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We introduce and study a new general system of nonlinear variational inclusions involving generalized 𝑚-accretive mappings in
Banach space. By using the resolvent operator technique associated with generalized𝑚-accretivemappings due toHuang and Fang,
we prove the existence theorem of the solution for this variational inclusion system in uniformly smooth Banach space, and discuss
convergence and stability of a class of new perturbed iterative algorithms for solving the inclusion system in Banach spaces. Our
results presented in this paper may be viewed as an refinement and improvement of the previously known results.

1. Introduction

Let 𝑚 be a given positive integer, for any 𝑖 ∈ {1, 2, . . . , 𝑚}, 𝑋
𝑖

a real Banach space with dual space 𝑋∗
𝑖
. 𝑋
𝑖
, 𝑋∗
𝑖
all endowed

with the norm ‖ ⋅ ‖, and ⟨⋅, ⋅⟩ the dual pair between 𝑋
𝑖
and

𝑋
∗

𝑖
(as matter of convenience). Let 2

𝑋𝑖 denote the family
of all the nonempty subsets of 𝑋

𝑖
, 𝜂
𝑖
: 𝑋
𝑖
× 𝑋
𝑖

→ 𝑋
∗

𝑖
,

𝑁
𝑖
: 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋

𝑖
single-valued mappings,

and 𝑀
𝑖
: 𝑋
𝑖
→ 2
𝑋𝑖 generalized 𝑚-accretive mapping for

𝑖 = 1, 2, . . . , 𝑚. In this paper, we consider the following new
general system for nonlinear variational inclusion involving
generalized 𝑚-accretive mappings. Find (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈

𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
such that

0 ∈ 𝑁
𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) + 𝑀

𝑖
(𝑥
∗

𝑖
) (1)

for all 𝑖 = 1, 2, . . . , 𝑚. Some special cases of the problem (1)
had been studied by many authors. See, for example, [1–34]
and the reference therein. Here, we mention some of them
as follows.

Case 1. The problem (1) with 𝑋
𝑖
= H
𝑖
(𝑖 = 1, 2, . . . , 𝑚), the

Hilbert spaces, was introduced and studied as general system

of monotone nonlinear variational inclusions problems by
Peng and Zhao [29].

If 𝐽−1
𝑞
𝜂
𝑖
(𝑥
1

𝑖
, 𝑥
2

𝑖
) = 𝑥

1

𝑖
− 𝑥
2

𝑖
and 𝑀

𝑖
= 𝜕𝜑
𝑖
, 𝜑
𝑖
: 𝑋
𝑖

→

(−∞, +∞] is proper, convex, and lower semi-continuous
functional on𝑋

𝑖
, and 𝜕𝜑

𝑖
denote the subdifferential operators

of the 𝜑
𝑖
for 𝑖 = 1, 2, . . . , 𝑚, then the problem (1) is equivalent

to finding (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
× 𝑋
2
× . . . × 𝑋

𝑚
such that

⟨𝑁
𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) , 𝑗 (𝑥

𝑖
− 𝑥
∗

𝑖
)⟩

≥ 𝜌
𝑖
(𝜑
𝑖
(𝑥
∗

𝑖
) − 𝜑
𝑖
(𝑥
𝑖
)) , ∀𝑥

𝑖
∈ 𝑋
𝑖
.

(2)

When 𝑋
𝑖
= 𝑋, 2-uniformly smooth Banach space with

the smooth constant𝐾,𝐶 is a nonempty closed convex subset
of 𝑋, 𝑁

𝑖
(𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑚
) = 𝜌

𝑖
𝐴
𝑖
(𝑥
𝑖+1

) + 𝑥
𝑖
− 𝑥
𝑖+1

, where
𝐴
𝑖
: 𝐶 → 𝑋 and 𝜌

𝑖
> 0 and 𝑥

𝑚+1
= 𝑥
1
for 𝑖 = 1, 2, . . . , 𝑚;

the problem (2) reduces to the following system of finding
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝐶 × 𝐶 × ⋅ ⋅ ⋅ × 𝐶 such that

⟨𝜌
𝑖
𝐴
𝑖
(𝑥
∗

𝑖+1
) + 𝑥
∗

𝑖
− 𝑥
∗

𝑖+1
, 𝑗 (𝑥 − 𝑥

∗

𝑖
)⟩

≥ 𝜌
𝑖
(𝜑
𝑖
(𝑥
∗

𝑖
) − 𝜑
𝑖 (
𝑥)) , ∀𝑥 ∈ 𝑋.

(3)
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Further, in the problem (3), when 𝜑
𝑖
is the indicator

function of a nonempty closed convex set 𝐶, in𝑋 defined by

𝜑
𝑖
(𝑦) = {

0, 𝑦 ∈ 𝐶,

+∞, 𝑦 ∉ 𝐶,

(4)

then the system (3) reduces to finding (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝐶 ×

𝐶 × ⋅ ⋅ ⋅ × 𝐶 such that

⟨𝜌
1
𝐴
1
𝑥
∗

2
+ 𝑥
∗

1
− 𝑥
∗

2
, 𝑗 (𝑥 − 𝑥

∗

1
)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜌
2
𝐴
2
𝑥
∗

3
+ 𝑥
∗

2
− 𝑥
∗

3
, 𝑗 (𝑥 − 𝑥

∗

2
)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⟨𝜌
3
𝐴
3
𝑥
∗

4
+ 𝑥
∗

3
− 𝑥
∗

4
, 𝑗 (𝑥 − 𝑥

∗

3
)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

⋅ ⋅ ⋅

⟨𝜌
𝑚
𝐴
𝑚
𝑥
∗

1
+ 𝑥
∗

𝑚
− 𝑥
∗

1
, 𝑗 (𝑥 − 𝑥

∗

𝑚
)⟩ ≥ 0, ∀𝑥 ∈ 𝐶,

(5)

which was introduced and studied by Zhu et al. [34].

Case 2. If 𝑚 = 3, then the system (3) is equivalent to finding
(𝑥
∗

1
, 𝑥
∗

2
, 𝑥
∗

3
) ∈ 𝐶 × 𝐶 × 𝐶 such that

⟨𝜌
1
𝐴
1
𝑥
∗

2
+ 𝑥
∗

1
− 𝑥
∗

2
, 𝑗 (𝑥 − 𝑥

∗

1
)⟩

≥ 𝜌
1
(𝜑
1
(𝑥
∗

1
) − 𝜑
1 (
𝑥)) , ∀𝑥 ∈ 𝐶,

⟨𝜌
2
𝐴
2
𝑥
∗

3
+ 𝑥
∗

2
− 𝑥
∗

3
, 𝑗 (𝑥 − 𝑥

∗

2
)⟩

≥ 𝜌
2
(𝜑
2
(𝑥
∗

2
) − 𝜑
2 (
𝑥)) , ∀𝑥 ∈ 𝐶,

⟨𝜌
3
𝐴
3
𝑥
∗

1
+ 𝑥
∗

3
− 𝑥
∗

1
, 𝑗 (𝑥 − 𝑥

∗

3
)⟩

≥ 𝜌
3
(𝜑
3
(𝑥
∗

3
) − 𝜑
3 (
𝑥)) , ∀𝑥 ∈ 𝐶.

(6)

It is easy to see that the mathematical model studied by
Saewan and Kumam [31] is a variant of (6).

Case 3. If 𝑚 = 2, then the problem (1) reduces to find
(𝑥
∗
, 𝑦
∗
) ∈ 𝑋
1
× 𝑋
2
such that

0 ∈ 𝑁
1
(𝑥
∗
, 𝑦
∗
) + 𝑀

1
(𝑥
∗
) , 0 ∈ 𝑁

2
(𝑥
∗
, 𝑦
∗
) + 𝑀

2
(𝑦
∗
) .

