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A two-dimensional differential transform method is applied to solve one-dimensional phase change problems in a slab of finite
thickness, which is subjected to convective thermal loading at one surface and a constant prescribed temperature at the other. In the
problems, the initial temperature of the slab does not necessarily have to be the same as the fusion temperature. A series solution
is derived for the temperature profile in the melting or solidifying slab with temperature-dependent thermal conductivity and
volumetric heat capacity. The latent heat effect of the phase change is incorporated into the temperature-dependent heat capacity.
Numerical results demonstrate the effects of the temperature-dependent parameters on the transient temperature profile of the slab.

1. Introduction

There is a strong demand for the analyses of heat conduction
problems with phase change in a broad range of fields such
as ice thermal storage, refrigeration and thawing of foods,
freeze dehydration, freeze-drying, cryosurgery, and freeze
preservation of living materials. In addition, this type of
analysis is important in terms of the quality and productivity
estimates of casting products. Unlike normal heat conduc-
tion problems, phase change problems are characterised by
nonlinearity due to the motion of the change-of-phase front.
Thus, exact solutions can be obtained only for a few cases. In
particular, when heat flows in both the liquid and solid phases
are considered (i.e., the two-phase problem) and/or the object
to be analysed is confined to a finite region, the analysis
difficulty increases. An excellent textbook and two review
articles have been published on the mathematical modelling
of phase change problems [1–3].

Thus far, only a limited number of researchers have
studied the two-phase problem using analytical methods.
It should be noted that an important study on a semi-
infinite slab by Neumann [1] underlies all the analytical
studies. Zubair and Chaudhry [4] presented a closed-form
solution to phase change problems with a convective bound-
ary condition. Oliver and Sunderland [5] and Briozzo and

Tarzia [6] studied a two-phase problem in which the material
properties of the phases were linear and nonlinear functions
of the temperature, respectively. Using perturbationmethods,
Yang et al. [7] analysed the solidification of a finite slab
with shrinkage that was convectively cooled at one end.
Dursunkaya andNair investigated the solidification of a finite
medium subjected to a constant boundary temperature [8]
or a periodic boundary temperature [9]. McCue et al. [10]
analysed the two-phase problem for spheres by applying the
method of matched asymptotic expansions. Das and Rajeev
[11] derived an analytical solution of the two-phase problem
in a finite domain by using the finite sine transform tech-
nique. An and Su [12] developed a lumped parameter model
and analysed the melting of a finite slab with volumetric heat
generation. Most recently, the phase change problem with
location-dependent latent heat was studied [13].

Since the late 1990s, the differential transform method
(DTM) has been attracting attention. It is a powerful tool
based on Taylor series expansion and is used to explicitly
solve not only linear differential equations but also nonlinear
ones. This method yields a solution in a simple power-series
form. The main advantage of this method is its direct appli-
cability to nonlinear differential equations without requiring
linearisation, discretisation, or perturbation. Although there
is a criticism that the DTM is purely and solely the traditional

Hindawi Publishing Corporation
Abstract and Applied Analysis
Volume 2014, Article ID 684293, 9 pages
http://dx.doi.org/10.1155/2014/684293

http://dx.doi.org/10.1155/2014/684293


2 Abstract and Applied Analysis

Taylor series method [14], applications of the DTM to
nonlinear heat conduction analyses are increasingly reported.

A brief review of the relevant literature published before
2011 can be found in our previous paper [15], which analysed
the steady temperature field and related thermal stresses
in an annular disc of variable thickness with temperature-
dependent parameters. Research achievements in the past
few years are described briefly as follows. S.Mosayebidorcheh
and T. Mosayebidorcheh [16] analysed steady heat conduc-
tion in a straight fin with temperature-dependent thermal
conductivity, which loses heat by simultaneous convection
and radiation. Torabi et al. extended their work to a mov-
ing fin [17], a T-shaped fin that requires more nonlinear
terms [18], and longitudinal fins of variable thickness [19].
Tabatabaei et al. [20] solved heat-like and wave-like equa-
tions with variable coefficients to show the efficiency and
simplicity of the DTM. Ndlovu and Moitsheki applied the
one-dimensional DTM and two-dimensional DTM to steady
[21] and transient [22] heat conduction analyses for fins of
variable thickness with temperature-dependent parameters,
respectively. Recently, the application range of the DTM
has been extended to the analysis of heat conduction in
nonhomogeneous bodies [23, 24].

