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We consider the existence of positive solutions for the nonlinear fractional differential equations boundary value problem
−𝐷

𝛼

0
+𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 0 < 𝑡 < 1, 𝑢(0) = 𝑢



(0) = 𝑢



(1) = 0, where 2 < 𝛼 ≤ 3 is a real number, 𝐷𝛼
0
+ is the Riemann-Liouville

fractional derivative of order 𝛼, and 𝑓 is a given continuous function. Our analysis relies on the fixed point index theory in cones.

1. Introduction

Fractional differential equations arise in many engineering
and scientific disciplines as the mathematical modeling of
systems andprocesses in the fields of physics, chemistry, aero-
dynamics, electrodynamics of complex medium, or polymer
rheology; see [1–5]. The interest of the study of fractional-
order differential equations lies in the fact that fractional-
order models are more accurate than integer-order models;
that is, there are more degrees of freedom in the fractional-
order models. Recently, there are some papers dealing with
the existence of solutions (or positive solution) of nonlinear
initial value problems of fractional differential equations
by the use of techniques of nonlinear analysis (fixed-point
theorems, Leray-Schauder theory, lower and upper solution
method, Adomian decomposition method, ect.); see [6–15].

The famous viscous liquid flow problems in the fields of
integer-order differential equations can be described by third-
order ordinary differential equation boundary value problem

−𝑢



(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0,

(1)

where 𝑓 : [0, 1] × [0, +∞) → [0, +∞) is continuous [16–18].
However, there are only a few exisitng contributions, as far as
we know, in the field of fractional-order differential equation.
In this paper, we discuss the existence of positive solution

for the nonlinear fractional differential equations boundary
value problem (BVP)

−𝐷

𝛼

0
+𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0,

(2)

where 2 < 𝛼 ≤ 3 is a real number, 𝐷𝛼
0
+ is the Riemann-

Liouville fractional derivative, and 𝑓 : [0, 1] × [0,∞) →

[0,∞) is a continuous function.
For a more general case, specially,

𝐷

𝛼

0
+𝑢 (𝑡) + 𝜆𝑎 (𝑡) 𝑓 (𝑢 (𝑡)) = 0,

0 < 𝑡 < 1, 2 < 𝛼 ≤ 3,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0,

(3)

where 𝑎 : (0, 1) → [0, +∞) is continuous with ∫1
0

𝑎(𝑡)𝑑𝑡 > 0,
𝑓 ∈ 𝐶([0, +∞), [0, +∞)) and 𝐷𝛼

0
+ is the Riemann-Liouville

fractional derivative; El-Shahed [20] obtained the existence
and nonexistence of positive solutions by employing the
well-known Guo-Krasnoselskii fixed point theorem of cone
extension or compression. The purpose of this paper is to
extend this result. Our argument is based on the fixed point
index theory, which is more precise than the fixed point
theorem of cone extension or compression. We will employ
the theory of fixed point index in cones to present some
more extensive conditions on 𝑓 guaranteeing the existence
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of positive solution of the BVP (2). As far as we know, the
method of the fixed point index theory is firstly applied to
BVP (2).

This paper is organized as follows. In Section 2, we
introduce some basic definitions and properties, preliminary
results that will be used to prove our main results. In
Section 3, we obtain the existence of the positive solutions for
BVP (2) by using the fixed point index theory.

2. Preliminaries

In this section, we introduce some preliminary facts which
are used throughout this paper. For details, see [19].

Definition 1 (see [19]). The Riemann-Liouville fractional der-
ivative of order𝛼 > 0 of a continuous function𝑓 : (0, +∞) →

R is given by

𝐷

𝛼

0
+𝑓 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑

𝑛

𝑑𝑡

𝑛
∫

𝑡

0

𝑓 (𝑠)

(𝑡 − 𝑠)

𝛼−𝑛+1
𝑑𝑠, (4)

where Γ(⋅) is Gamma function and 𝑛 = [𝛼] + 1, [𝛼] denotes
the integer part of number 𝛼, provided that the right side is
pointwise defined on (0, +∞).

Definition 2 (see [19]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a function 𝑓 : (0, +∞) → R is
given by

𝐼

𝛼

0
+𝑓 (𝑡) =

1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)

𝛼−1

𝑓 (𝑠) 𝑑𝑠,
(5)

provided that the right side is pointwise defined on (0, +∞).