(7)

Problem (7) is called a system of strongly nonlinear quasi-
variational inclusion involving generalized𝑚-accretive map-
pings, it is considered and studied by Lan [19].There aremany
special cases of the problems (7) that can be found in [3, 7, 12–
14, 17, 20, 28, 30] and the references cited therein.

Case 4. If 𝑚 = 1 and 𝑋
1
= H, then the problem (1) reduces

to finding 𝑥∗ ∈ H such that

0 ∈ 𝑁 (𝑥
∗
) + 𝑀(𝑥

∗
) , (8)

which was introduced and studied by Fang and Huang
[8]. We remark that for appropriate and suitable choices of
positive integer 𝑚, the mappings 𝜂

𝑖
, 𝑁
𝑖
, and 𝑀

𝑖
, and the

spaces 𝑋
𝑖
for 𝑖 = 1, 2, . . . , 𝑚, one can know that the problem

(1) includes a number of general class of variational character
known problems, including minimization or maximization
(whether constraint or not) of functions and minimax
problems et al. as special cases. For more details, see [1–34]
and the reference therein.

On the other hand, many authors discussed stability
of the iterative sequence generated by the algorithm for
solving the problems that they studied. Lan [19] introduced
the notion of 𝑆-stable or stable with respect to 𝑆. Moreover,
Agarwal et al. [1, 2], Jin [16], Kazmi and Bhat [18], and Lan
and Kim [21] constructed some stability under suitable
conditions, respectively.

Motivated and inspired by the above works, the main
purpose of this paper is to introduce and study the new
general system of nonlinear variational inclusions (1) involv-
ing generalized 𝑚-accretive mapping in uniformly smooth
Banach spaces. By using the resolvent operator technique for
generalized 𝑚-accretive, we prove the existence theorem of
the solution for this kind of system of variational inclusions
in Banach spaces and discuss the convergence and stability of
a new perturbed iterative algorithm for solving this general
system of nonlinear variational inclusions in Banach spaces.

2. Preliminaries

In order to get the main results of the paper, we need the
following concepts and lemmas. Let𝑋 be a real Banach space
with dual space 𝑋

∗, ⟨⋅, ⋅⟩ the dual pair between 𝑋 and 𝑋
∗,

and 2
𝑋 denote the family of all the nonempty subsets of 𝑋.

The generalized duality mapping 𝐽
𝑞
: 𝑋 → 2

𝑋
∗

is defined by

𝐽
𝑞 (
𝑥) = {𝑓

∗
∈ 𝑋
∗
: ⟨𝑥, 𝑓

∗
⟩ = ‖𝑥‖

𝑞
,




𝑓
∗



= ‖𝑥‖

𝑞−1
} ,

∀𝑥 ∈ 𝑋,

(9)

where 𝑞 > 1 is a constant. In particular, 𝐽
2
is the usual

normalized duality mapping. It is known that if𝑋∗ is strictly
convex or 𝑋 is a uniformly smooth Banach space, then 𝐽

𝑞
is

single-valued (see [33]), and if𝑋 = H, theHilbert space, then
𝐽
2
becomes the identity mapping on H. We will denote the

single-valued duality mapping by 𝑗
𝑞
.

In order to construct convergence and stability for
researching the problem (1), we need to be using the following
definition and lemma.

Definition 1. Let𝑋
𝑖
be Banach spaces, and let𝑁

𝑖
: 𝑋
1
× 𝑋
2
×

⋅ ⋅ ⋅ ×𝑋
𝑚

→ 𝑋
𝑖
be single mappings for (𝑖 = 1, 2, . . . , 𝑚). Then

𝑁
𝑖
is said to be

(i) 𝜎
𝑗
-strongly accretive with respect to 𝑗th

argument if for any (𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
1

𝑗
, 𝑥
𝑗+1

, . . . , 𝑥
𝑚
),

(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
2

𝑗
, 𝑥
𝑗+1

, . . . , 𝑥
𝑚
) ∈ 𝑋

1
×𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
,

there exists 𝑗
𝑞𝑗
(𝑥
1

𝑗
− 𝑥
2

𝑗
) ∈ 𝐽
𝑞𝑗
(𝑥
1

𝑗
− 𝑥
2

𝑗
), such that

⟨𝑁
𝑖
(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
1

𝑗
, 𝑥
𝑗+1

, . . . , 𝑥
𝑚
)

− 𝑁
𝑖
(𝑥
1
, . . . , 𝑥

𝑗−1
, 𝑥
2

𝑗
, 𝑥
𝑗+1

, . . . , 𝑥
𝑚
) ,

𝑗
𝑞𝑗
(𝑥
1

𝑗
− 𝑥
2

𝑗
)⟩ ≥ 𝜎

𝑗






𝑥
1

𝑗
− 𝑥
2

𝑗







𝑞𝑗
,

(10)

where 𝑞
𝑗
> 1 is a constant;
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(ii) (𝜁
𝑖1
, . . . , 𝜁

𝑖𝑗
, . . . , 𝜁

𝑖𝑚
)-Lipschitz continuous if there

exists constants 𝜁
𝑖1

> 0, . . . , 𝜁
𝑖𝑗
> 0, . . ., 𝜁

𝑖𝑚
> 0, such

that





𝑁
𝑖
(𝑥
1
, . . . , 𝑥

𝑗
, . . . , 𝑥

𝑚
) − 𝑁

𝑖
(𝑦
1
, . . . , 𝑦

𝑗
, . . . , 𝑦

𝑚
)







≤

𝑚

∑

𝑗=1

𝜁
𝑖𝑗






𝑥
𝑗
− 𝑦
𝑗






,

(11)

for all 𝑥
𝑗
, 𝑦
𝑗
∈ 𝑋
𝑗
and 𝑗 = 1, 2 . . . , 𝑚.

Remark 2. When 𝑋
𝑖
= H
𝑖
(𝑖 = 1, 2, . . . , 𝑚), H

𝑖
is different

or the same as Hilbert spaces, (i) and (ii) in Definition 1
reduce to stronglymonotonicity with respect to 𝑗th argument
of 𝑁
𝑖
and (𝜁

𝑖1
, . . . , 𝜁

𝑖𝑗
, . . . , 𝜁

𝑖𝑚
)-Lipschitz continuity of 𝑁

𝑖
,

respectively (see [29]).

Definition 3. Let 𝜂 : 𝑋×𝑋 → 𝑋
∗ be single-valuedmapping.

Then set-valued mapping𝑀 : 𝑋 → 2
𝑋 is said to be

(i) accretive if

⟨𝑢 − V, 𝐽
𝑞
(𝑥 − 𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋, 𝑢 ∈ 𝑀 (𝑥) ,

V ∈ 𝑀(𝑦) ;

(12)

(ii) 𝜂-accretive if

⟨𝑢 − V, 𝜂 (𝑥, 𝑦)⟩ ≥ 0, ∀𝑥, 𝑦 ∈ 𝑋, 𝑢 ∈ 𝑀 (𝑥) , V ∈ 𝑀(𝑦) ;

(13)

(iii) 𝑚-accretive if𝑀 is accretive and (𝐼+𝜌𝑀)(𝑋) = 𝑋 for
all 𝜌 > 0, where 𝐼 denotes the identity operator on𝑋;

(iv) generalized 𝑚-accretive if 𝑀 is 𝜂-accretive and (𝐼 +

𝜌𝑀)(𝑋) = 𝑋 for all 𝜌 > 0.