In the present paper, the two-dimensional differential
transform method is applied to solve one-dimensional tran-
sient heat conduction problems with phase change. In par-
ticular, the two-phase problem for a slab of finite thickness
with temperature-dependent material properties is analysed
using the apparent specific heatmethod [25]. An approximate
analytical (series) solution for the temperature profile of a
melting or solidifying slab is derived. Numerical results illus-
trate the effects of the temperature-dependent parameters on
the transient temperature profile of the slab.

2. Two-Dimensional Differential
Transform Method

The basic theory of the two-dimensional (2D) DTM is
briefly described here. We consider 𝑦(𝑡, 𝑥) to be an analytic
function in the domain of interest. The domain of interest is
a time-space domain whose upper limits are 𝐻 for the time
coordinate and 𝐺 for the space coordinate, with lower limits
of zero for both the coordinates.The differential transform of
the function 𝑦(𝑡, 𝑥) is defined as follows [26]:

𝑌 (𝑘, 𝑠) =
𝐻
𝑘
𝐺
𝑠

𝑘!𝑠!
[

𝜕
𝑘+𝑠

𝜕𝑡𝑘𝜕𝑥𝑠
𝑦 (𝑡, 𝑥)]

𝑡=𝑥=0

, (1)

where 𝜕
𝑘
/𝜕𝑡
𝑘 indicates the 𝑘th derivative with respect to 𝑡 and

𝑌(𝑘, 𝑠) is the transformed function.The inversion formula for
𝑌(𝑘, 𝑠) is given by

𝑦 (𝑡, 𝑥) =

∞

∑

𝑘=0

∞

∑

𝑠=0

𝑌 (𝑘, 𝑠) (
𝑡

𝐻
)

𝑘

(
𝑥

𝐺
)

𝑠

. (2)

As seen in (2), the original function is expressed by a power-
series function. Substituting (1) into (2) yields

𝑦 (𝑡, 𝑥) =

∞

∑

𝑘=0

∞

∑

𝑠=0

𝑡
𝑘
𝑥
𝑠

𝑘!𝑠!
[

𝜕
𝑘+𝑠

𝜕𝑡𝑘𝜕𝑥𝑠
𝑦 (𝑡, 𝑥)]

𝑡=𝑥=0

, (3)

which shows that the concept of the differential transform
is based on Taylor series expansion (about a point (𝑡, 𝑥) =

(0, 0)). In practice, the function 𝑦(𝑡, 𝑥) in (2) is approximated
with a finite number of terms as

𝑦 (𝑡, 𝑥) ≈

𝑀

∑

𝑘=0

𝑁

∑

𝑠=0

𝑌 (𝑘, 𝑠) (
𝑡

𝐻
)

𝑘

(
𝑥

𝐺
)

𝑠

≡ 𝑦𝑀,𝑁 (𝑡, 𝑥) , (4)

where 𝑀 and 𝑁 are determined based on the required
accuracy of the representation of the original function 𝑦,
which is often a solution to a physical problem. In most
practical cases, exact solutions are not available, and thus
it is impossible to compute the absolute error |𝑦(𝑡𝑖, 𝑥𝑗) −

𝑦𝑀,𝑁(𝑡𝑖, 𝑥𝑗)| for an arbitrary point (𝑡𝑖, 𝑥𝑗) in the time-space
domain. However, the convergence behaviour of the function
𝑦𝑀,𝑁 to the original function 𝑦 can be shown [27]. In order to
achieve a convergence of the function/solution with smaller
values of 𝑀 and 𝑁, the domain split technique developed by
Jang et al. [28] is adopted in our numerical calculations (see
Section 4).

Table 1 lists some of the fundamental operations (simi-
larity, linearity, differentiation, multiplication, etc.) of the 2D
differential transform [26]. These mathematical operations
are easily proved with the aid of (1) and (2). In Table 1, 𝐹(𝑘, 𝑠),
𝑃(𝑘, 𝑠), and 𝑄(𝑘, 𝑠) are the transformed functions of original
functions 𝑓(𝑡, 𝑥), 𝑝(𝑡, 𝑥), and 𝑞(𝑡, 𝑥), respectively. Using the
relations listed in Table 1, the differential transform turns
differential equations into recursive polynomial equations,
which are much easier to solve.

