 = 0, (𝐶 is a constant) , (3)

𝐷
]
𝑥
𝛽
=

{{{{

{{{{

{

0, for 𝛽 ∈ 𝑁
0
and 𝛽 < ⌈]⌉ ,

Γ (𝛽 + 1)

Γ (𝛽 + 1 − ])
𝑥𝛽−], for 𝛽 ∈ 𝑁

0
and 𝛽 ≥ ⌈]⌉

or 𝛽 ∉ 𝑁 and 𝛽 > ⌊]⌋ ,
(4)

where ⌈]⌉ and ⌊]⌋ are the ceiling and floor functions,
respectively, while𝑁 = {1, 2, . . .} and𝑁

0
= {0, 1, 2, . . .}.

Caputo’s fractional differentiation is a linear operation,
similar to the integer-order differentiation

𝐷
]
(𝜆𝑓 (𝑥) + 𝜇𝑔 (𝑥)) = 𝜆𝐷

]
𝑓 (𝑥) + 𝜇𝐷

]
𝑔 (𝑥) , (5)

where 𝜆 and 𝜇 are constants.

2.2. Properties of Modified Generalized Laguerre Polynomials.
Let Λ = (0,∞) and let 𝑤(𝛼,𝛽)(𝑥) = 𝑥𝛼𝑒−𝛽𝑥 be a weight
function on Λ in the usual sense. Define

𝐿
2

𝑤
(𝛼,𝛽) (Λ) = {V | V is measurable on Λ and ‖V‖

𝑤
(𝛼,𝛽) < ∞} ,

(6)

equipped with the following inner product and norm:

(𝑢, V)
𝑤
(𝛼,𝛽) = ∫

Λ

𝑢 (𝑥) V (𝑥) 𝑤(𝛼,𝛽) (𝑥) 𝑑𝑥,

‖V‖
𝑤
(𝛼,𝛽) = (𝑢, V)1/2

𝑤
(𝛼,𝛽) .

(7)

Next, let 𝐿(𝛼,𝛽)
𝑖

(𝑥) be the modified generalized Laguerre
polynomial of degree 𝑖 for 𝛼 > −1 and 𝛽 > 0 is defined by

𝐿
(𝛼,𝛽)

𝑖
(𝑥) =

1

𝑖
𝑥
−𝛼
𝑒
𝛽𝑥
𝜕
𝑖

𝑥
(𝑥
𝑖+𝛼
𝑒
−𝛽𝑥
) , 𝑖 = 1, 2, . . . . (8)
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Moreover, for 𝛼 > −1 and 𝛽 > 0, we have

𝜕
𝑥
𝐿
(𝛼,𝛽)

𝑖
(𝑥) = − 𝛽𝐿

(𝛼+1,𝛽)

𝑖−1
(𝑥) ,

𝐿
(𝛼,𝛽)

𝑖+1
(𝑥) =

1

𝑖 + 1
[(2𝑖 + 𝛼 + 1 − 𝛽𝑥) 𝐿

(𝛼,𝛽)

𝑖
(𝑥)

− (𝑖 + 𝛼) 𝐿
(𝛼,𝛽)

𝑖−1
(𝑥)] , 𝑖 = 1, 2, . . . ,

(9)

where 𝐿(𝛼,𝛽)
0

(𝑥) = 1 and 𝐿(𝛼,𝛽)
1

(𝑥) = −𝛽𝑥 + Γ(𝛼 + 2)/Γ(𝛼 + 1).
The set of modified generalized Laguerre polynomials is

the 𝐿2
𝑤
(𝛼,𝛽)(Λ)-orthogonal system; namely,

∫
∞

0

𝐿
(𝛼,𝛽)

𝑗
(𝑥) 𝐿
(𝛼,𝛽)

𝑘
(𝑥) 𝑤
(𝛼,𝛽)

(𝑥) 𝑑𝑥 = ℎ𝑘𝛿𝑗𝑘, (10)

where 𝛿
𝑗𝑘

is the Kronecker function and ℎ
𝑘
= Γ(𝑘 + 𝛼 +

1)/𝛽𝛼+1𝑘!.
Themodified generalized Laguerre polynomials of degree

𝑖 on the interval Λ are given by

𝐿
(𝛼,𝛽)