Remark 4. When 𝑋 = 𝑋
∗

= H, (i)–(iv) of Definition 3
reduce to the definitions ofmonotone operators, 𝜂-monotone
operators, classical maximal monotone operators, and maxi-
mal 𝜂-monotone operators; if 𝜂(𝑥, 𝑦) = 𝐽

2
(𝑥−𝑦), then (ii) and

(iv) of Definition 3 reduce to the definitions of accretive and
𝑚-accretive of uniformly smooth Banach spaces (see [10, 11]).

Definition 5. Themapping 𝜂 : 𝑋 × 𝑋 → 𝑋
∗ is said to be

(i) 𝛿-strongly monotone if there exists a constant 𝛿 > 0

such that

⟨𝑥
1
− 𝑥
2
, 𝜂 (𝑥
1
, 𝑥
2
)⟩ ≥ 𝛿






𝑥
1
− 𝑥
2




2

, ∀𝑥
1
, 𝑥
2
∈ 𝑋; (14)

(ii) 𝜏-Lipschitz continuous if there exists a constant 𝜏 > 0

such that





𝜂 (𝑥
1
, 𝑥
2
)






≤ 𝜏






𝑥
1
− 𝑥
2



, ∀𝑥

1
, 𝑥
2
∈ 𝑋. (15)

In [10], Huang and Fang show that for any 𝜌
𝑖
> 0, inverse

mapping (𝐼 + 𝜌
𝑖
𝑀
𝑖
)
−1 is single-valued, if 𝜂

𝑖
: 𝑋
𝑖
× 𝑋
𝑖
→ 𝑋
∗

𝑖

is strict monotone and 𝑀
𝑖
: 𝑋
𝑖

→ 2
𝑋𝑖 is generalized 𝑚-

accretive mapping, where 𝐼 is the identity mapping. Based on
this fact, Huang and Fang [10] gave the following definition.

Definition 6. Let 𝜂
𝑖
: 𝑋
𝑖
× 𝑋
𝑖
→ 𝑋

∗

𝑖
be strictly monotone

mapping, and let𝑀
𝑖
: 𝑋
𝑖
→ 2
𝑋𝑖 be generalized 𝑚-accretive

mapping. Then the resolvent 𝐽𝜌𝑖
𝑀𝑖

for𝑀
𝑖
is defined as follows:

𝐽
𝜌𝑖

𝑀𝑖
(𝑥
𝑖
) = (𝐼 + 𝜌

𝑖
𝑀
𝑖
)
−1

(𝑥
𝑖
) , ∀𝑥

𝑖
∈ 𝑋
𝑖
, (16)

where 𝜌
𝑖
> 0 is a constant and 𝐼 denotes the identity mapping

on𝑋
𝑖
for 𝑖 = 1, 2, . . . , 𝑚.

Lemma 7 (see [10, 11]). Let 𝜂
𝑖
: 𝑋
𝑖
×𝑋
𝑖
→ 𝑋
∗

𝑖
be 𝜏
𝑖
-Lipschitz

continuous and 𝛿
𝑖
-strongly monotone, and let 𝑀

𝑖
: 𝑋
𝑖
→ 2
𝑋

𝑖

be generalized 𝑚-accretive mapping. Then for any 𝜌
𝑖

> 0,
the resolvent operator 𝐽𝜌𝑖

𝑀𝑖
for𝑀

𝑖
is 𝜏
𝑖
/𝛿
𝑖
-Lipschitz continuous;

that is,





𝐽
𝜌𝑖

𝑀𝑖
(𝑥
𝑖
) − 𝐽
𝜌𝑖

𝑀𝑖
(𝑦
𝑖
)







≤

𝜏
𝑖

𝛿
𝑖





𝑥
𝑖
− 𝑦
𝑖





, ∀𝑥

𝑖
, 𝑦
𝑖
∈ 𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑚.

(17)

The modules of smoothness is a measure, it is depicted
geometric structure of the underlying Banach space. The
modules of smoothness of Banach space 𝑋 are the function
𝜌
𝑋
: [0, +∞) → [0, +∞) defined by

𝜌
𝑋 (

𝑡) = sup {1
2

(




𝑥 + 𝑦





+




𝑥 − 𝑦





) − 1 : ‖𝑥‖ ≤ 1,





𝑦




≤ 𝑡} .

(18)

A Banach space 𝑋 is called uniformly smooth if
lim
𝑡→0

(𝜌
𝑋
(𝑡)/𝑡) = 0. 𝑋 is called 𝑞-uniformly smooth if

there exists a constant 𝑐 > 0 such that 𝜌
𝑋
(𝑡) ≤ 𝑐𝑡

𝑞, where
𝑞 > 1 is a real number.

Remark that 𝐽
𝑞
is single-valued if𝑋 is uniformly smooth,

and Hilbert space and 𝐿
𝑝
(or 𝑙
𝑝
) (2 ≤ 𝑝 < +∞) spaces are

2-uniformly smooth Banach spaces. In what follows, we will
denote the single-valued generalized duality mapping by 𝑗

𝑞
.

In the study of characteristic inequalities in 𝑞-uniformly
smooth Banach spaces, Xu [35] proved the following result.

Lemma 8. Let 𝑞 > 1 be a given real number and let 𝑋 be a
real uniformly smooth Banach space. Then 𝑋 is 𝑞-uniformly
smooth if and only if there exists a constant 𝑐

𝑞
> 0 such that for

all 𝑥, 𝑦 ∈ 𝑋, 𝑗
𝑞
(𝑥) ∈ 𝐽

𝑞
(𝑥), there holds the following inequality:





𝑥 + 𝑦






𝑞
≤ ‖𝑥‖

𝑞
+ 𝑞 ⟨𝑦, 𝑗

𝑞 (
𝑥)⟩ + 𝑐

𝑞





𝑦





𝑞
. (19)

Definition 9. Let 𝑆 be a self-map of𝑋, 𝑥
0
∈ 𝑋, and let 𝑥

𝑛+1
=

ℎ(𝑆, 𝑥
𝑛
) define an iteration procedurewhich yields a sequence

of points {𝑥
𝑛
}
∞

𝑛=0
in𝑋. Suppose that {𝑥 ∈ 𝑋 : 𝑆𝑥 = 𝑥} ̸= 0 and

{𝑥
𝑛
}
∞

𝑛=0
converges to a fixed point 𝑥∗ of 𝑆. Let {𝑢

𝑛
} ⊂ 𝑋 and let

𝜖
𝑛
= ‖𝑢
𝑛+1

−ℎ(𝑆, 𝑢
𝑛
)‖. If lim

𝑛→∞
𝜖
𝑛
= 0 implies that𝑢

𝑛
→ 𝑥
∗,

then the iteration procedure defined by 𝑥
𝑛+1

= ℎ(𝑆, 𝑥
𝑛
) is said

to be 𝑆-stable or stable with respect to 𝑆.

Lemma 10 (see [36]). Let {𝑎
𝑛
}, {𝑏
𝑛
}, and {𝑐

𝑛
} be three non-

negative real sequences satisfying the following condition: there
exists a natural number 𝑛

0
such that

𝑎
𝑛+1

≤ (1 − 𝑡
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
𝑡
𝑛
+ 𝑐
𝑛
, ∀𝑛 ≥ 𝑛

0
, (20)

where 𝑡
𝑛

∈ [0, 1], ∑∞
𝑛=0

𝑡
𝑛

= +∞, lim
𝑛→∞

𝑏
𝑛

= 0, and
∑
∞

𝑛=0
𝑐
𝑛
< +∞. Then 𝑎

𝑛
converges to 0 as 𝑛 → ∞.
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3. Existence Theorem

In this section, we will give the existence theorem of the
problem (1). The solvability of the problem (1) depends on
the equivalence between (1) and the problem of finding
the fixed point of the associated generalized resolvent
operator. It follows from the definition of generalized
resolvent operator 𝐽𝜌𝑖

𝑀𝑖
(𝑖 = 1, 2, . . . , 𝑚) that we can obtain

the following conclusion.