3. Heat Conduction Problem with
Phase Change

Let us consider a slab with finite thickness 𝑙 as shown in
Figure 1.The surfaces of the slab are subjected to a prescribed
temperature 𝑇𝑤 at the right side, which is lower than the
fusion temperature 𝑇𝑓 and convective thermal loading with
heat transfer coefficient ℎ at the left side. The ambient
temperature is given by 𝑇∞.The temporal variable 𝑠 indicates
the location of the change-of-phase front, at which the tem-
perature is constant (= 𝑇𝑓). The slab, which is homogeneous
and isotropic with temperature-dependent thermophysical
properties, is initially at a uniform temperature 𝑇0 (𝑇0 ≥ 𝑇𝑓).

In the present paper, the heat conduction in the slab is
analysed on the basis of the apparent specific heat method
[25]. This formulation allows for a continuous treatment
of a system undergoing phase transition because the latent
heat effect of the phase change is included in the apparent
specific heat of the substance. Moreover, the phase change of
a substance in which the latent heat is evolved over a range of
temperatures can be treated as well as that with a sharp phase
change temperature. The former includes liquid solutions,
biological tissues, and alloys, whereas the latter is represented
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Table 1: Fundamental operations of two-dimensional differential transform.

Original function 𝑦(𝑡, 𝑥) Transformed function 𝑌(𝑘, 𝑠)

𝑦 (𝑡, 𝑥) = 𝛼 ⋅ 𝑓 (𝑡, 𝑥) 𝑌 (𝑘, 𝑠) = 𝛼 ⋅ 𝐹 (𝑘, 𝑠)

𝑦 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) ± 𝑝 (𝑡, 𝑥) 𝑌 (𝑘, 𝑠) = 𝐹 (𝑘, 𝑠) ± 𝑃 (𝑘, 𝑠)

𝑦 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑡
𝑌 (𝑘, 𝑠) =

𝑘 + 1

𝐻
⋅ 𝐹 (𝑘 + 1, 𝑠)

𝑦 (𝑡, 𝑥) =
𝜕𝑓 (𝑡, 𝑥)

𝜕𝑥
𝑌 (𝑘, 𝑠) =

𝑠 + 1

𝐺
⋅ 𝐹 (𝑘, 𝑠 + 1)

𝑦 (𝑡, 𝑥) =
𝜕
V+𝑤

𝑓 (𝑡, 𝑥)

𝜕𝑡V𝜕𝑥𝑤
𝑌 (𝑘, 𝑠) =

[(𝑘 + V)!/𝑘! ⋅ (𝑠 + 𝑤)!/𝑠! ⋅ 𝐹 (𝑘 + V, 𝑠 + 𝑤)]

𝐻V𝐺𝑤

𝑦 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) 𝑝 (𝑡, 𝑥) 𝑌 (𝑘, 𝑠) =

𝑘

∑

𝑖=0

𝑠

∑

𝑗=0

𝐹 (𝑖, 𝑠 − 𝑗) 𝑃 (𝑘 − 𝑖, 𝑗)

𝑦 (𝑡, 𝑥) = 𝑓 (𝑡, 𝑥) 𝑝 (𝑡, 𝑥) 𝑞 (𝑡, 𝑥) 𝑌 (𝑘, 𝑠) =

𝑘

∑

𝑖=0

𝑘−𝑖

∑

𝑗=0

𝑠

∑

𝑙=0

𝑠−𝑙

∑

𝑚=0

𝐹 (𝑖, 𝑠 − 𝑙 − 𝑚) 𝑃 (𝑗, 𝑙) 𝑄 (𝑘 − 𝑖 − 𝑗, 𝑚)

𝑦 (𝑡, 𝑥) = 𝑡
𝑚

𝑥
𝑛

𝑌 (𝑘, 𝑠) = 𝐻
𝑚

𝐺
𝑛
𝛿 (𝑘 − 𝑚) 𝛿 (𝑠 − 𝑛) =

{

{

{

𝐻
𝑚

𝐺
𝑛 for 𝑘 = 𝑚 and 𝑠 = 𝑛

0 otherwise

Liquid Solid

s
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Figure 1: Analytical model of one-dimensional phase change
process for a finite-thickness slab.

by water. The limitation of the apparent specific heat method
in terms of analysis accuracy was discussed by Civan and
Sliepcevich [29].

