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This paper discusses the discrete-time stability analysis of a neural network inverse model control strategy for a relative order two
nonlinear system. The analysis is done by representing the closed loop system in state space format and then analyzing the time
derivative of the state trajectory using Lyapunov’s direct method. The analysis shows that the tracking output error of the states is
confined to a ball in the neighborhood of the equilibrium point where the size of the ball is partly dependent on the accuracy of
the neural network model acting as the controller. Simulation studies on the two-tank-in-series system were done to complement
the stability analysis and to demonstrate some salient results of the study.

1. Introduction

The utilization of the inverse model of a plant or simply
called the inverse model as controlling nonlinear systems
has become increasingly useful recently [1]. Since neural
networks have the well-known ability to model any system
arbitrarily accurately, their use as the inverse model in
this control strategy is highly appropriate [2–6]. However
many of these nonlinear-based inverse control strategies
including the neural network inverse model control strategy
are normally formulated in input-output form. These
input-output approaches have some important input-
output stability and feedback properties but do not lead
to an analytical controller formulation and global stability
analysis, given the abstract nature the nonlinear operators
applied (in contrast to linear systems where output feedback
controllers can be derived in the form of transfer functions).
Synthesis and analysis of nonlinear dynamic output feedback
controllers including closed loop stability analysis normally
rely on the state space realizations of the controllers within
these nonlinear systems. Furthermore, in nonlinear systems,

much more useful process information is hidden in the state
space description of the process.

Stability theory plays a central role in the design and
application of various control algorithms and one popular
method to study stability especially for nonlinear system
is the Lyapunov stability theory. This theory states that an
equilibrium point is asymptotically stable if all solutions
starting at nearby points not only stay nearby but also tend
to the equilibrium points as time approaches infinity. This
is normally done by defining the Lyapunov function and
checking on the value of its derivative with time. The details
of this method can be found in [7, 8]. This theory has been
applied for many other control algorithms in recent years
[9–12] but limited work has been found in the literature
concerning the stability analysis of inverse model neural
network control strategies.

Hernández and Arkun [13] studied the local stability of
these neural network inverse model control strategies by
analyzing the Jacobian of the state space matrix. Etxebarria
[14] proved the closed loop stability of their neural network
based adaptive system through studying the convergence of
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Figure 1: Neural network in IMC strategy.

the error bounds in tracking. Nikravesh et al. [15] also studied
the stability analysis of a dynamic neural network based con-
trol system in an internal model control (IMC) framework
by also analyzing the eigenvalues of the Jacobian of the state
spacematrix representations, which is then used to determine
the optimal neural network structure. Recently, Piroddi uti-
lized a Lyapunov based method to analyze the properties of a
hybrid neural network controller [16] and alsoWuet al. used a
Lyapunovmethod to study the stability of an adaptive neural-
based controller for control of an invented pendulum [17].

The difficulty in analyzing the stability of the neural
network control strategies is that it is difficult to formulate
the neural network controller in the format where the
Lyapunov based stability analyses can be applied directly
since neural networks are normally represented by an input-
output structure only. Hence, our attempt here differs from
the rest in that it involves the representation of the neural
network inverse model control system in state space format
and the direct usage of the Lyapunov secondmethod to study
the closed loop stability of the system, which is one novel
contribution of this work.

The structure of the paper is as follows. Initially we
discuss the inverse model control strategy involving neural
networks. Next we discuss the formulation of the closed
loop state space representation for the inverse model control
strategy controlling typical relative order two systems.This is
followed by discussing the stability analysis of the closed loop
systems through Lyapunov’s method, after which the analysis
is complemented through some simulation case studies on a
two-tank-in-series system.

2. Neural Network Inverse Model
Control Strategy

A simple form in utilizing neural networks for control in the
inverse model control strategy is the direct inverse control
strategy. In this case the neural network inversemodel, acting
as the controller, has to learn to supply at its output the
appropriate control parameters to achieve the desired target
input. The network inverse model in then utilized in the
control strategy by simply cascading it with the controlled
system or plant. In this control scheme the desired set point
is fed to the network together with the past plant inputs
and outputs to predict the desired current input [18]. These
methods rely heavily on the accuracy of the inverse model
and lack robustness, which can be attributed mainly to the
absence of the feedback.