Lemma 11. Let 𝜂
𝑖
: 𝑋
𝑖
×𝑋
𝑖
→ 𝑋
∗

𝑖
,𝑁
𝑖
: 𝑋
1
×𝑋
2
×⋅ ⋅ ⋅×𝑋

𝑚
→

𝑋
𝑖
single-valued mappings, and 𝑀

𝑖
: 𝑋
𝑖
→ 2
𝑋𝑖 generalized

𝑚-accretive mapping for (𝑖 = 1, 2, . . . , 𝑚). Then the following
statements are mutually equivalent.

(i) An element (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
is a

solution to the problem (1).
(ii) There is an (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ ×𝑋

𝑚
such

that

𝑥
∗

𝑖
= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
)] , (21)

where 𝐽𝜌𝑖
𝑀𝑖

= (𝐼 + 𝜌
𝑖
𝑀
𝑖
)
−1, and 𝜌

𝑖
> 0 is constants for

all 𝑖 = 1, 2, . . . , 𝑚.
(iii) For any given constants 𝜌

𝑖
> 0, the map 𝐹 : 𝑋

1
× 𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚

→ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
is defined by

𝐹 (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)

= (𝑃
𝜌1
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . , 𝑃

𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . ,

𝑃
𝜌𝑚

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
))

(22)

for all 𝑢
𝑖
∈ 𝑋
𝑖
and 𝑖 = 1, 2, . . . , 𝑚, has a fixed point

(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
, where maps

𝑃
𝜌𝑖
: 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋
𝑖
are defined by

𝑃
𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)

= 𝐽
𝜌𝑖

𝑀𝑖
[𝑢
𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)]

(23)

for 𝑢
𝑖
∈ 𝑋
𝑖
and 𝑖 = 1, 2, . . . , 𝑚.

Proof. We first prove that (i) ⇔ (ii). Let (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈

𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
satisfy the relation in (ii). Then, the

definition of resolvent operator 𝐽𝜌𝑖
𝑀𝑖

implies that this equality
holds if and only if

𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
) ∈ (𝐼 + 𝜌

𝑖
𝑀
𝑖
) (𝑥
∗

𝑖
)

(24)

for 𝑖 = 1, 2, . . . , 𝑚; that is

0 ∈ 𝑁
𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) + 𝑀

𝑖
(𝑥
∗

𝑖
) , (25)

where 𝑖 = 1, 2, . . . , 𝑚. Thus (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ ×

𝑋
𝑚
is the solution of the problem (1).

Next, we show (ii)⇔ (iii). If (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚
satisfy following relation:

𝑥
∗

𝑖
= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
)] , (26)

then, for any 𝑖 = 1, 2, . . . , 𝑚, it follows from

𝑃
𝜌𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
)

= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
)]

(27)

that

𝑃
𝜌𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) = 𝑥
∗

𝑖
. (28)

Hence, (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
is a fixed point

of the mapping

𝐹 (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)

= (𝑃
𝜌1
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . , 𝑃

𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . ,

𝑃
𝜌𝑚

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)) .

(29)

Conversely, if (𝑥∗
1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ ×𝑋

𝑚
is a fixed

point of the mapping 𝐹 : 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋
1
× 𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚
, then

𝑃
𝜌𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) = 𝑥
∗

𝑖 (30)

for 𝑖 = 1, 2, . . . , 𝑚. Hence, from

𝑃
𝜌𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
)

= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
)] ,

(31)

we have

𝑥
∗

𝑖
= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, . . . , 𝑥

∗

𝑖−1
, 𝑥
∗

𝑖
, 𝑥
∗

𝑖+1
, . . . , 𝑥

∗

𝑚
)] (32)

for 𝑖 = 1, 2, . . . , 𝑚. Therefore (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋

1
× 𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚
satisfy the relation of (ii).

Theorem 12. Let 𝑋
𝑖
be a real 𝑞

𝑖
-uniformly smooth Banach

space with 𝑞
𝑖
> 1 and let 𝜂

𝑖
: 𝑋
𝑖
× 𝑋
𝑖
→ 𝑋

∗

𝑖
be 𝜏
𝑖
-Lipschitz

continuous and 𝛿
𝑖
-strongly monotone for any 𝑖 = 1, 2, . . . , 𝑚.

Suppose that 𝑀
𝑖

: 𝑋
𝑖

→ 2
𝑋𝑖 is generalized 𝑚-accretive

mapping, and 𝑁
𝑖
: 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋

𝑖
is 𝜎
𝑖
-strongly

accretive in the 𝑖th argument and (𝜁
𝑖1
, . . . , 𝜁

𝑖𝑖
, . . . , 𝜁

𝑖𝑚
)-

Lipschitz continuous for 𝑖 = 1, 2, . . . , 𝑚. If

𝜏
𝑗

𝛿
𝑗

𝑞𝑗√1 − 𝑞
𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜁
𝑖𝑗
𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

< 1, (33)

where 𝑐
𝑞𝑗
is the constants as in Lemma 8 for 𝑗 = 1, 2, . . . , 𝑚,

then problem (1) has a unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈

𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
.
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Proof. For any given 𝜌
𝑖
> 0 and 𝑖 = 1, 2, . . . , 𝑚, we first define

𝑃
𝜌𝑖
: 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋
𝑖
as follows:

𝑃
𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) = 𝐽
𝜌𝑖

𝑀𝑖
[𝑢
𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)] , (34)

for all 𝑢
𝑖
∈ 𝑋
𝑖
. Now define ‖ ⋅ ‖

∗
on𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
by





(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)



∗

=

𝑚

∑

𝑖=1





𝑢
𝑖





,

∀ (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) ∈ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
.

(35)

It is easy to see that (𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
, ‖ ⋅ ‖
∗
) is a Banach

space. In fact

(i) ‖(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)‖
∗

= ∑
𝑚

𝑖=1
‖𝑢
𝑖
‖ ≥ 0, the negative

being satisfied;
(ii) for all real number 𝛼,





𝛼(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)



∗

=




(𝛼𝑢
1
, 𝛼𝑢
2
, . . . , 𝛼𝑢

𝑚
)



∗

=

𝑚

∑

𝑖=1





𝛼𝑢
𝑖





=

𝑚

∑

𝑖=1

|𝛼|




𝑢
𝑖






= |𝛼|

𝑚

∑

𝑖=1





𝑢
𝑖





= |𝛼|





(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)



∗

(36)

homogeneity being satisfied;
(iii) for all (𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
), (V
1
, V
2
, . . . , V

𝑚
) ∈ 𝑋
1
×𝑋
2
×⋅ ⋅ ⋅×

𝑋
𝑚
,





(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) + (V
1
, V
2
, . . . , V

𝑚
)



∗

=




(𝑢
1
+ V
1
, 𝑢
2
+ V
2
, . . . , 𝑢

𝑚
+ V
𝑚
)



∗

=

𝑚

∑

𝑖=1





𝑢
𝑖
+ V
𝑖





≤

𝑚

∑

𝑖=1

(




𝑢
𝑖





+




V
𝑖





)

=

𝑚

∑

𝑖=1





𝑢
𝑖





+

𝑚

∑

𝑖=1





V
𝑖






=




(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)



∗

+




(V
1
, V
2
, . . . , V

𝑚
)



∗
,

(37)

the triangle inequality being satisfied;
(iv) let ‖(𝑢

1
, 𝑢
2
, . . . , 𝑢

𝑚
)‖
∗
= 0; that is, ∑𝑚

𝑖=1
‖𝑢
𝑖
‖ = 0; this

implies that ‖𝑢
𝑖
‖ = 0 (𝑖 = 1, 2, . . . , 𝑚); thus 𝑢

𝑖
= 0 (𝑖 =

1, 2, . . . , 𝑚); we get ‖ ⋅ ‖
∗
is a norm on the 𝑋

1
× 𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚
;

(v) let (𝑢𝑛
1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑚
) ∈ 𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
is Cauchy

sequence; that is, for ∀𝜖 > 0, there exists a positive
integer𝑁; let 𝑛 > 𝑁; we have





(𝑢
𝑛+𝑝

1
, 𝑢
𝑛+𝑝

2
, . . . , 𝑢

𝑛+𝑝

𝑚
) − (𝑢

𝑛

1
, 𝑢
𝑛

2
, . . . , 𝑢

𝑛

𝑚
)





∗

=

𝑚

∑

𝑖=1






𝑢
𝑛+𝑝

𝑖
− 𝑢
𝑛

𝑖






< 𝜖.