If the volume change during the phase change is neglected
(i.e., the density is assumed to be constant), then the heat
conduction problem for the slab is formulated as follows:

𝜌𝑐 (𝑇)
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑥
[𝜆 (𝑇)

𝜕𝑇

𝜕𝑥
] ,

𝑇 = 𝑇0 at 𝑡 = 0,

𝜆 (𝑇)
𝜕𝑇

𝜕𝑥
= ℎ (𝑇 − 𝑇∞) at 𝑥 = 0,

𝑇 = 𝑇𝑤 at 𝑥 = 𝑙,

(5)

where 𝑥 is the space variable, 𝑡 is the time, 𝜌 is the density, 𝑐 is
the apparent specific heat, and 𝜆 is the thermal conductivity.
The apparent specific heat of the slab is considered to exhibit
the following dependence on the temperature:

𝑐 (𝑇) = 𝐶∞ {𝐶1 exp [𝑎(𝑇 − 𝑇𝑓)
2

]

+
𝐶2

1 + exp [𝑏1 (𝑇 − 𝑇𝑓)]
+ 1} ,

(6)

where 𝐶1, 𝐶2, 𝐶∞, 𝑎 (≤ 0), and 𝑏1 are constants. Figure 2(a)
graphically represents (6), in which the normal distribution
function is used for a smooth variation in the apparent
specific heat [25]. The relationship between the latent heat
and the parameters in (6) is described in Appendix A. The
thermal conductivity of the slab is assumed to satisfy the
relationship

𝜆 (𝑇) = 𝜆∞ {
1

1 + exp [𝑏2 (𝑇 − 𝑇𝑓)]
+ 𝐶3} , (7)

where 𝜆∞, 𝑏2, and 𝐶3 are constants. Figure 2(b) describes this
temperature dependency.

Substituting (6) and (7) into (5) gives the following
equations in dimensionless form:

[𝐶1 exp (𝛼𝜃
2
) +

𝐶2

1 + exp (𝛽1𝜃)
+ 1]

𝜕𝜃

𝜕𝜏

=
𝜕

𝜕𝜉
{[

1

1 + exp (𝛽2𝜃)
+ 𝐶3]

𝜕𝜃

𝜕𝜉
} ,

(8)
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Area of domain 
bounded by smooth 
solid curves

Specific heat 
of solid

Specific heat 
of liquid

Equation (6)

c

= C1 · C∞ · (𝜋/| a| )1/2

= latent heat L

C2 · C∞

TTf

C∞

(a)

Thermal conductivity 
of liquid

Thermal conductivity 
of solid

Equation (7)

𝜆∞

C3 · 𝜆∞

𝜆

TTf

(b)

Figure 2: Temperature dependencies of (a) apparent specific heat and (b) thermal conductivity.

𝜃 = 𝜃0 at 𝜏 = 0, (9)

[
1

1 + exp (𝛽2𝜃)
+ 𝐶3]

𝜕𝜃

𝜕𝜉
= 𝐵 (𝜃 − 1) at 𝜉 = 0, (10)

𝜃 = 𝜃𝑤 at 𝜉 = 1, (11)
where

𝐵 =
ℎ𝑙

𝜆∞

, 𝜃 =
𝑇 − 𝑇𝑓

𝑇∞ − 𝑇𝑓

, 𝜃𝑤 =
𝑇𝑤 − 𝑇𝑓

𝑇∞ − 𝑇𝑓

,

𝜃0 =
𝑇0 − 𝑇𝑓

𝑇∞ − 𝑇𝑓

, 𝜏 =
𝜆∞𝑡

𝜌𝐶∞𝑙2
, 𝜉 =

𝑥

𝑙
,

𝛼 = 𝑎(𝑇∞ − 𝑇𝑓)
2

, 𝛽𝑖 = 𝑏𝑖 (𝑇∞ − 𝑇𝑓) for 𝑖 = 1, 2.

(12)
Here, it should be noted that the initial condition of (9) and
boundary condition of (11) are discontinuous at (𝜏, 𝜉) = (0, 1)

[28]. However, continuity is required at any points in the
domain of interest to use theDTM.Thus, the initial condition
of (9) is modified in the form of a polynomial function, as
proposed by Jang et al. [28],

𝜃 = (𝜃𝑤 − 𝜃0) 𝜉
𝑁

+ 𝜃0 at 𝜏 = 0, (9
󸀠
)

where N is a positive integer that is identical with that
appearing in (4).