𝑖
(𝑥) =

𝑖

∑
𝑘=0

(−1)
𝑘 Γ (𝑖 + 𝛼 + 1) 𝛽

𝑘

Γ (𝑘 + 𝛼 + 1) (𝑖 − 𝑘)!𝑘!
𝑥
𝑘
,

𝑖 = 0, 1, . . . ,

(11)

where 𝐿(𝛼,𝛽)i (0) = Γ(𝑖 + 𝛼 + 1)/Γ(𝛼 + 1)Γ(𝑖 + 1).
The special value

𝐷
𝑞
𝐿
(𝛼,𝛽)

𝑖
(0) =

(−1)
𝑞
𝛽𝑞Γ (𝑖 + 𝛼 + 1)

(𝑖 − 𝑞)!Γ (𝑞 + 𝛼 + 1)
, 𝑖 ⩾ 𝑞, (12)

will be of important use later.
Since the analytic form of the modified generalized

Laguerre polynomials 𝐿(𝛼,𝛽)
𝑖

(𝑥) of degree 𝑖 is given by (11), by
using (4), (5), and (11) we get

𝐷
]
𝐿
(𝛼,𝛽)

𝑖
(𝑥)

=

𝑖

∑
𝑘=0

(−1)
𝑘 𝛽𝑘Γ (𝑖 + 𝛼 + 1)

(𝑖 − 𝑘)!𝑘!Γ (𝑘 + 𝛼 + 1)
𝐷

]
𝑥
𝑘

=

𝑖

∑
𝑘=⌈]⌉

(−1)
𝑘 𝛽𝑘Γ (𝑖 + 𝛼 + 1)

(𝑖 − 𝑘)!Γ (𝑘 − ] + 1) Γ (𝑘 + 𝛼 + 1)
𝑥
𝑘−]
,

𝑖 = ⌈]⌉ , . . . , 𝑁.

(13)

Now, approximating 𝑥𝑘−] by 𝑁 + 1 terms of modified
generalized Laguerre series, we have

𝑥
𝑘−]

=

𝑁

∑
𝑗=0

𝑏
𝑗
𝐿
(𝛼,𝛽)

𝑗
(𝑥) , (14)

where 𝑏
𝑗
is given from (18) with 𝑢(𝑥) = 𝑥𝑘−], and

𝑏
𝑗
=

𝑗

∑
ℓ=0

(−1)
ℓ𝛽
−𝑘+]𝑗!Γ (𝑘 − ] + 𝛼 + ℓ + 1)
(𝑗 − ℓ)! (ℓ)!Γ (ℓ + 𝛼 + 1)

. (15)

Employing (13)–(15) we get

𝐷
]
𝐿
(𝛼,𝛽)

𝑖
(𝑥) =

𝑁

∑
𝑗=0

Ψ] (𝑖, 𝑗) 𝐿
(𝛼,𝛽)

𝑗
(𝑥) , 𝑖 = ⌈]⌉ , . . . , 𝑁, (16)

where Ψ](𝑖, 𝑗) = ∑
𝑖

𝑘=⌈]⌉ 𝜃𝑖𝑗𝑘, and

𝜃
𝑖𝑗𝑘
=

𝑗

∑
ℓ=0

((−1)
𝑘+ℓ
𝛽
]
𝑗!Γ (𝑖 + 𝛼 + 1) Γ (𝑘 − ] + 𝛼 + ℓ + 1))

× ((𝑖 − 𝑘)! (𝑗 − ℓ)!ℓ!Γ (𝑘 − ] + 1)

× Γ (𝑘 + 𝛼 + 1) Γ (𝛼 + ℓ + 1) )
−1
.

(17)

A function 𝑢(𝑥) ∈ 𝐿2
𝑤
(𝛼,𝛽)(Λ) may be expressed in terms

of modified generalized Laguerre polynomials as

𝑢 (𝑥) =

∞

∑
𝑗=0

𝑎
𝑗
𝐿
(𝛼,𝛽)

𝑗
(𝑥) , 𝑎𝑗

=
1

ℎ
𝑘

∫
∞

0

𝑢 (𝑥) 𝐿
(𝛼,𝛽)

𝑗
(𝑥) 𝑤
(𝛼,𝛽)

(𝑥) 𝑑𝑥,

𝑗 = 0, 1, 2, . . . .