Lemma 3. Let 0 < 𝛼 < 1, if 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿

1

(0, 1); then the
fractional differential equation

𝐷

𝛼

0
+𝑢 (𝑡) = 0 (6)

has unique solutions 𝑢(𝑡) = 𝑐

1
𝑡

𝛼−1

+𝑐

2
𝑡

𝛼−2

+⋅ ⋅ ⋅+𝑐

𝑛
𝑡

𝛼−𝑛, 𝑐
𝑖
∈ R,

𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer greater than or
equal to 𝛼.

Lemma4. Assume that 𝑢 ∈ 𝐶(0, 1)∩𝐿1(0, 1)with a fractional
derivative of order 𝛼 > 0 that belongs to𝐶(0, 1)∩𝐿1(0, 1).Then

𝐼

𝛼

0
+𝐷

𝛼

0
+𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐

1
𝑡

𝛼−1

+ 𝑐

2
𝑡

𝛼−2

+ ⋅ ⋅ ⋅ + 𝑐

𝑛
𝑡

𝛼−𝑛

,
(7)

for some 𝑐
𝑖
∈ R, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer

greater than or equal to 𝛼.
In the following, we present the Green’s function of frac-

tional differential equation boundary value problem.

Lemma5 (see [20]). Let𝑦 ∈ 𝐶[0, 1] and 2 < 𝛼 ≤ 3.The linear
fractional differential equation boundary value problem

−𝐷

𝛼

0
+𝑢 (𝑡) = 𝑦 (𝑡) , 0 < 𝑡 < 1,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0

(8)

has a unique solution

𝑢 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑦 (𝑠) 𝑑𝑠,

(9)

where

𝐺 (𝑡, 𝑠) =

{

{

{

{

{

{

{

{

{

𝑡

𝛼−1

(1 − 𝑠)

𝛼−2

− (𝑡 − 𝑠)

𝛼−1

Γ (𝛼)

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑡

𝛼−1

(1 − 𝑠)

𝛼−2

Γ (𝛼)

, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1.

(10)

Lemma 6 (see [20]). Let 𝐺 be Green’s function related to
problem (8), which is given by the expression (10). Then, for
all 𝛼 ∈ (2, 3], the following properties are fulfilled:

(1) 𝐺(𝑡, 𝑠) > 0, ∀𝑡, 𝑠 ∈ (0, 1);
(2) 𝐺(1, 𝑠) ≥ 𝐺(𝑡, 𝑠), ∀𝑡, 𝑠 ∈ [0, 1];
(3) 𝐺(𝑡, 𝑠) ≥ 𝑡

𝛼−1

𝐺(1, 𝑠), ∀𝑡, 𝑠 ∈ [0, 1];
(4) 𝐺(𝑡, 𝑠) is a continuous function, ∀𝑡, 𝑠 ∈ [0, 1].

Let 𝐸 = 𝐶[0, 1] be the Banach space endowed with the
norm ‖𝑢‖ = max

0≤𝑡≤1
|𝑢(𝑡)|. We define the operator 𝐴 :

𝐶[0, 1] → 𝐶[0, 1] by

𝐴𝑢 (𝑡) := ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(11)

where 𝐺 is the Green’s function defined in (10).
It is clear, form Lemma 5, that the nontrivial fixed points of

operator 𝐴 coincide with the positive solutions of BVP (2).
Let 𝐶+[0, 1] = {𝑢 ∈ 𝐶[0, 1] | 𝑢(𝑡) ≥ 0, 𝑡 ∈ [0, 1]}. Define a

cone 𝑃 ⊂ 𝐸 by

𝑃 = {𝑢 ∈ 𝐶

+

[0, 1] | 𝑢 (𝑡) ≥ 𝑡

𝛼−1

‖𝑢‖ , ∀𝑡 ∈ [0, 1]} . (12)

Lemma 7. 𝐴 : 𝑃 → 𝑃 is completely continuous.