Equation (8) can be expanded as

𝐶1𝜓 (𝜃)
𝜕𝜃

𝜕𝜏
+ 𝐶2𝜙1 (𝜃)

𝜕𝜃

𝜕𝜏
+

𝜕𝜃

𝜕𝜏

=
𝜕𝜙2 (𝜃)

𝜕𝜉

𝜕𝜃

𝜕𝜉
+ 𝜙2 (𝜃)

𝜕
2
𝜃

𝜕𝜉2
+ 𝐶3

𝜕
2
𝜃

𝜕𝜉2
,

(13)

in which

𝜓 (𝜃) = exp (𝛼𝜃
2
) , (14)

𝜙𝑝 (𝜃) =
1

1 + exp (𝛽𝑝𝜃)
for 𝑝 = 1, 2. (15)

Taking the 2D differential transform of each term in (13) and
rearranging the terms yield the following recurrence relation:

𝑘

∑

𝑖=0

𝑠

∑

𝑗=0

𝑘 − 𝑖 + 1

𝐻
[𝐶1Ψ (𝑖, 𝑠 − 𝑗) + 𝐶2Φ1 (𝑖, 𝑠 − 𝑗)]

× Θ (𝑘 − 𝑖 + 1, 𝑗) +
𝑘 + 1

𝐻
Θ (𝑘 + 1, 𝑠)

=

𝑘

∑

𝑖=0

𝑠

∑

𝑗=0

(𝑠 − 𝑗 + 1) (𝑗 + 1)

𝐺
2

Φ2 (𝑖, 𝑠 − 𝑗 + 1) Θ (𝑘 − 𝑖, 𝑗 + 1)

+

𝑘

∑

𝑖=0

𝑠

∑

𝑗=0

(𝑗 + 1) (𝑗 + 2)

𝐺
2

Φ2 (𝑖, 𝑠 − 𝑗) Θ (𝑘 − 𝑖, 𝑗 + 2)

+ 𝐶3
(𝑠 + 1) (𝑠 + 2)

𝐺
2

Θ (𝑘, 𝑠 + 2) ,

(16)

where 𝐻 and 𝐺 denote the dimensionless time and space
intervals of interest, respectively, and Θ(𝑘, 𝑠) is the trans-
formed function of 𝜃(𝜏, 𝜉). Functions Ψ(𝑘, 𝑠) and Φ𝑝(𝑘, 𝑠)

for 𝑝 = 1, 2 are the transformed functions of 𝜓(𝜃) and
𝜙𝑝(𝜃) defined by (14) and (15), which are obtained using
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the procedure developed by S. Chang and I. Chang [30] as
follows:

Ψ (𝑘, 𝑠)

=

{{{{{{{{{{{{{

{{{{{{{{{{{{{

{

exp [𝛼 ⋅ Θ
2

(0, 0)] for 𝑘 = 𝑠 = 0

𝛼 ⋅

𝑘−1

∑

𝑖=0

𝑠

∑

𝑗=0

𝑘−𝑖

∑

𝑚=0

𝑗

∑

𝑛=0

𝑘 − 𝑖

𝑘
Θ (𝑚, 𝑗 − 𝑛) Θ (𝑘 − 𝑖 − 𝑚, 𝑛)

× Ψ (𝑖, 𝑠 − 𝑗) for 𝑘 ≥ 1

𝛼 ⋅

𝑘

∑

𝑖=0

𝑠−1

∑

𝑗=0

𝑖

∑

𝑚=0

𝑠−𝑗

∑

𝑛=0

𝑠 − 𝑗

𝑠
Θ (𝑚, 𝑠 − 𝑗 − 𝑛) Θ (𝑖 − 𝑚, 𝑛)

× Ψ (𝑘 − 𝑖, 𝑗) for 𝑠 ≥ 1,

Φ𝑝 (𝑘, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

1

1 + exp [𝛽𝑝Θ (0, 0)]
for 𝑘 = 𝑠 = 0

−𝛽𝑝 ⋅

𝑘−1

∑

𝑖=0

𝑘−𝑖−1

∑

𝑗=0

𝑠

∑

𝑙=0

𝑠−𝑙

∑

𝑚=0

𝑘 − 𝑖 − 𝑗

𝑘
Φ𝑝 (𝑖, 𝑠 − 𝑙 − 𝑚)