Amuchmore robust and stable strategy is that of the non-
linear internal model control technique, which is basically an
extension of the linear IMCmethod [19]. In this method both
the neural network forward and inversemodels (see Figure 1)
are used directly as elements within the feedback loop. The
neural network inverse model can be obtained by directly
pretraining the neural network to identify the inverse of the
processmodel or by numerically inverting the neural network
forwardmodel at each interval byNewton’smethod.However
these numerical techniques are computationally intensive
and time consuming and are highly sensitive to the initial
estimates. The use of the pretrained neural networks model
gives faster implementation, andwewill resort to thismethod
in our simulation studies later. Details of these forward and
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inverse models as well as their method of identification can
be found elsewhere [18, 20–23]. The IMC approach is similar
in structure to the direct inverse approach above except for
two additions. First is the addition of the forward model
placed in parallel with the plant, to cater for plant or model
mismatches, and second is that the error between the plant
output and neural net forward model is subtracted from the
set point before being fed into the inverse model. The other
input data to the inverse model is similar to the direct inverse
method.The forward model is fed with the input of the plant
(i.e., output of inverse model) as well as the past inputs and
past outputs of the plant in our study. The forward model
can however also be fed with its own past outputs instead of
the plant outputs to form a recurrent network, especially in
dealingwith cases of noisy plant output data (as seen from the
dotted line in Figure 1). A tuning filter F is introduced prior to
the controller in this IMCapproach to incorporate robustness
in the feedback system (especially where it is difficult to get
exact inverse models) and also to project the error signal into
the appropriate input space of the controller.

3. Closed Loop State Space Representation of
Inverse Model Control Strategy

3.1. System Representation: Relative Order Two Systems. In
this case the system to be controlled is in the following form:

𝑥 (𝑘 + 1) = Φ [𝑥 (𝑘) , 𝑢 (𝑘)] ,

𝑦 (𝑘) = ℎ [𝑥 (𝑘)] ,

(1)

where in this case

𝑥
𝑛
(𝑘) = [

𝑥
1
(𝑘)

𝑥
2
(𝑘)
] ,

Φ [𝑥 (𝑘) , 𝑢 (𝑘)] = [

𝑓
1
(𝑥
1
(𝑘) , 𝑥

2
(𝑘)) + 𝑢 (𝑘)

𝑓
2
(𝑥
1
(𝑘) , 𝑥

2
(𝑘))

] ,

𝑦 = 𝑥
2
(𝑘) ,

(2)

where 𝑥 denotes the vector of state variables, u denotes the
manipulated input, and 𝑦 represents the output. It is assumed
that 𝑥 ∈ 𝑋 ⊂ R𝑛 and 𝑢 ∈ 𝑈 ⊂ R, where 𝑋 and 𝑈 are
open-connected sets that contain the origin (i.e., the nominal
equilibrium point). Φ(𝑥, 𝑢) is an analytic vector function on
𝑋 × 𝑈 and ℎ(𝑥) is an analytic scalar function on𝑋.

This system in discrete-time constitutes relative order two
systems since it satisfies the criteria of 𝜕

𝑦
(𝑘+1)/𝜕

𝑢
(𝑘) ≡ 0 and

𝜕
𝑦
(𝑘 + 2)/𝜕

𝑢
(𝑘) ̸≡ 0 [24].