Proof. From the continuity and the nonnegativeness of func-
tions 𝐺 and 𝑓 on their domains of definition, we have that if
𝑢 ∈ 𝑃, then 𝐴𝑢 ∈ 𝐸 and 𝐴𝑢(𝑡) ≥ 0 for all 𝑡 ∈ [0, 1]; from
properties (2) and (3) of Lemma 6, for all 𝑢 ∈ 𝑃,

(𝐴𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ ∫

1

0

𝑡

𝛼−1

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ 𝑡

𝛼−1max
0≤𝑡≤1

∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

= 𝑡

𝛼−1

‖𝐴𝑢‖ , ∀𝑡, 𝑠 ∈ [0, 1] .

(13)

Hence, 𝐴(𝑃) ⊂ 𝑃.
Next, we show that 𝐴 is uniformly bounded.
Let Ω ⊂ 𝑃 be bounded, which is to say, there exists a

positive constant𝑀 > 0 such that ‖𝑢‖
∞
≤ 𝑀 for all 𝑢 ∈ Ω.

Define now
𝐿 = max
0≤𝑡≤1,0≤𝑢≤𝑀









𝑓 (𝑡, 𝑢)









+ 1. (14)
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Then, for all 𝑢 ∈ Ω, it is satisfied that

|𝐴𝑢 (𝑡)| ≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝐿∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠, ∀𝑡 ∈ [0, 1] .

(15)

That is, the set 𝐴(Ω) is bounded in 𝐸.
Finally, we show that 𝐴 is equicontinuous.
For each 𝑢 ∈ Ω, we have











(𝐴𝑢)



(𝑡)











=



















− ∫

𝑡

0

(𝛼 − 1) (𝑡 − 𝑠)

𝛼−2

Γ (𝛼)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+∫

1

0

(𝛼 − 1) [𝑡 (1 − 𝑠)]

𝛼−2

Γ (𝛼)

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠



















≤

𝛼 − 1

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)

𝛼−2 






𝑓 (𝑠, 𝑢 (𝑠))









𝑑𝑠

+

𝛼 − 1

Γ (𝛼)

∫

1

0

[𝑡 (1 − 𝑠)]

𝛼−2 






𝑓 (𝑠, 𝑢 (𝑠))









𝑑𝑠

≤

(𝛼 − 1) 𝐿

Γ (𝛼)

∫

𝑡

0

(𝑡 − 𝑠)

𝛼−2

𝑑𝑠

+

(𝛼 − 1) 𝐿

Γ (𝛼)

∫

1

0

[𝑡 (1 − 𝑠)]

𝛼−2

𝑑𝑠

≤

𝐿

Γ (𝛼)

+

𝐿

Γ (𝛼)

=

2𝐿

Γ (𝛼)

:= 𝑀.

(16)

As consequence, for all 𝑡
1
, 𝑡

2
∈ [0, 1], 𝑡

1
< 𝑡

2
, we have









(𝐴𝑢) (𝑡

2
) − (𝐴𝑢) (𝑡

1
)









≤ ∫

𝑡
2

𝑡
1











(𝐴𝑢)



(𝑠)











𝑑𝑠 ≤ 𝑀(𝑡

2
− 𝑡

1
) .

(17)

Hence the set 𝐴(Ω) is equicontinuous.
Now, from the Arzela-Ascoli Theorem, we conclude that

𝐴(Ω) is relatively compact. Hence,𝐴 : 𝑃 → 𝑃 is a completely
continuous operator.

Define an operator 𝑇 : 𝐶[0, 1] → 𝐶[0, 1] by

𝑇𝑢 (𝑡) := ∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠.

(18)

Clearly, 𝑇 also is a completely continuous linear operator and
𝑇(𝑃) ⊂ 𝑃.

Lemma 8. The operator𝑇 : 𝐶[0, 1] → 𝐶[0, 1] defined by (18)
satisfies

‖𝑇‖ ≤

1

(𝛼 − 1) Γ (𝛼 + 1)

. (19)

Proof. Let 𝑢 ∈ 𝐶[0, 1]. For every 𝑡 ∈ [0, 1], by the definition
of 𝑇,

|𝑇𝑢 (𝑡)| =



















∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠



















≤ ∫

1

0

𝐺 (𝑡, 𝑠) |𝑢 (𝑠)| 𝑑𝑠

≤ ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ‖𝑢‖

=

1

Γ (𝛼)