× [𝛿 (𝑗) 𝛿 (𝑙) − Φ𝑝 (𝑗, 𝑙)]

× Θ (𝑘 − 𝑖 − 𝑗, 𝑚)

for 𝑘 ≥ 1

−𝛽𝑝 ⋅

𝑘

∑

𝑖=0

𝑘−𝑖

∑

𝑗=0

𝑠−1

∑

𝑙=0

𝑠−𝑙−1

∑

𝑚=0

𝑚 + 1

𝑠
Φ𝑝 (𝑖, 𝑠 − 𝑙 − 𝑚 − 1)

× [𝛿 (𝑗) 𝛿 (𝑙) − Φ𝑝 (𝑗, 𝑙)]

× Θ (𝑘 − 𝑖 − 𝑗, 𝑚 + 1)

for 𝑠 ≥ 1,

(17)

where 𝛿(𝑗) represents the Kronecker delta, which is equal to
1 if 𝑗 = 0 and 0 otherwise.

Additionally, applying the 2D differential transform to
(9
󸀠
), (10), and (11) yields the initial and boundary conditions

as follows:

Θ (0, 𝑠) =

{{

{{

{

𝜃0 for 𝑠 = 0

0 for 𝑠 = 1, 2, . . . , 𝑁 − 1

(𝜃𝑤 − 𝜃0) ⋅ 𝐺
𝑁 for 𝑠 = 𝑁

Θ (𝑘, 1) =
𝐺 ⋅ 𝐵 ⋅ Θ (𝑘, 0) − ∑

𝑘

𝑖=1
Φ2 (𝑖, 0) Θ (𝑘 − 𝑖, 1)

Φ2 (0, 0) + 𝐶3

for 𝑘 = 1, 2, 3, . . . ,

𝑁

∑

𝑠=0

Θ (𝑘, 𝑠)

𝐺
𝑠 = 𝜃𝑤 ⋅ 𝛿 (𝑘) for 𝑘 = 0, 1, 2, . . . , 𝑀,

(18)

where the following relation must be fulfilled because of the
need for continuity between the initial condition and the
boundary condition of (10) at (𝜏, 𝜉) = (0, 0):

𝐵 (𝜃0 − 1) = 0. (19)

Finally, we can obtain the following solution by the differen-
tial inverse transform of Θ(𝑘, 𝑠):

𝜃𝑀,𝑁 (𝜏, 𝜉) =

𝑀

∑

𝑘=0

𝑁

∑

𝑠=0

Θ (𝑘, 𝑠) (
𝜏

𝐻
)

𝑘

(
𝜉

𝐺
)

𝑠

. (20)

It should be noted that this series solution is valid for 𝜏 ∈

[0, 𝐻] and 𝜉 ∈ [0, 𝐺]. Functions Θ(𝑘, 𝑠), Ψ(𝑘, 𝑠), and Φ𝑝(𝑘, 𝑠),
where 𝑝 = 1, 2, are readily obtained through a simple
recursive procedure using (16)–(17), which is initiated using
Θ(0, 𝑠) for 𝑠 = 0, 1, 2, . . . , 𝑁.

4. Numerical Results and Discussion

4.1. Verification of Present Solution. To verify the presented
series solution, the transient heat conduction in a finite
slab with temperature-independent material properties is
considered, for which an analytical solution exists [31]. A
detailed description of the analytical solution can be found in
Appendix B. To improve the accuracy and rate of convergence
of the series solution, we divide the full 𝜏-𝜉 domain into
subdomains, as Jang et al. did [28]. The overall 𝜉 domain
is split equally into several subdomains, depending on the
numerical examples treated, whereas the time domain is split
into many subdomains with interval 𝐻 = 0.001. The number
of power-series terms in (20) is determined according to the
convergence of the solution.

The temperature distributions calculated from the pre-
sented series solution and the analytical solution [31] are
shown in Figure 3 for different Biot numbers. The values of
the parameters used for this computation are 𝐶1 = 𝐶2 = 𝛽2 =

0, 𝐶3 = 0.5, 𝜃0 = 1, and 𝜃𝑤 = −1. The series solution with
the 𝜉-domain division into three subdomains (i.e., 𝐺 = 1/3)
is sufficiently converged for (𝑀, 𝑁) = (40, 6) (Table 2). It is
observed that the converged series solution 𝜃40,6(𝜏, 𝜉) is in
good agreement with the analytical solution.