(18)

In practice, only the first (𝑁+1) terms ofmodified generalized
Laguerre polynomials are considered. Then we have

𝑢
𝑁 (𝑥) =

𝑁

∑
𝑗=0

𝑎
𝑗
𝐿
(𝛼,𝛽)

𝑗
(𝑥) = 𝐶

𝑇
𝜙 (𝑥) . (19)

2.3. Modified Generalized Laguerre-Gauss and Gauss-Radau
Quadratures. Let 𝜉(𝛼,𝛽)

𝐺,𝑖,𝑗
and 𝜉(𝛼,𝛽)
𝑅,𝑖,𝑗

, 0 ≤ 𝑗 ≤ 𝑖, be the zeros of
𝐿
(𝛼,𝛽)

𝑖+1
(𝑥) and 𝑥𝜕

𝑥
𝐿
(𝛼,𝛽)

𝑖+1
(𝑥), respectively. They are arranged in

ascending order. Denote by 𝜔(𝛼,𝛽)
𝑍,𝑖,𝑗

, (0 ≤ 𝑗 ≤ 𝑖), 𝑍 = 𝐺, 𝑅, the
corresponding Christoffel numbers such that

∫
Λ

𝜙 (𝑥)𝑤
(𝛼,𝛽)

(𝑥) 𝑑𝑥 =

𝑖

∑
𝑗=0

𝜙 (𝜉
(𝛼,𝛽)

𝑍,𝑖,𝑗
) 𝜔
(𝛼,𝛽)

𝑍,𝑖,𝑗
, (20)

where

𝜔
(𝛼,𝛽)

𝐺,𝑖,𝑗
=
Γ (𝑖 + 𝛼 + 2)

𝛽𝛼Γ (𝑖 + 2)

1

𝜉
(𝛼,𝛽)

𝐺,𝑖,𝑗
[𝜕
𝑥
𝐿
(𝛼,𝛽)

𝑖+1
(𝜉
(𝛼,𝛽)

𝐺,𝑖,𝑗
)]
2
, 0 ≤ 𝑗 ≤ 𝑖.

(21)

For the Gauss-Radau weights, we have

𝜔
(𝛼,𝛽)

𝑅,𝑖,𝑗
=

{{{{{{{{

{{{{{{{{

{

(𝛼 + 1) Γ
2
(𝛼 + 1) Γ (𝑖 + 1)

𝛽𝛼+1Γ (𝑖 + 𝛼 + 2)
, 𝑗 = 0,

Γ (𝑖 + 𝛼 + 1)

𝛽𝛼Γ (𝑖 + 2)

×
1

𝐿
(𝛼,𝛽)

𝑖+1
(𝜉
(𝛼,𝛽)

𝑅,𝑖,𝑗
) 𝜕
𝑥
𝐿
(𝛼,𝛽)

𝑖
(𝜉
(𝛼,𝛽)

𝑅,𝑖,𝑗
)
, 1 ≤ 𝑗 ≤ 𝑖.

(22)
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Note that the earlier two types of quadratures have close
relations:

𝜉
(𝛼,𝛽)

𝑅,𝑖,𝑗
= 𝜉
(𝛼+1,𝛽)

𝐺,𝑖−1,𝑗−1
,

𝑥𝜔
(𝛼,𝛽)

𝑅,𝑖,𝑗
= (𝜉
(𝛼,𝛽)

𝑅,𝑖,𝑗
)
−1

𝜔
(𝛼+1,𝛽)

𝐺,𝑖−1,𝑗−1
,

1 ≤ 𝑗 ≤ 𝑖.

(23)

In the next section, we will extend the application of spec-
tral methods (see [37–42]) by using the modified generalized
Laguerre polynomials to solve fractional neutral functional-
differential equations on a semi-infinite domain.

3. Fractional Neutral
Functional-Differential Equations

In this section, we use the modified generalized Laguerre
pseudospectral method based on the modified generalized
Laguerre-Gauss quadrature points as the collocation nodes,
to solve numerically the following model problem:

(𝑢 (𝑥) + 𝑎 (𝑥) 𝑢 (𝑝𝑚𝑥))
(])

= 𝛽𝑢 (𝑥) +

𝑚−1

∑
𝑛=0

𝑏
𝑛 (𝑥)𝐷

𝛾𝑛𝑢 (𝑝
𝑛
𝑥) + 𝑓 (𝑥) , 𝑥 ≥ 0,

(24)

with the initial conditions
𝑚−1

∑
𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)
(0) = 𝜆𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1. (25)