[∫

𝑡

0

(𝑡

𝛼−1

(1 − 𝑠)

𝛼−2

− (𝑡 − 𝑠)

𝛼−1

) 𝑑𝑠

+∫

1

𝑡

𝑡

𝛼−1

(1 − 𝑠)

𝛼−2

𝑑𝑠] ⋅ ‖𝑢‖

=

1

Γ (𝛼)

(

1

𝛼 − 1

𝑡

𝛼−1

−

1

𝛼

𝑡

𝛼

) ‖𝑢‖

<

1

Γ (𝛼)

⋅

1

𝛼 (𝛼 − 1)

‖𝑢‖

=

1

(𝛼 − 1) Γ (𝛼 + 1)

‖𝑢‖ .

(20)

Hence,

‖𝑇𝑢‖ ≤

1

(𝛼 − 1) Γ (𝛼 + 1)

‖𝑢‖ . (21)

This implies that

‖𝑇‖ ≤

1

(𝛼 − 1) Γ (𝛼 + 1)

. (22)

The proof is completed.

Hereafter, we use 𝑟(𝑇) to denote the spectral radius of the
operator 𝑇.

Lemma 9. Suppose that 𝑇 is defined by (18); then the spectral
radius 𝑟(𝑇) > 0.

Proof. Set 𝑚 = min
1/4≤𝑡,𝑠≤3/4

𝐺(𝑡, 𝑠). Then, by (18) and the
positivity of 𝐺(𝑡, 𝑠), we have𝑚 > 0 and

𝑇 (1) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠

≥ ∫

3/4

1/4

𝐺 (𝑡, 𝑠) 𝑑𝑠 ≥

1

2

𝑚, 𝑡 ∈ [

1

4

,

3

4

] ,

𝑇

2

(1) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑇 (1) (𝑠) 𝑑𝑠

≥

1

2

𝑚∫

1

0

𝐺 (𝑡, 𝑠) 𝑑𝑠 ≥ (

1

2

𝑚)

2

, 𝑡 ∈ [

1

4

,

3

4

] ,

.

.

.

(23)
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Inductively, we obtain that

𝑇

𝑛

(1) (𝑡) ≥ (

1

2

𝑚)

𝑛

, 𝑡 ∈ [

1

4

,

3

4

] , 𝑛 = 1, 2, . . . .
(24)

Consequently,









𝑇

𝑛

(1)









≥ 𝑇

𝑛

(1) (

1

2

) ≥ (

1

2

𝑚)

𝑛

, 𝑛 = 1, 2, . . . .
(25)

So,









𝑇

𝑛






≥









𝑇

𝑛

(1)









≥ (

1

2

𝑚)

𝑛

, 𝑛 = 1, 2, . . . .
(26)

By this and Gelfand’s formula of spectral radius we have

𝑟 (𝑇) = lim
𝑛→∞









𝑇

𝑛






1/𝑛

≥ (

1

2

𝑚) > 0. (27)

The proof of Lemma 9 is completed.

Now, since the operator 𝑇 : 𝐶[0, 1] → 𝐶[0, 1] is a
completely continuous linear operator, by the well-known
Krein-Rutman theorem ([21], Theorem 19.3), the operator 𝑇
has the maximum positive real eigenvalue 𝑟(𝑇); then there
exists a eigenfunction 𝜑

1
∈ 𝑃 \ {𝜃} such that 𝑇𝜑

1
= 𝑟(𝑇)𝜑

1
.

Set 𝜆
1
= (𝑟(𝑇))

−1; then 𝜑

1
= 𝜆

1
𝑇𝜑

1
. Thus, 𝜆

1
is the

minimum positive real eigenvalue of the linear equation (8).
To prove the existence of at least one positive solution of

BVP (2), we will find the nonzero fixed point of𝐴 (defined in
(11)) by using the fixed point index theory in cones.