3.2. State Space Representation: Neural Network InverseModel.
Next we can represent the neural network inverse model

as a state space realization in terms of vector 𝑧(𝑘), which
comprises all the states and inputs utilized in the network,
that is, past and present states as well as the past inputs (refer
to Figure 1), as follows:
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(3)

where 𝑒
𝑓
(𝑘) = 𝑦sp − (𝑦(𝑘 + 1) − 𝑦(𝑘 + 1)), 𝑦sp is the set point,

𝑦(𝑘 + 1) is the plant output, and 𝑦(𝑘 + 1) is the model output.
It is also assumed in this case that |𝑦(𝑘 + 1) − 𝑦(𝑘 + 1)| ≤
𝜙|𝑦(𝑘)−𝑦(𝑘)|, where𝜙 ∈ (0, 1).The closed loop enlarged state
space representation of the system can then be obtained by
incorporating the closed loop equation in this neural network
state space representation.This closed loop equation in terms
of the output, 𝑦(𝑘), can be obtained analytically as will be
shown in the next section.

3.3. Closed Loop Formulation of Inverse Model Based Control
Strategy Perfect Model Case. In the inverse model strategy
such as the IMCmethod, the output from the neural network
model can be written in the equivalent prediction form as

𝑦 (𝑘 + Θ + 1) = 𝑓 (𝑦 (𝑘 + Θ) , . . . , 𝑦 (𝑘 + Θ − 𝑛
𝑦
+ 1) ,

𝑢 (𝑘) , . . . , 𝑢 (𝑘 − 𝑛
𝑢
+ 1)) ,

(4)

whereΘ is the assumed time delay between input and output
and the systems and has relative order greater than one [25]
and f is a nonlinear function of the present and past states as
well as the present and past inputs of the system.

The output of the inverse neural network model, 𝑢(𝑘),
acting as the controller can be represented by the following
equation:

𝑢 (𝑘) = 𝑔 (𝑦 (𝑘 + Θ + 1) , 𝑦 (𝑘 + Θ) , . . . , 𝑦 (𝑘 + Θ − 𝑛
𝑦
+ 1) ,

𝑢 (𝑘 − 1) , . . . , 𝑢 (𝑘 − 𝑛
𝑢
+ 1)) ,

(5)

where 𝑔 is a nonlinear function of the present and past
states, the required output, and the past inputs of the systems.
This value of 𝑢(𝑘) can be obtained by solving the equation
above analytically for the current input or directly from the
pretrained neural network inverse model. Suppose that the
following response is required:

𝑦 (𝑘 + Θ + 1) = V (𝑘) , (6)
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where V(𝑘) is determined by the output of the filter F, chosen
to be a pulse transfer function in the formof a first-order filter
[17]; that is,

V (𝑧) =
1 − 𝛼

1 − 𝛼𝑧
−1
(𝑦sp (𝑧)) , (7)

where 𝛼 is the filter tuning parameter.
Then the closed loop transfer function between the plant

output and set point, assuming that the model of the plant is
perfect, is given by

𝑦 (𝑧)

𝑦sp (𝑧)
= 𝑧
−(Θ+1)

1 − 𝛼

1 − 𝛼𝑧
−1
. (8)

If there is one time delay between input and output, that is, for
a relative order two system, then the above equation becomes

𝑦 (𝑧)

𝑦sp (𝑧)
= 𝑧
−(2)

1 − 𝛼

1 − 𝛼𝑧
−1
. (9)

This can be formulated in the following form:

𝑦 (𝑘 + 2) − 𝛼𝑦 (𝑘 + 1) = 𝑦sp (𝑘) (1 − 𝛼) . (10)

This gives us the close-loop equation of the inverse model
control strategy (IMC with perfect model) in terms of the
output 𝑦(𝑘).

This close-loop transfer function above is in fact similar
to that using the global linearising control (GLC) techniques
for a relative order two system, where (𝑟 − 1) poles are
placed at the origin with one adjustable pole (or tuning
parameter, 𝛼), as formulated by Soroush and Kravaris [26].
In fact, this reduced-order error-feedback discrete-time GLC
is a minimal-order state space realization of the nonlinear
discrete-time IMC. Although their relationship was linked
to the general IMC strategy, they apply equally well to the
neural network inverse model based IMC strategy here,
where the inverse operator or controller is approximated by
the neural network inverse model instead. The equivalence
between the IMC and GLC approaches has also been shown
in another work by P. Daoutidis [27] for continuous time
case, which applies equally well in discrete-time. Under these
circumstances, the variables 𝑥

1
(𝑘 + 1) can also be formulated

in the linearized form in terms of 𝑦(𝑘) as follows:

𝑥
1
(𝑘 + 1) = (1 − 𝛼) 𝑦sp (𝑘) + 𝛼𝑦 (𝑘 + 1) − (1 − 𝛼) 𝑦 (𝑘) .