(38)

Thus, for all 𝑖 ∈ {1, 2, 3, . . . , 𝑚}, we have ‖𝑢𝑛+𝑝
𝑖

− 𝑢
𝑛

𝑖
‖ <

𝜖 (𝑛 > 𝑁, 𝑝 = 1, 2, 3, . . . , ); that is, {𝑢𝑛
𝑖
} ⊂ 𝑋

𝑖
is also

Cauchy sequence; thus lim
𝑛→∞

𝑢
𝑛

𝑖
= 𝑢
𝑖
∈ 𝑋
𝑖
for 𝑖 =

1, 2, . . . , 𝑚; we get (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) ∈ 𝑋
1
×𝑋
2
×⋅ ⋅ ⋅×𝑋

𝑚

and (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) is a cluster point on the (𝑋

1
×𝑋
2
×

⋅ ⋅ ⋅ × 𝑋
𝑚
, ‖ ⋅ ‖
∗
); we claim (𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
, ‖ ⋅ ‖
∗
)

is a Banach space.

Now, by (34), for any given 𝜌
𝑖
> 0, define mapping 𝐹 :

𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
by

𝐹 (𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)

= (𝑃
𝜌1
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . , 𝑃

𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) , . . . ,

𝑃
𝜌𝑚

(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)) ,

(39)

where 𝑢
𝑖
∈ 𝑋
𝑖
for 𝑖 = 1, 2, . . . , 𝑚.

In the sequel, we prove that 𝐹 is a contractive mapping on
the (𝑋

1
×𝑋
2
× ⋅ ⋅ ⋅ ×𝑋

𝑚
, ‖ ⋅ ‖
∗
). In fact, for any 𝑢

𝑖
, V
𝑖
∈ 𝑋
𝑖
and

𝑖 = 1, 2, . . . , 𝑚, it follows from (34) and Lemma 7 that





𝑃
𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝑃
𝜌𝑖
(V
1
, V
2
, . . . , V

𝑚
)







=






𝐽
𝜌𝑖

𝑀𝑖
[𝑢
𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
)]

−𝐽
𝜌𝑖

𝑀𝑖
[V
𝑖
− 𝜌
𝑖
𝑁
𝑖
(V
1
, V
2
, . . . , V

𝑚
)]







≤

𝜏
𝑖

𝛿
𝑖





𝑢
𝑖
− V
𝑖
− 𝜌
𝑖
(𝑁
𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝑁
𝑖
(V
1
, V
2
, . . . , V

𝑚
))





≤

𝜏
𝑖

𝛿
𝑖





𝑢
𝑖
− V
𝑖

− 𝜌
𝑖
(𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

− 𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
))





+

𝜌
𝑖
𝜏
𝑖

𝛿
𝑖





𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

− 𝑁
𝑖
(V
1
, . . . , V

𝑖−1
, V
𝑖
, V
𝑖+1

, . . . , V
𝑚
)




.

(40)

By assumptions and Lemma 8, we have




𝑢
𝑖
− V
𝑖
− 𝜌
𝑖
(𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

− 𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
))





𝑞𝑖

≤




𝑢
𝑖
− V
𝑖






𝑞𝑖

+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖





𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

− 𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)





𝑞𝑖

− 𝑞
𝑖
𝜌
𝑖
⟨𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, 𝑢
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

− 𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
) , 𝑗
𝑞𝑖
(𝑢
𝑖
− V
𝑖
)⟩

≤ (1 − 𝑞
𝑖
𝜌
𝑖
𝜎
𝑖
+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖
𝜁
𝑞𝑖

𝑖𝑖
)




𝑢
𝑖
− V
𝑖






𝑞𝑖
,
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𝑁
𝑖
(𝑢
1
, . . . , 𝑢

𝑖−1
, V
𝑖
, 𝑢
𝑖+1

, . . . , 𝑢
𝑚
)

−𝑁
𝑖
(V
1
, . . . , V

𝑖−1
, V
𝑖
, V
𝑖+1

, . . . , V
𝑚
)





≤

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

𝜁
𝑖𝑗






𝑢
𝑗
− V
𝑗






.

(41)

From (40)-(41), we obtain






𝑃
𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝑃
𝜌𝑖
(V
1
, V
2
, . . . , V

𝑚
)







≤

𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

𝜁
𝑖𝑗






𝑢
𝑗
− V
𝑗







+

𝜏
𝑖

𝛿
𝑖

𝑞𝑖√1 − 𝑞
𝑖
𝜌
𝑖
𝜎
𝑖
+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖
𝜁
𝑞𝑖

𝑖𝑖





𝑢
𝑖
− V
𝑖






(42)

for 𝑖 = 1, 2, . . . , 𝑚. Equation (42) implies that

𝑚

∑

𝑗=1








𝑃
𝜌𝑗
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝑃
𝜌𝑗
(V
1
, V
2
, . . . , V

𝑚
)








=

𝑚

∑

𝑖=1






𝑃
𝜌𝑖
(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝑃
𝜌𝑖
(V
1
, V
2
, . . . , V

𝑚
)







≤

𝑚

∑

𝑖=1

(

𝜏
𝑖

𝛿
𝑖

𝑞𝑖√1 − 𝑞
𝑖
𝜌
𝑖
𝜎
𝑖
+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖
𝜁
𝑞𝑖

𝑖𝑖





𝑢
𝑖
− V
𝑖






+

𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

𝜁
𝑖𝑗






𝑢
𝑗
− V
𝑗






)

≤

𝑚

∑

𝑖=1

𝜏
𝑖

𝛿
𝑖

𝑞𝑖√1 − 𝑞
𝑖
𝜌
𝑖
𝜎
𝑖
+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖
𝜁
𝑞𝑖

𝑖𝑖





𝑢
𝑖
− V
𝑖






+

𝑚

∑

𝑖=1

𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

𝜁
𝑖𝑗






𝑢
𝑗
− V
𝑗







=

𝑚

∑

𝑗=1

𝜏
𝑗

𝛿
𝑗

𝑞𝑗√1 − 𝑞
𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗






𝑢
𝑗
− V
𝑗







+

𝑚

∑

𝑗=1

(

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗

𝛿
𝑖

)






𝑢
𝑗
− V
𝑗







=

𝑚

∑

𝑗=1

[

[

𝜏
𝑗

𝛿
𝑗

𝑞𝑗√1 − 𝑞
𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗

𝛿
𝑖

]

]

×






𝑢
𝑗
− V
𝑗







≤ 𝑘

𝑚

∑

𝑗=1






𝑢
𝑗
− V
𝑗






,

(43)

where 𝑘 = max
1≤𝑗≤𝑚

{(𝜏
𝑗
/𝛿
𝑗
)
𝑞𝑗√1 − 𝑞

𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗
+

∑
𝑚

𝑖=1,𝑖 ̸=𝑗
(𝜁
𝑖𝑗
𝜌
𝑖
𝜏
𝑖
/𝛿
𝑖
)}. By (33), we know that 0 ≤ 𝑘 < 1. It follows

from (43) that




𝐹(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − 𝐹(V

1
, V
2
, . . . , V

𝑚
)



∗

≤ 𝑘




(𝑢
1
, 𝑢
2
, . . . , 𝑢

𝑚
) − (V
1
, V
2
, . . . , V

𝑚
)



∗
.