We recall some concepts and conclusions on the fixed
point index in cones in [21, 22], which will be used in the
argument later. Let 𝐸 be a Banach space and let 𝑃 ⊂ 𝐸 be
a closed convex cone in 𝐸. Assume thatΩ is a bounded open
subset of𝐸with boundary 𝜕Ω and𝑃∩Ω ̸= 0. Let𝐴 : 𝑃∩Ω →

𝑃 be a completely continuous mapping. If 𝐴𝑢 ̸= 𝑢 for every
𝑢 ∈ 𝑃 ∩ 𝜕Ω, then the fixed point index 𝑖(𝐴, 𝑃 ∩ Ω, 𝑃) is well
defined. One important fact is that if 𝑖(𝐴, 𝑃 ∩ Ω, 𝑃) ̸= 0, then
𝐴 has a fixed point in 𝑃 ∩ Ω.

For 𝑟 > 0, let 𝑃
𝑟
= {𝑢 ∈ 𝑃 | ‖𝑢‖ < 𝑟}, and 𝜕𝑃

𝑟
= {𝑢 ∈

𝑃 | ‖𝑢‖ = 𝑟}, which is the relative boundary of 𝑃
𝑟
in 𝑃. The

following two lemmas are needed in our argument.

Lemma 10 (see [22]). Let 𝐴 : 𝑃 → 𝑃 be a completely
continuous mapping. If there exists an 𝑢

0
∈ 𝑃 \ {𝜃} such that

𝑢 − 𝐴𝑢 ̸= 𝜇𝑢

0
, ∀𝑢 ∈ 𝜕𝑃

𝑟
, 𝜇 ≥ 0, (28)

then the fixed point index 𝑖(𝐴, 𝑃
𝑟
, 𝑃) = 0.

Lemma 11 (see [22]). Let 𝐴 : 𝑃 → 𝑃 be a completely
continuous mapping. If

𝐴𝑢 ̸= 𝜇𝑢, ∀𝑢 ∈ 𝜕𝑃

𝑟
, 𝜇 ≥ 1, (29)

then the fixed point index 𝑖(𝐴, 𝑃
𝑟
, 𝑃) = 1.

Lemma 12 (see [22]). Let 𝐴 : 𝑃 → 𝑃 be a completely conti-
nuous mapping and it satisfies that𝐴𝑢 ̸= 𝑢 for every 𝑢 ∈ 𝜕𝑃

𝑟
. If

‖𝐴𝑢‖ ≥ ‖𝑢‖, ∀𝑢 ∈ 𝜕𝑃
𝑟
, then the fixed point index 𝑖(𝐴, 𝑃

𝑟
, 𝑃) =

0.

3. Main Results

In this section we show the existence of positive solutions of
BVP (2) by using the fixed point index theory in cones.

Theorem 13. Assume𝑓 : [0, 1]×[0,∞) → [0,∞) is continu-
ous and satisfies the following conditions.

(F1) There exist 𝑏 > 𝜆

1
and 𝛿 > 0, such that

𝑓 (𝑡, 𝑥) ≥ 𝑏𝑥, ∀𝑡 ∈ [0, 1] , 0 ≤ 𝑥 ≤ 𝛿. (30)

(F2) There exist 0 < 𝑎 < 𝜆

1
and ℎ ∈ 𝐶+[0, 1], such that

𝑓 (𝑡, 𝑥) ≤ 𝑎𝑥 + ℎ (𝑡) , ∀𝑡 ∈ [0, 1] , 𝑥 ≥ 0. (31)

Then, the BVP (2) has at least one positive solution.

Proof. Let 𝜑
1
be the positive eigenfunction of 𝑇 correspond-

ing to 𝜆
1
; thus 𝜑

1
= 𝜆

1
𝑇𝜑

1
, where 𝑇 is defined by (18).

Choose 𝑟 ∈ (0, 𝛿), where 𝛿 is the constant in assumption
(F1). For every 𝑢 ∈ 𝜕𝑃

𝑟
, from assumption (F1), we have

(𝐴𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ 𝑏∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

> 𝜆

1
∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

= 𝜆

1
(𝑇𝑢) (𝑡) , 𝑡 ∈ [0, 1] .