(11)

3.4. Closed Loop State Space Representation: Inverse Model
Control Strategy. We can then incorporate the relevant equa-
tions of the previous section for variables 𝑥

1
(𝑘) and 𝑥

2
(𝑘)

with the neural network state space formulation and form the
enlarged closed loop state space representation of the neural
network inverse model control strategy, in deviation form, as
follows:

Δ𝑧 (𝑘 + 1) = 𝑧 (𝑘 + 1) − 𝑧
𝑑
(𝑘 + 1) , (12)
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= 𝐴Δ𝑧 (𝑘) + 𝐷, (14)
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where zd is defined as the set point or equilibrium values of
the state space variables at time (𝑘 + 1),

Where,
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Also,

Δ𝐶
𝑐
= (1 − 𝛼) Δ𝑦sp (𝑘) , (17a)

𝐴
𝑐
= − (1 − 𝛼) . (17b)

Note that 𝛼 is the tuning parameter of the associated
filter. The value of 𝛼 is set in the range of 0 to 1 [17],
which also ensures the stability of the matrix 𝐴 (a condition
required for the stability analysis later). The actual value of
𝛼 however affects the shape and speed of responses, which
will be demonstrated in the simulation studies later. The
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closed loop representation of (14) will then be analyzed for
its stability properties by the use of Lyapunov’s method in the
next section.

4. Closed Loop Stability Analysis of Inverse
Model Control Strategy

Assumptions. (1) The desired state sequence 𝑧
𝑑
(𝑘) is uni-

formly bounded in that
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(3) The approximation of the neural network inverse
model (acting as the controller), which is given by |𝑢(𝑘) −
𝑢
𝑑
(𝑘)| ≤ 𝑘

𝑢
, is very small such that (𝑘

𝑢
)
2 can be neglected.

We can then state the theorem below.

Theorem 1. For specific set points (Δ𝑦sp(𝑘) = 0), the error
of the nonlinear systems (1) as defined by Δ𝑧(𝑘), under the
neural network inverse model control law, is confined to a
neighborhood of the origin in that ‖Δ𝑧‖ ≤ ∈

𝑘2
, 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑘 ≥ 0,

for some finite ∈
𝑘2
.

Proof. First consider the Lyapunov function associated with
Δ𝑧(𝑘) as

𝑉 (Δ𝑧 (𝑘)) = Δ𝑧
𝑇

(𝑘) 𝑃Δ𝑧 (𝑘) , (20)

where 𝑃 is a positive, definite, symmetric matrix solution of
the following discrete-time matrix Lyapunov equation:

𝐴

𝑇

𝑃𝐴 − 𝑃 = −𝑄. (21)

Here 𝐴 is a discrete-time stable matrix of (15), and 𝑄 is a
symmetric matrix, where 𝑄 > 0.

Let

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) = 𝑉 (Δ𝑧 (𝑘 + 1)) − 𝑉 (Δ𝑧 (𝑘)) . (22)

From (14), we get

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) = (𝐴Δ𝑧 (𝑘) + 𝐷)

𝑇

𝑃 (𝐴Δ𝑧 (𝑘) + 𝐷)

− (Δ𝑧 (𝑘))
𝑇

𝑃 (Δ𝑧 (𝑘)) ,

(23)

where 𝐴 and𝐷 are as defined previously.
Applying Lyapunov’s discrete-time equation, we simplify

(23) to

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) = 2(Δ𝑧 (𝑘))

𝑇

𝐴

𝑇

𝑃𝐷 + 𝐷

𝑇

𝑃𝐷

− (Δ𝑧 (𝑘))
𝑇

𝑄 (Δ𝑧 (𝑘)) .