Here, 𝑎 and 𝑏
𝑛
(𝑛 = 0, 1, . . . , 𝑚 − 1) are given analytical

functions; 𝑚 − 1 < ] ≤ 𝑚, 0 < 𝛾
0
< 𝛾
1
< ⋅ ⋅ ⋅ <

𝛾
𝑚−1

< ], and 𝛽, 𝑝
𝑛
, 𝑐
𝑖𝑛
, 𝜆
𝑖
denote given constants with 0 <

𝑝
𝑛
< 1 (𝑛 = 0, 1, . . . , 𝑚). By using the modified generalized

Laguerre-Gauss collocation method, we can approximate the
fractional neutral functional-differential equations with pro-
portional delays on a semi-infinite domain directly, without
any artificial boundary and variable transformation. Let us
first introduce some basic notation that will be used in the
sequel. We set

𝑆
𝑁 (0,∞) = span {𝐿(𝛼,𝛽)

0
(𝑥) , 𝐿

(𝛼,𝛽)

1
(𝑥) , . . . , 𝐿

(𝛼,𝛽)

𝑁
(𝑥)} ,

(26)

andwe define the discrete inner product and norm as follows:

(𝑢, V)
𝑤
(𝛼,𝛽)

𝑁

=

𝑁

∑
𝑗=0

𝑢 (𝜉
(𝛼,𝛽)

𝑍,𝑁,𝑗
) V (𝜉(𝛼,𝛽)
𝑍,𝑁,𝑗

) 𝜔
(𝛼,𝛽)

𝑍,𝑁,𝑗
,

‖𝑢‖
𝑤
(𝛼,𝛽)

𝑁

= √(𝑢, 𝑢)
𝑤
(𝛼,𝛽)

𝑁

,

(27)

where 𝜉(𝛼,𝛽)
𝑍,𝑁,𝑗

and 𝜔(𝛼,𝛽)
𝑍,𝑁,𝑗

are the nodes and the corresponding
weights of the modified generalized Laguerre-Gauss quadra-
ture formula on the interval (0,∞), respectively. Obviously,

(𝑢, V)
𝑤
(𝛼,𝛽)

𝑁

= (𝑢, V)
𝑤
(𝛼,𝛽) , ∀𝑢, V ∈ 𝑆

2𝑁+1
. (28)

Thus, for any 𝑢 ∈ 𝑆
𝑁
(0,∞), the norms ‖𝑢‖

𝑤
(𝛼,𝛽)

𝑁

and ‖𝑢‖
𝑤
(𝛼,𝛽)

coincide.
Associating with this quadrature rule, we denote by 𝐼𝐿

(𝛼,𝛽)

𝑇

𝑁

the modified generalized Laguerre-Gauss interpolation:

𝐼
𝐿
(𝛼,𝛽)

𝑇

𝑁
𝑢 (𝜉
(𝛼,𝛽)

𝑍,𝑁,𝑘
) = 𝑢 (𝜉

(𝛼,𝛽)

𝑍,𝑁,𝑘
) , 0 ≤ 𝑘 ≤ 𝑁. (29)

The modified generalized Laguerre-Gauss collocation
method for solving (24) and (25) is to seek 𝑢

𝑁
(𝑥) ∈ 𝑆

𝑁
(0,∞),

such that

𝐷
]
(𝑢 (𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) + 𝑎 (𝜉

(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) 𝑢 (𝑝

𝑚
𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
))

= 𝛽𝑢 (𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) +

𝑚−1

∑
𝑛=0

𝑏
𝑛
(𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)𝐷
𝛾𝑛𝑢 (𝑝

𝑛
𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)

+ 𝑓 (𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) ,

𝑘 = 0, 1, . . . , 𝑁 − 𝑚,

𝑚−1

∑
𝑛=0

𝑐
𝑖𝑛
𝑢
(𝑛)
(0) = 𝜆𝑖, 𝑖 = 0, 1, . . . , 𝑚 − 1.

(30)

We now derive the algorithm for solving (24) and (25). To do
this, let

𝑢
𝑁 (𝑥) =

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑥) ,

a = (𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
)
𝑇
.

(31)

We first approximate 𝐷]𝑢(𝑥) and 𝐷𝛾𝑛𝑢(𝑥), as (31). By
substituting these approximations in (24), we get

(

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑥) + 𝑎 (𝑥)

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑝
𝑚
𝑥))

(])

= 𝛽

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑥)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ=0

𝑎
ℎ
𝑏
𝑛 (𝑥)𝐷

𝛾𝑛𝐿
(𝛼,𝛽)

ℎ
(𝑝
𝑛
𝑥) + 𝑓 (𝑥) .

(32)

Making use of (16), we deduce that

(

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑥) + 𝑎 (𝑥)

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑝
𝑚
𝑥))

(])

= 𝛽

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑥)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ=0

𝑀

∑
𝑓=0

𝑎
ℎ
𝑏
𝑛 (𝑥)Ψ𝛾𝑛 (ℎ, 𝑓) 𝐿

(𝛼,𝛽)

𝑓
(𝑝
𝑛
𝑥) + 𝑓 (𝑥) .