(32)

Namely,

𝐴𝑢 ≥ 𝜆

1
𝑇𝑢, ∀𝑡 ∈ [0, 1] , ∀𝑢 ∈ 𝜕𝑃

𝑟
. (33)

Suppose that 𝐴 has no fixed point on 𝜕𝑃
𝑟
(otherwise, the

proof is completed). Now we show that

𝑢 − 𝐴𝑢 ̸= 𝜇𝜑

1
, ∀𝑢 ∈ 𝜕𝑃

𝑟
, 𝜇 ≥ 0. (34)

If it is not true, there exist 𝑢
0
∈ 𝜕𝑃

𝑟
and 𝜇

0
> 0 (if 𝜇

0
= 0, the

proof is completed) such that

𝑢

0
− 𝐴𝑢

0
= 𝜇

0
𝜑

1
. (35)

Then,

𝑢

0
= 𝐴𝑢

0
+ 𝜇

0
𝜑

1
> 𝜇

0
𝜑

1
. (36)

That is,

𝑢

0
(𝑡) ≥ 𝜇

0
𝜑

1
(𝑡) . (37)

Let

𝜇

∗

= sup {𝜇 | 𝑢
0
≥ 𝜇𝜑

1
, 𝜇 > 0} . (38)

It is easy to see that 0 < 𝜇

0
≤ 𝜇

∗

< +∞ and 𝑢
0
≥ 𝜇

∗

𝜑

1
. Taking

into account the positivity of the Green’s function 𝐺(𝑡, 𝑠) and
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definition of the operator 𝑇, it is easy to know that 𝑇 is a
nondecreasing linear operator, so

𝜆

1
𝑇𝑢

0
≥ 𝜇

∗

𝜆

1
𝑇𝜑

1
= 𝜇

∗

𝜑

1
. (39)

Therefore by (33)

𝑢

0
= 𝐴𝑢

0
+ 𝜇

0
𝜑

1
≥ 𝜆

1
𝑇𝑢

0
+ 𝜇

0
𝜑

1
≥ (𝜇

∗

+ 𝜇

0
) 𝜑

1
, (40)

which contradicts the definition of 𝜇∗. Hence (34) holds and
we have from Lemma 10 that

𝑖 (𝐴, 𝑃

𝑟
, 𝑃) = 0. (41)

On the other hand, we choose 𝑅 > 𝑟 > 0. Now we show
that if 𝑅 is large enough, then

𝑢 ̸= 𝜇𝐴𝑢, ∀𝑢 ∈ 𝜕𝑃

𝑅
, 0 < 𝜇 ≤ 1. (42)

From (F2), 𝑎 < 𝜆

1
; then there exist 0 < 𝜎 < 1, such that

𝑎 = 𝜎𝜆

1
.

Let 𝑇
2
𝑢 := 𝜎𝜆

1
𝑇𝑢, 𝑢 ∈ 𝐶[0, 1]. Then 𝑇

2
: 𝐶[0, 1] →

𝐶[0, 1] is a bounded linear operator and 𝑇
2
(𝑃) ⊂ 𝑃.

Let

𝑊 = {𝑢 ∈ 𝑃 | 𝑢 = 𝜇𝐴𝑢, 0 < 𝜇 ≤ 1} . (43)

In the following, we prove that𝑊 is bounded.
For any 𝑢 ∈ 𝑊, 𝑡 ∈ [0, 1], we have

𝑢 (𝑡) = 𝜇 (𝐴𝑢) (𝑡)

= 𝜇∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝑎∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠

= 𝜎𝜆

1
∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠 + ∫

1

0

𝐺 (𝑡, 𝑠) ℎ (𝑠) 𝑑𝑠

≤ (𝑇

2
𝑢) (𝑡) +

‖ℎ‖

(𝛼 − 1) Γ (𝛼 + 1)

.

(44)

Thus,

((𝐼 − 𝑇

2
) 𝑢) (𝑡) ≤

‖ℎ‖

(𝛼 − 1) Γ (𝛼 + 1)

, 𝑡 ∈ [0, 1] . (45)

Since 0 < 𝜎 < 1, therefore 𝜎𝜆
1
< 𝜆

1
; it is easy to get that

the inverse operator (𝐼 − 𝑇
2
)

−1 exists and

(𝐼 − 𝑇

2
)

−1

= 𝐼 + 𝑇

2
+ 𝑇

2

2
+ 𝑇

3

2
+ ⋅ ⋅ ⋅ + 𝑇

𝑛

2
+ ⋅ ⋅ ⋅ .