(24)

Hence, incorporating (14), with the above simplification, into
(24), we obtain

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) = 2(Δ𝑧 (𝑘))

𝑇

𝐴

𝑇

𝑃 ([Δ𝐶
𝑐
] 𝑒
𝑖

+ [(1 − 𝛼) Δ𝑦sp (𝑘)] 𝑒𝑘

+ [Δ𝑢 (𝑘)] 𝑒
𝑛

)

+ ([Δ𝐶
𝑐
] 𝑒
𝑖
+ [(1 − 𝛼) Δ𝑦sp (𝑘)] 𝑒𝑘

+ [Δ𝑢 (𝑘)] 𝑒
𝑛
)

𝑇

× 𝑃 ([Δ𝐶
𝑐
] 𝑒
𝑖
+ (1 − 𝛼) Δ𝑦sp (𝑘) 𝑒𝑘

+ [Δ𝑢 (𝑘)] 𝑒
𝑛
)

− (Δ𝑧 (𝑘))
𝑇

𝑄 (Δ𝑧 (𝑘)) ,

(25)

where 𝑒
𝑖
, 𝑒
𝑘
, and 𝑒

𝑛
are the ith, kth, and 𝑛th standard basis

vectors.
In the stability analysis, we are interested in the stability at

the definite set and equilibrium point, 𝑦sp, so that Δ𝑦sp(𝑘) =
0.

Therefore, (25) becomes

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) = 2(Δ𝑧 (𝑘))

𝑇

𝐴

𝑇

𝑃Δ𝑢 (𝑘) 𝑒
𝑛

+ (Δ𝑢 (𝑘))
2

𝑒
𝑇

𝑛
𝑃𝑒
𝑛
− (Δ𝑧(𝑘)

𝑇

𝑄Δ𝑧 (𝑘)) .

(26)

We can then get the bounds on Δ
𝑘
𝑉 by analyzing the norms

of the various terms, respectively, as

Δ
𝑘
𝑉 (Δ𝑧 (𝑘)) ≤ −𝑄min‖(Δ𝑧 (𝑘))‖

2

+ 2 ‖(Δ𝑧 (𝑘))‖

󵄩
󵄩
󵄩
󵄩
󵄩
𝐴

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃

󵄩
󵄩
󵄩
󵄩
󵄩
|Δ𝑢 (𝑘)|

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

+ |Δ𝑢 (𝑘)|
2 󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
󵄩
𝑃

󵄩
󵄩
󵄩
󵄩
󵄩

󵄩
󵄩
󵄩
󵄩
𝑒
𝑛

󵄩
󵄩
󵄩
󵄩
,

(27)

where 𝑄min denotes the smallest eigenvalue of 𝑄.
If 𝑘
𝑢
is small as discussed in the assumption, 𝑘2

𝑢
becomes

negligible and we get

Δ
𝑘
𝑉 ≤ − ‖Δ𝑧 (𝑘)‖ (𝑄min ‖Δ𝑧 (𝑘)‖ − 2 ‖𝐴‖ ‖𝑃‖) , (28)

where Δ
𝑘
𝑉 can be assured to be nonincreasing when

‖Δ𝑧 (𝑘)‖ ≥

2 ‖𝐴‖ ‖𝑃‖ |𝑢 (𝑘)|

𝑄min
. (29)

This result shows the stability of the system, under the inverse
control law, in a region of a ball which is dependent on the size
Δ𝑧(𝑘). This size gets smaller as the value Δ𝑢(𝑘) gets smaller;
that is, the accuracy of the neural network inverse model
prediction improves and is close to the actual required value,
𝑢
𝑑
(𝑘). In fact, if the prediction error goes to zero, that is,

Δ𝑢(𝑘) = 0, asymptotic stability is achieved.
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Figure 2: Open loop training data for neural network model—1st
data set.