4.2. Parametric Studies. All the numerical results shown in
this subsection are obtained using the following parameter
set: 𝐵 = 0 and 𝜃𝑤 = −1. Figure 4 shows transient temperature
distributions in the slab with different temperature depen-
dence behaviours of the specific heat. Since the specific heat of
the liquid phase increases with an increase in the value of 𝐶2

(see Figure 2(a)), a higher 𝐶2 value reduces the rate of decline
of the temperature. When the specific heat is independent of
the temperature, that is, 𝐶2 = 0, a significant decrease in the
temperature is observed due to the specific heat remaining
low. It is also observed that the gap between the temperature
profiles for different𝐶2 values grows exponentially with time.

Figure 5 illustrates the temperature distributions in the
slab with different dependences of the thermal conductivity
on the temperature. An increase in the value of 𝐶3 raises the
levels of the thermal conductivity for both the liquid and solid
phases (see Figure 2(b)). Hence, a higher 𝐶3 value leads to
higher rates of temperature reduction.

Figure 6 shows the temperature distributions in the slab
with different latent heat quantities for a constant thermal
conductivity and specific heat, that is, the same thermophysi-
cal properties between the solid and liquid phases. The latent
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Table 2: Convergence behaviour of the series temperature solution for 𝐵 = 0.

(𝜏, 𝜉) 𝐸
10,4

(𝜏, 𝜉)
∗

𝐸
20,4

(𝜏, 𝜉)
∗

𝐸
10,6

(𝜏, 𝜉)
∗

𝐸
20,6

(𝜏, 𝜉)
∗

𝐸
40,6

(𝜏, 𝜉)
∗

𝐸
20,8

(𝜏, 𝜉)
∗

𝐸
40,8

(𝜏, 𝜉)
∗

(0.01, 0.4) 0.00278 0.00278 0.00043 0.00043 0.00043 0.00011 0.00011
(0.01, 0.6) 0.02916 0.02916 0.00870 0.00870 0.00870 0.00304 0.00304
(0.01, 0.8) 0.08296 0.08296 0.01346 0.01344 0.01344 0.01255 0.01255
(0.1, 0.0) 0.00962 0.00962 0.00056 0.00031 0.00031 0.00003 0.00003
(0.1, 0.2) 0.00733 0.00733 0.00119 0.00057 0.00057 0.00000 0.00000
(0.1, 0.4) 0.00055 0.00056 0.00333 0.00078 0.00078 0.00004 0.00004
(0.1, 0.6) 0.01020 0.01020 0.00974 0.00012 0.00012 0.00005 0.00005
(0.1, 0.8) 0.00686 0.00686 0.00596 0.00009 0.00009 0.00002 0.00002
∗Absolute error defined by 𝐸𝑀,𝑁(𝜏, 𝜉) = |𝜃𝑀,𝑁(𝜏, 𝜉) − 𝜃𝑀+2,𝑁+2(𝜏, 𝜉)|.
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Figure 3: Comparison of transient temperature profiles for different Biot numbers: (a) 𝐵 = 0 and (b) 𝐵 = 1.0.

heat required for the phase change completion from the
initial state, 𝐿

∗, is measured here by the Stefan number
Ste = 𝐶∞(𝑇∞ − 𝑇𝑓)/𝐿

∗. In the case of 𝜃0 = 0, (6) yields
Ste = 2/𝐶1 ⋅ (|𝛼|/𝜋)

1/2. It is observed in Figure 6 that an
increase in the Stefan number accelerates the temperature
reduction. Because there is an inverse relationship between
the latent heat and Stefan number (see the definition above),
the latent heat flux is dominant over the sensible heat flux
in the case of small Stefan numbers and consequently the
temperature variation is suppressed. This means that a larger
Stefan number results in a higher solid phase development
rate. From Figures 4–6, one can see that the series solution
derived provides reasonable results.

5. Concluding Remarks

The two-dimensional differential transformmethod has been
employed to solve the nonlinear heat conduction problem

with phase change in a finite-thickness slab. The slab was
subjected to convective thermal loading at one boundary
surface and a constant prescribed temperature at the other
boundary surface. In addition, the slab had temperature-
dependent thermophysical properties: the thermal conduc-
tivity and specific heat (or volumetric heat capacity). The
treatment of the phase change was based on the apparent
specific heat method. The presented analytical method gives
an analytical solution in the form of a power series with easily
computable components. Numerical results illustrated that
the DTM is useful as a new analytical method for solving the
phase change problem in a slab with temperature-dependent
parameters.