(46)

It follows from 𝑇

2
(𝑃) ⊂ 𝑃 that (𝐼 − 𝑇

2
)

−1

⊂ 𝑃. Hence we have

‖𝑢‖ ≤











(𝐼 − 𝑇

2
)

−1

(1)











⋅

‖ℎ‖

(𝛼 − 1) Γ (𝛼 + 1)

:=

̃

𝑅 (47)

and𝑊 is bounded. Let 𝑅 > max{̃𝑅, 𝑟}; then, by Lemma 11, we
have

𝑖 (𝐴, 𝑃

𝑅
, 𝑃) = 1. (48)

Now by the additivity of fixed point index, (41) and (48), we
have

𝑖 (𝐴, 𝑃

𝑅
\ 𝑃

𝑟
, 𝑃) = 𝑖 (𝐴, 𝑃

𝑅
, 𝑃) − 𝑖 (𝐴, 𝑃

𝑟
, 𝑃) = 1. (49)

Therefore 𝐴 has a fixed point in 𝑃
𝑅
\ 𝑃

𝑟
, which is a positive

solution of BVP (2).
The proof of Theorem 13 is completed.

For convenience, we set𝑀
0
= (∫

3/4

1/4

𝐺(1, 𝑠)𝑠

𝛼−1

𝑑𝑠)

−1

.

Theorem 14. Assume that 𝑓 : [0, 1] × [0,∞) → [0,∞) is
continuous and satisfies the following conditions.

(F3) There exist 0 < 𝑎 < 𝜆

1
and 𝛿 > 0, such that

𝑓 (𝑡, 𝑥) ≤ 𝑎𝑥, ∀𝑡 ∈ [0, 1] , 0 ≤ 𝑥 ≤ 𝛿. (50)

(F4) There exist 𝑏 > 𝑀

0
and 𝛿 < 𝐻 ∈ R+, such that

𝑓 (𝑡, 𝑥) ≥ 𝑏𝑥, ∀𝑡 ∈ [0, 1] , 𝑥 ≥ 𝐻. (51)

Then, BVP (2) has at least one positive solution.

Proof. Let𝑇
1
𝑢 = 𝜆

1
𝑇𝑢,𝑢 ∈ 𝐶[0, 1], where𝑇 is defined in (18).

Then, 𝑇
1
: 𝐶[0, 1] → 𝐶[0, 1] is a bounded linear operator;

we have

𝑇

1
(𝑃) ⊂ 𝑃, 𝑟 (𝑇

1
) = 1. (52)

Choose 𝑟 ∈ (0, 𝛿), where 𝛿 is the constant in assumption (F3).
For every 𝑢 ∈ 𝜕𝑃

𝑟
, from assumption (F3), we have

(𝐴𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝑎∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

< 𝜆

1
∫

1

0

𝐺 (𝑡, 𝑠) 𝑢 (𝑠) 𝑑𝑠

= 𝜆

1
(𝑇𝑢) (𝑡) = (𝑇

1
𝑢) (𝑡) , 𝑡 ∈ [0, 1] .

(53)

Namely, 𝐴𝑢 ≤ 𝑇

1
𝑢, ∀𝑢 ∈ 𝜕𝑃

𝑟
.

Suppose that 𝐴 has no fixed point on 𝜕𝑃
𝑟
(otherwise, the

proof is completed). Now we show that

𝐴𝑢 ̸= 𝜇𝑢, ∀𝑢 ∈ 𝜕𝑃

𝑟
, 𝜇 ≥ 1. (54)

If it is not true, there exist 𝑢
1
∈ 𝜕𝑃

𝑟
and 𝜇

0
> 1 such that

𝐴𝑢

1
= 𝜇

0
𝑢

1
. (55)

Then, 𝜇
0
𝑢

1
= 𝐴𝑢

1
≤ 𝑇

1
𝑢

1
, 𝜇
0
> 1. Therefore, we have

𝜇

𝑛

0
𝑢

1
≤ 𝑇

𝑛

1
𝑢

1
≤









𝑇

𝑛

1

















𝑢

1









, (𝑛 = 1, 2, . . .) . (56)

Thus, 𝜇𝑛
0
≤ ‖𝑇

𝑛

1
‖. Using Gelfand’s theorem, we have

𝑟 (𝑇

1
) = lim
𝑛→∞

𝑛

√









𝑇

𝑛

1









≥ 𝜇

0
> 1,

(57)
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which contradicts (52). Hence (54) holds; from Lemma 11, we
have