(33)
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Also, by substituting (31) into (25) we obtain
𝑚−1

∑
𝑛=0

𝑀

∑
𝑓=0

𝑎
𝑖𝑛
𝐷
(𝑛)
𝐿
(𝛼,𝛽)

𝑓
(0) = 𝜆𝑖. (34)

Now, collocating (33) at the (𝑁 − 𝑚 + 1) modified
generalized Laguerre-Gauss interpolation points yields

(

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)

+𝑎 (𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝑝
𝑚
𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
))

(])

= 𝛽

𝑁

∑
ℎ=0

𝑎
ℎ
𝐿
(𝛼,𝛽)

ℎ
(𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)

+

𝑚−1

∑
𝑛=0

𝑁

∑
ℎ=0

𝑀

∑
𝑓=0

𝑎
ℎ
𝑏
𝑛
(𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
)Ψ
𝛾𝑛
(ℎ, 𝑓) 𝐿

(𝛼,𝛽)

𝑓

× (𝑝
𝑛
𝜉
(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) + 𝑓 (𝜉

(𝛼,𝛽)

𝑍,𝑁−𝑚,𝑘
) .

(35)

Next (34), after using (12), can be written as
𝑚−1

∑
𝑛=0

𝑀

∑
𝑓=0

(−1)
𝑞
𝑎
𝑖𝑛

𝛽𝑞Γ (𝑓 + 𝛼 + 1)

(𝑓 − 𝑞)!Γ (𝑞 + 𝛼 + 1)
= 𝜆
𝑖
. (36)

Finally, (35) with relation (36) generates (𝑁 + 1) set of
algebraic equations which can be solved for the unknown
coefficients 𝑎

𝑗
, 𝑗 = 0, 1, 2, . . . , 𝑁, by using any standard solver

technique.

4. Numerical Results

In this section, we implement the proposed method to
solve two numerical examples from the fractional neutral
functional-differential equations with proportional delays
in semi-infinite intervals to demonstrate the accuracy and
capability of the proposed algorithm. The absolute errors in
the given tables are the values of |𝑢(𝑥) − 𝑢

𝑁
(𝑥)| at selected

points.

Example 1. Consider the following fractional neutral func-
tional-differential equation with proportional delay:

𝑢
1/2
(𝑥) = −𝑢 (𝑥) +

1

3
𝑢 (

𝑥

4
) +

1

2
𝑢
1/2
(
𝑥

4
) + 𝑔 (𝑥) ,

𝑢 (0) = 1,

𝑥 ∈ [0, 5] ,

(37)

where

𝑔 (𝑥) = −
1

Γ (1/2)
∫
𝑥

0

(𝑥 − 𝑡)
−1/2 sin 𝑡 𝑑𝑡 + cos𝑥 − 1

3
cos(𝑥

4
)

+
1

2Γ (1/2)
∫
𝑥

0

(𝑥 − 𝑡)
−1/2 sin( 𝑡

4
) 𝑑𝑡,

(38)

and the exact solution is given by 𝑢(𝑥) = cos𝑥.

Table 1: Absolute errors using MGLC method at 𝑁 = 22 for
Example 1.

𝑥 𝛼 = 1, 𝛽 = 2 𝛼 = 4, 𝛽 = 3 𝛼 = 𝛽 = 5

0.0 7.993 ⋅ 10
−15

0.000 ⋅ 10
−00

2.220 ⋅ 10
−16

0.5 5.164 ⋅ 10−4 7.041 ⋅ 10−4 1.746 ⋅ 10−4

1.0 5.066 ⋅ 10−4 5.763 ⋅ 10−4 1.416 ⋅ 10−4

1.5 3.521 ⋅ 10−4 4.936 ⋅ 10−4 1.257 ⋅ 10−4

2.0 2.793 ⋅ 10
−4

4.268 ⋅ 10
−4

1.059 ⋅ 10
−4

2.5 4.480 ⋅ 10−4 3.862 ⋅ 10−4 8.856 ⋅ 10−5

3.0 2.269 ⋅ 10−4 3.437 ⋅ 10−4 8.429 ⋅ 10−5

3.5 1.998 ⋅ 10
−4

3.113 ⋅ 10
−4

7.249 ⋅ 10
−5

4.0 5.164 ⋅ 10−4 3.037 ⋅ 10−4 6.271 ⋅ 10−5

4.5 1.141 ⋅ 10−3 2.841 ⋅ 10−4 1.159 ⋅ 10−4

5.0 1.154 ⋅ 10
−3

2.268 ⋅ 10
−4

5.200 ⋅ 10
−5

u
(
x
)

x

0 2 4 6 8 10 12

−0.5

−1.0

0.0

0.5

1.0

Exact solution
MGLC method at N = 22

Figure 1: Graph of exact solution and approximate solution for 𝛼 =
4, 𝛽 = 2 at𝑁 = 22 for Example 1.