(44)

This proves that 𝐹 : 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
→ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ ×

𝑋
𝑚
is a contraction mapping. Hence, there exists a unique

(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
such that

𝐹 ((𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
)) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ; (45)

that is, 𝑃
𝜌𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) = 𝑥
∗

𝑖
for 𝑖 = 1, 2, . . . , 𝑚; that is,

𝑥
∗

𝑖
= 𝐽
𝜌𝑖

𝑀𝑖
[𝑥
∗

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
)] . (46)

By Lemma 11, (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) is the unique solution of

problem (1). This completes the proof.

Remark 13. If 𝑚 = 2, then Theorem 12 reduces to Theorem
3.2 of Lan [19].

Corollary 14. LetH
𝑖
be realHilbert space and 𝜂

𝑖
: H
𝑖
×H
𝑖
→

H
𝑖
be 𝜏
𝑖
-Lipschitz continuous and 𝛿

𝑖
-strongly monotone for

any 𝑖 = 1, 2, . . . , 𝑚. Suppose that𝑀
𝑖
: H
𝑖
→ 2

H𝑖 is maximal
𝜂
𝑖
-monotone mapping, 𝑁

𝑖
: H
1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚
→ H

𝑖

is 𝜎
𝑖
-strongly monotone in the 𝑖th argument, and

(𝜁
𝑖1
, . . . , 𝜁

𝑖𝑖
, . . . , 𝜁

𝑖𝑚
)-Lipschitz continuous for 𝑖 = 1, 2, . . . , 𝑚. If

𝜏
𝑗

𝛿
𝑗

2
√1 − 2𝜌

𝑗
𝜎
𝑗
+ 𝜌
2

𝑗
𝜁
2

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜁
𝑖𝑗
𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

< 1, (47)

then problem (1) has a unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈

H
1
×H
2
× ⋅ ⋅ ⋅ ×H

𝑚
.

Corollary 15. Let H
𝑖

be real Hilbert space for any
𝑖 = 1, 2, . . . , 𝑚. Suppose that 𝜑

𝑖
: H
𝑖

→ (−∞, +∞] is
proper, convex, and lower semicontinuous functional on H

𝑖

and𝑁
𝑖
: H
1
×H
2
× ⋅ ⋅ ⋅ ×H

𝑚
→ H

𝑖
is 𝜎
𝑖
-strongly monotone

in the 𝑖th argument and (𝜁
𝑖1
, . . . , 𝜁

𝑖𝑖
, . . . , 𝜁

𝑖𝑚
)-Lipschitz

continuous for 𝑖 = 1, 2, . . . , 𝑚. If

2
√1 − 2𝜌

𝑗
𝜎
𝑗
+ 𝜌
2

𝑗
𝜁
2

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜌
𝑖
𝜁
𝑖𝑗
< 1, (48)

then problem (2) has a unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈

H
1
×H
2
× ⋅ ⋅ ⋅ ×H

𝑚
.

4. Perturbed Iterative Algorithms

In this section, by using Definition 9 and Lemma 10, we
construct a new perturbed iterative algorithm with mixed
errors for solving problem (1) and prove the convergence and
stability of the iterative sequence generated by the algorithm.

Algorithm 16. Let 𝜂
𝑖
: 𝑋
𝑖
×𝑋
𝑖
→ 𝑋
∗

𝑖
and𝑁

𝑖
: 𝑋
1
×𝑋
2
× ⋅ ⋅ ⋅ ×

𝑋
𝑚

→ 𝑋
𝑖
be single-valuedmappings and let𝑀

𝑖
: 𝑋
𝑖
→ 2
𝑋𝑖
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be generalized 𝑚-accretive mapping for 𝑖 = 1, 2, . . . , 𝑚. For
any given initial point (𝑥0

1
, 𝑥
0

2
, . . . , 𝑥

0

𝑚
) ∈ 𝑋
1
×𝑋
2
×⋅ ⋅ ⋅×𝑋

𝑚
, the

perturbed iterative sequence {(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} for problem

(1) is defined by

𝑥
𝑛+1

𝑖
= (1 − 𝛼

𝑛
) 𝑥
𝑛

𝑖
+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑖
[𝑥
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
,

(49)

where 𝑛 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, {𝛼
𝑛
} is a sequence in [0, 1],

and {𝑢
𝑛

𝑖
}, {𝑤
𝑛

𝑖
} ⊂ 𝑋

𝑖
are errors to take into account a possible

inexact computation of the resolvent operator point satisfying
the following conditions:

(i) 𝑢𝑛
𝑖
= 𝑢
𝑛

𝑖
+ 𝑢
𝑛

𝑖
;

(ii) lim
𝑛→∞

‖𝑢
𝑛

𝑖
‖ = 0;

(iii) ∑∞
𝑛=0

‖𝑢
𝑛

𝑖
‖ < +∞, ∑

∞

𝑛=0
‖𝑤
𝑛

𝑖
‖ < +∞ for 𝑖 =

1, 2, . . . , 𝑚.

Let {(𝑧𝑛
1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)} be any sequence in 𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚

and define {(𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
)} by

𝜖
𝑛

𝑖
=






𝑧
𝑛+1

𝑖
− {(1 − 𝛼

𝑛
) 𝑧
𝑛

𝑖

+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑖
[𝑧
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
}







(50)

for 𝑖 = 1, 2, . . . , 𝑚.

Algorithm 17. Let 𝜂
𝑖
: H
𝑖
×H
𝑖
→ H

𝑖
and𝑁

𝑖
: H
1
×H
2
×⋅ ⋅ ⋅×

H
𝑚

→ H
𝑖
be single-valued mappings and let 𝑀

𝑖
: H
𝑖
→

2
H𝑖 bemaximal 𝜂

𝑖
-monotonemapping for 𝑖 = 1, 2, . . . , 𝑚. For

any given initial point (𝑥0
1
, 𝑥
0

2
, . . . , 𝑥

0

𝑚
) ∈ H

1
× H
2
× ⋅ ⋅ ⋅ ×

H
𝑚
, the perturbed iterative sequence {(𝑥

𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} for

problem (1) is defined by

𝑥
𝑛+1

𝑖
= (1 − 𝛼

𝑛
) 𝑥
𝑛

𝑖
+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑖
[𝑥
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
,

(51)

where 𝑛 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, {𝛼
𝑛
} is a sequence in [0, 1],

and {𝑢
𝑛

𝑖
}, {𝑤
𝑛

𝑖
} ⊂ 𝑋

𝑖
are errors to take into account a possible

inexact computation of the resolvent operator point satisfying
the following conditions:

(i) lim
𝑛→∞

‖𝑢
𝑛

𝑖
‖ = 0;

(ii) ∑∞
𝑛=0

‖𝑤
𝑛

𝑖
‖ < +∞ for 𝑖 = 1, 2, . . . , 𝑚.

Let {(𝑧𝑛
1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)} be any sequence inH

1
×H
2
× ⋅ ⋅ ⋅ ×H

𝑚

and define {(𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
)} by

𝜖
𝑛

𝑖
=






𝑧
𝑛+1

𝑖
− {(1 − 𝛼

𝑛
) 𝑧
𝑛

𝑖

+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑖
[𝑧
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
}







(52)

for 𝑖 = 1, 2, . . . , 𝑚.