𝑖 (𝐴, 𝑃

𝑟
, 𝑃) = 1. (58)

On the other hand, from (F4), we have

𝑓 (𝑡, 𝑥) ≥ 𝑏𝑥, ∀𝑡 ∈ [0, 1] , 𝑥 ≥ 𝐻. (59)

We choose 𝑅 > max{4𝛼−1𝐻, 𝑟}. For every 𝑢 ∈ 𝜕𝑃

𝑅
, by the

definitions of 𝑃 and 𝑃
𝑅
, we have ‖𝑢‖ = 𝑅 and

𝑢 (𝑠) ≥ 𝑠

𝛼−1

‖𝑢‖ ≥ (

1

4

)

𝛼−1

𝑅 ≥ 𝐻, ∀𝑠 ∈ [

1

4

,

3

4

] .

(60)

Hence, form (59), it follows that

𝑓 (𝑠, 𝑢 (𝑠)) ≥ 𝑏𝑢 (𝑠) ≥ 𝑏𝑠

𝛼−1

‖𝑢‖ , ∀𝑠 ∈ [

1

4

,

3

4

] . (61)

Now, by (11) and (61), we have

‖𝐴𝑢‖ ≥ (𝐴𝑢) (1)

= ∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ ∫

3/4

1/4

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≥ 𝑏 ‖𝑢‖∫

3/4

1/4

𝐺 (1, 𝑠) 𝑠

𝛼−1

𝑑𝑠

> 𝑀

0
‖𝑢‖∫

3/4

1/4

𝐺 (1, 𝑠) 𝑠

𝛼−1

𝑑𝑠 = ‖𝑢‖ .

(62)

This means that

‖𝐴𝑢‖ > ‖𝑢‖ , ∀𝑢 ∈ 𝜕𝑃

𝑅
. (63)

Hence, by Lemma 12, we have that

𝑖 (𝐴, 𝑃

𝑅
, 𝑃) = 0. (64)

Now by the additivity of fixed point index, (58) and (64), we
have

𝑖 (𝐴, 𝑃

𝑅
\ 𝑃

𝑟
, 𝑃) = 𝑖 (𝐴, 𝑃

𝑅
, 𝑃) − 𝑖 (𝐴, 𝑃

𝑟
, 𝑃) = −1. (65)

Therefore 𝐴 has a fixed point in 𝑃
𝑅
\ 𝑃

𝑟
, which is a positive

solution of BVP (2).
The proof of Theorem 14 is completed.

Example 15. Consider the following fractional differential
equations boundary value problem:

−𝐷

𝛼

0
+𝑢 (𝑡) =

𝑐𝑢 (𝑡)

√

1 + 𝑢

2
(𝑡)

, 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0,

(66)

where 2 < 𝛼 ≤ 3, 𝑐 > 0 are constants. We assume that 𝑐 is
large enough such that 𝑐 > 𝜆

1
. Then it is easy to verify that

𝑓 (𝑡, 𝑥) =

𝑐𝑥

√

1 + 𝑥

2

, 𝑡 ∈ [0, 1] , 𝑥 ≥ 0 (67)

satisfies conditions (F1) and (F2) of Theorem 13. Hence, by
Theorem 13, (66) has at least one positive solution.

Example 16. Consider the fractional differential equations
boundary value problem

−𝐷

𝛼

0
+𝑢 (𝑡) = 𝑑

1
𝑢 (𝑡) + 𝑑

2
𝑢

2

(𝑡) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢



(0) = 𝑢



(1) = 0,

(68)

where 2 < 𝛼 ≤ 3, 𝑑
1
, 𝑑

2
> 0 are constants. Let 0 < 𝑑

1
< 𝜆

1
.

We can easily see that

𝑓 (𝑡, 𝑥) = 𝑑

1
𝑥 + 𝑑

2
𝑥

2

, 𝑡 ∈ [0, 1] , 𝑥 ≥ 0
(69)

satisfies conditions (F3) and (F4) of Theorem 14. By
Theorem 14, (68) has at least one positive solution.
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