Table 1 lists the results obtained by the modified gener-
alized Laguerre collocation method in terms of maximum
absolute errors at𝑁 = 22with 𝛼 = 1, 𝛽 = 2, 𝛼 = 4, 𝛽 = 3, and
𝛼 = 𝛽 = 5. In the case of 𝛼 = 4, 𝛽 = 2, the approximate
solution by the presented method is shown in Figure 1, to
make it easier to compare with the exact solution.

Example 2. Consider the following fractional neutral func-
tional-differential equation with proportional delay:

𝑢
5/2
(𝑥) = 𝑢 (𝑥) + 𝑢

1/2
(
𝑥

2
) + 𝑢
3/2
(
𝑥

3
) +

1

2
𝑢
5/2
(
𝑥

4
)

+
Γ (4)

Γ (3/2)
𝑥
1/2
− 𝑥
3
−

Γ (4)

Γ (7/2)
(
𝑥

2
)
1/2

−
Γ (4)

Γ (5/2)
(
𝑥

3
)
3/2

−
Γ (4)

2Γ (3/2)
(
𝑥

4
)
1/2

, 𝑥 ∈ [0, 1] ,

(39)
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Figure 2: Graph of exact solution and approximate solution for 𝛼 =
2, 𝛽 = 1 at𝑁 = 22 for Example 2.

Table 2: Absolute errors using MGLC method at 𝑁 = 22 for
Example 2.

𝑥 𝛼 = 0, 𝛽 = 1 𝛼 = 3, 𝛽 = 2 𝛼 = 𝛽 = 2

0.0 3.221 ⋅ 10
−11

5.995 ⋅ 10
−15

1.154 ⋅ 10
−14

0.1 7.800 ⋅ 10−5 2.466 ⋅ 10−5 1.057 ⋅ 10−5

0.2 3.118 ⋅ 10−4 1.117 ⋅ 10−4 1.067 ⋅ 10−5

0.3 4.312 ⋅ 10−4 2.276 ⋅ 10−4 8.451 ⋅ 10−5

0.4 2.384 ⋅ 10
−4

3.035 ⋅ 10
−4

3.128 ⋅ 10
−4

0.5 2.027 ⋅ 10−4 3.301 ⋅ 10−4 6.556 ⋅ 10−4

0.6 6.146 ⋅ 10−4 3.251 ⋅ 10−4 1.075 ⋅ 10−3

0.7 6.439 ⋅ 10
−4

3.181 ⋅ 10
−4

1.551 ⋅ 10
−3

0.8 4.964 ⋅ 10−6 3.332 ⋅ 10−4 2.096 ⋅ 10−3

0.9 1.417 ⋅ 10−3 3.789 ⋅ 10−4 2.756 ⋅ 10−3

1.0 3.521 ⋅ 10
−3

4.465 ⋅ 10
−4

3.593 ⋅ 10
−3

subject to

𝑢 (0) = 0,

𝑢

(0) = 0,

𝑢

(0) = 0,

(40)

with exact solution 𝑢(𝑥) = 𝑥3.

In Table 2, we list the absolute errors obtained by the
modified generalized Laguerre collocation method, with
several values of 𝛼, 𝛽 and at 𝑁 = 22. Meanwhile, Figure 2
presents the MGLC solution with 𝛼 = 2, 𝛽 = 1 at𝑁 = 22 and
exact solution, which are found to be in excellent agreement.

5. Conclusions

We have presented the modified generalized Laguerre-
Gauss collocation scheme for approximating the solution
of fractional neutral functional-differential equations with
proportional delays on the half-line.The technique was based
on modified generalized Laguerre polynomials and Gauss

quadrature integration of such polynomials, which is defined
on the half-line. In the previous section, two numerical
results were given to demonstrate the accuracy, efficiency, and
versatility of the proposed method on the half-line. Indeed,
reasonable numerical results were achieved by choosing few
modified generalized Laguerre-Gauss collocation points.
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