Algorithm 18. Let 𝑁
𝑖
: H
1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚
→ H

𝑖
be

single-valuedmappings and 𝜑
𝑖
: H
𝑖
→ (−∞, +∞] is proper,

convex, and lower semi-continuous functional on H
𝑖
for

𝑖 = 1, 2, . . . , 𝑚. For any given initial point (𝑥0
1
, 𝑥
0

2
, . . . , 𝑥

0

𝑚
) ∈

H
1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚
, the perturbed iterative sequence

{(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} for problem (2) is defined by

𝑥
𝑛+1

𝑖
= (1 − 𝛼

𝑛
) 𝑥
𝑛

𝑖
+ 𝛼
𝑛
𝐽
𝜑𝑖
[𝑥
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)] + 𝑤

𝑛

𝑖
,

(53)

where 𝑛 ≥ 0, 𝑖 = 1, 2, . . . , 𝑚, {𝛼
𝑛
} is a sequence in [0, 1],

{𝑤
𝑛

𝑖
} ⊂ 𝑋

𝑖
are errors to take into account a possible inexact

computation of the resolvent operator point satisfying the
condition ∑

∞

𝑛=0
‖𝑤
𝑛

𝑖
‖ < +∞ for 𝑖 = 1, 2, . . . , 𝑚. Let

{(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)} be any sequence in H

1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚

and define {(𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
)} by

𝜖
𝑛

𝑖
=






𝑧
𝑛+1

𝑖
− {(1 − 𝛼

𝑛
) 𝑧
𝑛

𝑖

+ 𝛼
𝑛
𝐽
𝜑𝑖
[𝑧
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝑤
𝑛

𝑖
}







(54)

for 𝑖 = 1, 2, . . . , 𝑚.

Remark 19. If𝑚 = 2, thenAlgorithm 16 reduces toAlgorithm
4.3 of Lan [19].

Next we will show the convergence and stability of
Algorithm 16.

Theorem20. Suppose that𝑋
𝑖
, 𝜂
𝑖
,𝑁
𝑖
, and𝑀

𝑖
(𝑖 = 1, 2, . . . , 𝑚)

are the same as in Theorem 12. If ∑
∞

𝑛=0
𝛼
𝑛

= +∞ and
condition (33) holds, then the perturbed iterative sequence
{(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} defined by Algorithm 16 converges strongly

to the unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋

1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚

of the problem (1). Moreover, if there exists 𝑎 ∈ (0, 𝛼
𝑛
] for all

𝑛 ≥ 0, then

lim
𝑛→∞

(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) (55)

if and only if

lim
𝑛→∞

(𝜖
𝑛

1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) = (0, 0, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, (56)

where (𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) is defined by (50).

Proof. From Theorem 12, we know that problem (1) has a
unique solution

(𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ 𝑋
1
× 𝑋
2
× ⋅ ⋅ ⋅ × 𝑋

𝑚
. (57)
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It follows from (49) and the proof of (42) inTheorem 12 that,
for 𝑖 = 1, 2, . . . , 𝑚,






𝑥
𝑛+1

𝑖
− 𝑥
∗

𝑖







≤ (1 − 𝛼
𝑛
)




𝑥
𝑛

𝑖
− 𝑥
∗

𝑖






+ 𝛼
𝑛

{

{

{

𝜏
𝑖

𝛿
𝑖

𝑞𝑖√1 − 𝑞
𝑖
𝜌
𝑖
𝜎
𝑖
+ 𝑐
𝑞𝑖
𝜌
𝑞𝑖

𝑖
𝜁
𝑞𝑖

𝑖𝑖





𝑥
𝑛

𝑖
− 𝑥
∗

𝑖






+

𝜌
𝑖
𝜏
𝑖

𝛿
𝑖

𝑚

∑

𝑗=1,𝑗 ̸=𝑖

𝜁
𝑖𝑗






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗







}

}

}

+ 𝛼
𝑛






𝑢
𝑛

𝑖






+ (






𝑢
𝑛

𝑖






+




𝑤
𝑛

𝑖





) .

(58)

It follows from (58), we have

𝑚

∑

𝑖=1






𝑥
𝑛+1

𝑖
− 𝑥
∗

𝑖







≤ (1 − 𝛼
𝑛
)

𝑚

∑

𝑖=1





𝑥
𝑛

𝑖
− 𝑥
∗

𝑖






+ 𝛼
𝑛

𝑚

∑

𝑗=1

[

[

𝜏
𝑗

𝛿
𝑗

𝑞𝑗√1 − 𝑞
𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗

𝛿
𝑖

]

]

×






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗






+ 𝛼
𝑛

𝑚

∑

𝑖=1






𝑢
𝑛

𝑖






+

𝑚

∑

𝑖=1






𝑢
𝑛

𝑖






+

𝑚

∑

𝑖=1





𝑤
𝑛

𝑖






= (1 − 𝛼
𝑛
)

𝑚

∑

𝑗=1






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗







+ 𝛼
𝑛

𝑚

∑

𝑗=1

[

[

𝜏
𝑗

𝛿
𝑗

𝑞𝑗√1 − 𝑞
𝑗
𝜌
𝑗
𝜎
𝑗
+ 𝑐
𝑞𝑗
𝜌

𝑞𝑗

𝑗
𝜁

𝑞𝑗

𝑗𝑗
+

𝑚

∑

𝑖=1,𝑖 ̸=𝑗

𝜌
𝑖
𝜏
𝑖
𝜁
𝑖𝑗

𝛿
𝑖

]

]

×






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗






+ 𝛼
𝑛

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑤
𝑛

𝑗







≤ [1 − 𝛼
𝑛 (
1 − 𝑘)]

𝑚

∑

𝑗=1






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗







+ 𝛼
𝑛 (
1 − 𝑘) ⋅

1

1 − 𝑘

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗







+ (

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑤
𝑛

𝑗






) ,

(59)

where 𝑘 is the same as in (43). Letting 𝑡
𝑛

=

𝛼
𝑛
(1 − 𝑘) ∈ [0, 1], 𝑏

𝑛
= (1/(1 − 𝑘))∑

𝑚

𝑗=1
‖𝑢
𝑛

𝑗
‖, and

𝑐
𝑛
= ∑
𝑚

𝑗=1
‖𝑢
𝑛

𝑗
‖ + ∑

𝑚

𝑗=1
‖𝑤
𝑛

𝑗
‖ (𝑛 ≥ 0), then it follows from

∑
∞

𝑛=0
𝛼
𝑛
= +∞ and (i)–(iii) of Algorithm 16 that

∞

∑

𝑛=0

𝑡
𝑛
= +∞, lim

𝑛→∞
𝑏
𝑛
=

1

1 − 𝑘

𝑚

∑

𝑗=1

( lim
𝑛→∞






𝑢
𝑛

𝑗






) = 0,

∞

∑

𝑛=0

𝑐
𝑛
=

𝑚

∑

𝑗=1

∞

∑

𝑛=0






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1

∞

∑

𝑛=0






𝑤
𝑛

𝑗






< +∞.