Our future plans are (i) to apply the present analytical
method to the cases of other geometries (e.g., inward and
outward solidification in a cylindrical or spherical geometry)
and (ii) to adopt a novel treatment for multiple complex
nonlinear terms, as given by (14) and (15), for the DTM [32],
which will improve the computational efficiency.



Abstract and Applied Analysis 7

0

0.5

1

0 0.2 0.4 0.6 0.8 1

0.1

0.01

𝜉

𝜏 = 0.5

−1

−0.5

𝜃

C2 = 0

= 0.5

= 1

Figure 4: Transient temperature profiles in slab with temperature-
dependent specific heat for 𝐶1 = 0, 𝐶3 = 0.5, 𝛽1 = −10, 𝛽2 = 0,
𝜃0 = 1, and (𝑀, 𝑁) = (40, 4) with 𝜉-domain division into eight
subdomains (i.e., 𝐺 = 1/8).
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Figure 5: Temperature profiles at 𝜏 = 0.05 in slab with temperature-
dependent thermal conductivity for 𝐶
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10, 𝜃0 = 1, and (𝑀, 𝑁) = (40, 4) with 𝜉-domain division into three
subdomains (i.e., 𝐺 = 1/3).

Appendices

A. Amount of Latent Heat

The relationship between the latent heat 𝐿 and the apparent
specific heat (in particular, parameters included in (6)) is

0

0.3
0.7

0 0.2 0.4 0.6 0.8 1
𝜉

−0.8

−0.6

−1

−0.4

−0.2

𝜃

𝜏 = 0.1

Ste = 0.5
= 1.0

= 2.0

Figure 6: Transient temperature profiles in slab with different latent
heats for 𝐶

2
= 0, 𝐶

3
= 0.5, 𝛼 = −10, 𝛽

2
= 0, 𝜃

0
= 0, and (𝑀, 𝑁) =

(40, 4) with 𝜉-domain division into six subdomains (i.e., 𝐺 = 1/6).

described here. The latent heat is given by the integral of the
normal distribution function in (6) over the entire range of
temperature

𝐿 = ∫

+∞

−∞

𝐶∞𝐶1 exp [𝑎(𝑇 − 𝑇𝑓)
2

] 𝑑𝑇, (A.1)

where this integral is equivalent to the area of domain
bounded by two smooth solid curves in Figure 2(a). Con-
sidering that parameter 𝑎 is a nonpositive constant, the
above integral (i.e., the Gaussian integral) can be evaluated
as follows:

𝐿 = 𝐶∞𝐶1√
𝜋

|𝑎|
. (A.2)

B. Analytical Solution for Linear Case

Consider a slab of finite thickness 𝑙 which is initially at
temperature 𝑇0. For times 𝑡 > 0, there is heat dissipation
by convection from its boundary surface at 𝑥 = 0 into a
surrounding at temperature 𝑇∞. The heat transfer coefficient
is denoted by ℎ. The other boundary surface at 𝑥 = 𝑙 is
kept at temperature 𝑇𝑤. An analytical solution for the present
boundary-value problem is obtained as

𝑇 (𝑡, 𝑥) = 2

∞

∑

𝑚=1

𝐶𝑚 (𝑥) {𝑇0 [1 − cos (𝜀𝑚𝑙)] exp (−𝜅𝜀
2

𝑚
𝑡)

+ (
ℎ𝑇∞

𝜀𝑚𝜆
sin (𝜀𝑚𝑙) + 𝑇𝑤)

× [1 − exp (−𝜅𝜀
2

𝑚
𝑡)] } ,

(B.1)
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where𝜅 and𝜆 are the thermal diffusivity and thermal conduc-
tivity, respectively, and

𝐶𝑚 (𝑥) =
(𝜆
2
𝜀
2

𝑚
+ ℎ
2
) sin [𝜀𝑚 (𝑙 − 𝑥)]

𝜀𝑚𝑙 (𝜆2𝜀2
𝑚

+ ℎ2) + 𝜆𝜀𝑚ℎ
. (B.2)

Eigenvalues 𝜀𝑚 are the positive roots of the transcendental
equation

𝜆𝜀cot (𝜀𝑙) + ℎ = 0. (B.3)
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