(60)

Setting 𝑎
𝑛
= ∑
𝑚

𝑗=1
‖𝑥
𝑛

𝑗
− 𝑥
∗

𝑗
‖, then (59) can be rewritten as

𝑎
𝑛+1

≤ (1 − 𝑡
𝑛
) 𝑎
𝑛
+ 𝑏
𝑛
𝑡
𝑛
+ 𝑐
𝑛
, 𝑛 = 0, 1, 2, . . . . (61)

It follows from Lemma 10 that lim
𝑛→∞

𝑎
𝑛
= 0; that is,

lim
𝑛→∞

𝑚

∑

𝑗=1






𝑥
𝑛

𝑗
− 𝑥
∗

𝑗






= 0; (62)

thus

𝑥
𝑛

𝑗
→ 𝑥
∗

𝑗
(𝑛 → ∞) , (𝑗 = 1, 2, . . . , 𝑚) . (63)

Hence, we know that the sequence {(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)}

converges strongly to the unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) of

the problem (1).
Now we prove the second conclusion. By (50), now we

know






𝑧
𝑛+1

𝑖
− 𝑥
∗

𝑖







≤






(1 − 𝛼

𝑛
) 𝑧
𝑛

𝑖
+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑖
[𝑧
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
− 𝑥
∗

𝑖






+ 𝜖
𝑛

𝑖
,

(64)

where 𝑖 = 1, 2, . . . , 𝑚. As the proof of inequality (59), we have

𝑚

∑

𝑗=1








(1 − 𝛼
𝑛
) 𝑧
𝑛

𝑗
+ 𝛼
𝑛
𝐽

𝜌𝑗

𝑀𝑗
[𝑧
𝑛

j − 𝜌
𝑗
𝑁
𝑗
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑗
+ 𝑤
𝑛

𝑗
− 𝑥
∗

𝑗








≤ [1 − 𝛼
𝑛 (
1 − 𝑘)]

𝑚

∑

𝑗=1






𝑧
𝑛

𝑗
− 𝑥
∗

𝑗







+ 𝛼
𝑛 (
1 − 𝑘) ⋅

1

1 − 𝑘

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗







+ (

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑤
𝑛

𝑗






) .

(65)
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Since 0 < 𝑎 ≤ 𝛼
𝑛
(𝑛 = 0, 1, 2, . . . , ), it follows from (64) and

(65) that
𝑚

∑

𝑗=1






𝑧
𝑛+1

𝑗
− 𝑥
∗

𝑗







≤ [1 − 𝛼
𝑛 (
1 − 𝑘)]

𝑚

∑

𝑗=1






𝑧
𝑛

𝑗
− 𝑥
∗

𝑗







+ 𝛼
𝑛 (
1 − 𝑘) ⋅

1

1 − 𝑘

(

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

1

𝑎

𝑚

∑

𝑗=1

𝜖
𝑛

𝑗
)

+ (

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑤
𝑛

𝑗






) .

(66)

Suppose that lim
𝑛→∞

(𝜖
𝑛

1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) = (0, 0, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

. Letting

𝑏


𝑛
= (1/(1−𝑘))(∑

𝑚

𝑗=1
‖𝑢
𝑛

𝑗
‖+(1/𝑎)∑

𝑚

𝑗=1
𝜖
𝑛

𝑗
) and 𝑎

𝑛
= ∑
𝑚

𝑗=1
‖𝑧
𝑛

𝑗
−

𝑥
∗

𝑗
‖, then (66) implies that

𝑎


𝑛+1
≤ (1 − 𝑡

𝑛
) 𝑎


𝑛
+ 𝑏


𝑛
𝑡
𝑛
+ 𝑐
𝑛
, 𝑛 = 0, 1, 2, . . . , (67)

where 𝑡
𝑛
, 𝑐
𝑛
are the same as previously. Since lim

𝑛→∞
‖𝑢
𝑛

𝑗
‖ =

0 and lim
𝑛→∞

𝜖
𝑛

𝑗
= 0 (𝑗 = 1, 2, . . . , 𝑚),

lim
𝑛→∞

𝑏


𝑛
=

1

1 − 𝑘

[

[

𝑚

∑

𝑗=1

( lim
𝑛→∞






𝑢
𝑛

𝑗






) +

1

𝑎

𝑚

∑

𝑗=1

( lim
𝑛→∞

𝜖
𝑛

𝑗
)
]

]

= 0.

(68)

It again follows from Lemma 10, we have lim
𝑛→∞

𝑎


𝑛
= 0

and so

lim
𝑛→∞

(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) . (69)

Conversely, if lim
𝑛→∞

(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
), it

follows from (50), then we get

𝜖
𝑛

𝑖
≤






𝑧
𝑛+1

𝑖
− 𝑥
∗

𝑖







+








(1 − 𝛼
𝑛
) 𝑧
𝑛

𝑖
+ 𝛼
𝑛
𝐽
𝜌𝑖

𝑀𝑗
[𝑧
𝑛

𝑖
− 𝜌
𝑖
𝑁
𝑖
(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
)]

+ 𝛼
𝑛
𝑢
𝑛

𝑖
+ 𝑤
𝑛

𝑖
− 𝑥
∗

𝑖








, ∀𝑖 = 1, 2, . . . , 𝑚.

(70)

Combining (65) with (70), we have
𝑚

∑

𝑖=1

𝜖
𝑛

𝑖
≤

𝑚

∑

𝑖=1






𝑧
𝑛+1

𝑖
− 𝑥
∗

𝑖






+ [1 − 𝛼

𝑛 (
1 − 𝑘)]

𝑚

∑

𝑗=1






𝑧
𝑛

𝑗
− 𝑥
∗

𝑗







+ 𝛼
𝑛 (
1 − 𝑘) ⋅

1

1 − 𝑘

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗







+ (

𝑚

∑

𝑗=1






𝑢
𝑛

𝑗






+

𝑚

∑

𝑗=1






𝑤
𝑛

𝑗






) → 0 (𝑛 → ∞) .

(71)

This completes the proof.

Corollary 21. Suppose that H
𝑖
, 𝜂
𝑖
, 𝑁
𝑖
, and 𝑀

𝑖
(𝑖 =

1, 2, . . . , 𝑚) are the same as in Corollary 14. If ∑∞
𝑛=0

𝛼
𝑛
= +∞

and condition (47) holds, then the perturbed iterative sequence
{(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} defined byAlgorithm 17 converges strongly to

the unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ H

1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚

of the problem (1). Moreover, if there exists 𝑎 ∈ (0, 𝛼
𝑛
] for all

𝑛 ≥ 0, then lim
𝑛→∞

(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) if and

only if

lim
𝑛→∞

(𝜖
𝑛

1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) = (0, 0, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, (72)

where (𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) is defined by (50).

Corollary 22. Assume that H
𝑖
, 𝑁
𝑖
, and 𝜑

𝑖
(𝑖 = 1, 2, . . . , 𝑚)

are the same as in Corollary 15. If ∑
∞

𝑛=0
𝛼
𝑛

= +∞ and
condition (48) holds, then the perturbed iterative sequence
{(𝑥
𝑛

1
, 𝑥
𝑛

2
, . . . , 𝑥

𝑛

𝑚
)} defined byAlgorithm 18 converges strongly to

the unique solution (𝑥
∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) ∈ H

1
× H
2
× ⋅ ⋅ ⋅ × H

𝑚

of the problem (2). Moreover, if there exists 𝑎 ∈ (0, 𝛼
𝑛
] for all

𝑛 ≥ 0, then lim
𝑛→∞

(𝑧
𝑛

1
, 𝑧
𝑛

2
, . . . , 𝑧

𝑛

𝑚
) = (𝑥

∗

1
, 𝑥
∗

2
, . . . , 𝑥

∗

𝑚
) if and

only if

lim
𝑛→∞

(𝜖
𝑛

1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) = (0, 0, . . . , 0)⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑚

, (73)

where (𝜖𝑛
1
, 𝜖
𝑛

2
, . . . , 𝜖

𝑛

𝑚
) is defined by (54).

Remark 23. If 𝑚 = 2, then Theorem 20 reduces to Theorem
4.3 of Lan [19]. Further, one can easily see that our results
presented in this paper may be viewed as an refinement and
improvement of the previously known results.
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