5. Simulation Studies

To complement the analysis performed in the previous
section, simulations were performed on typical relative two
nonlinear process systems using the IMC neural network
based strategy. This case study involves the dynamic change
in concentration of componentA in a streampassing through
two noninteracting thermal hold-up tanks in series, where
in addition it undergoes 2nd order reactions in both tanks,
respectively.

The continuous differential equationswhich represent the
dynamics for the two tanks, respectively, are

𝑉 ∗

𝑑𝑐
1

𝑑𝑡

= 𝐹 ∗ (𝐶
0
− 𝐶
1
) − 𝑘
𝑟
∗ 𝐶
2

1
∗ 𝑉,

𝑉 ∗

𝑑𝑐
2

𝑑𝑡

= 𝐹 ∗ (𝐶
1
− 𝐶
2
) − 𝑘
𝑟
∗ 𝐶
2

2
∗ 𝑉.

(30)

In this case of inlet concentration, 𝐶
0
is the control

variable [𝑢(𝑘)], 𝐶
1
is the concentration in the first tank and

the concentration in the second tank,𝐶
2
is the output variable

[𝑦(𝑘)]. The values of the flow rate, F, volume of the identical
tanks, V, and the rate constant, 𝑘

𝑟
, are 0.01, 0.1, and 0.01,

respectively. All units are assumed to be consistent and no
disturbances are present in the system.

The control of concentration in the second tank by
manipulating the inlet concentration to the first tank, in
discrete-time formulation, constitutes relative order two sys-
tems. In this simulation study, the pretrained inverse neural

model and the pretrained neural network forward model
were incorporated in the IMC strategy, as shown in Figure 1.
The models were trained using multistep data sequence with
the output concentration, 𝐶

2
, in the range of 0.1 to 0.75, as

shown in Figure 2.The details of themethod of training these
neural networks models can be found in [20–22].The inverse
model was modelled by multilayered feedforward neural
network with 25 hidden nodes while the forward model
has 20 hidden nodes. The hyperbolic tangent is used as the
activation function for both the forward and inverse model
networks. In the simulation, the one-step-ahead prediction
and implementation are used for both forward and inverse
models, respectively, as this is found to be adequate for this
application and to be in accordance with the way of training
these neural network models.

The first simulation involves controlling the output con-
centration at the nominal steady state value of 0.456 as well
as at lower and higher step values, using the IMC strategy
above. The control sampling time is chosen to be equivalent
to the data sampling time of 10 sec, and each time step in the
plots represents this time period of implementation. These
results, as shown in Figure 3, show good asymptotic set point
tracking with minimal offsets at all points except at the
higher value of 0.8. This tracking behavior was predicted by
the theoretical analysis for a sufficiently well-trained inverse
model, acting as the controller. The higher set point value
of 0.8 was however outside the training range of the inverse
model and hence the model was not able to predict a good
control value at this point, which results in a high offset
value, also in accordance with the theoretical analysis done
earlier. This problem was alleviated by retraining the inverse
model with a wider output concentration range of 0.5 to
0.83 for 𝐶

2
, as shown in Figure 4, and then implementing

it back in the IMC strategy as before. This time the results,
as can be seen in Figure 5, show good asymptotic tracking
at the higher set point value of 0.8 with minimal offsets as
with the other values. These simulation results show that a
well-trained neural network inverse model (which includes
training the networkwithin a sufficient and appropriate range
of training data) gives good prediction of 𝑢(𝑘), that is, small
value ofΔ𝑢(𝑘), which results in smaller offsets as predicted in
the stability analysis of the earlier section.

The next simulation in this case study shows the effect
of the filtering action on the tracking performance. In this
case, the servo performance of the closed loop systems was
demonstrated for set point tracking of the concentration
beginning from the steady state value of 0.456 to a lower
(0.3) and higher value (0.6), using different tuning values
of 𝛼, that is, 0.96 and 0.7, respectively. The results can be
seen in Figures 6 and 7, respectively. Both results gave good
asymptotic tracking of the set points with minimal offsets,
as in the previous simulation. However the result for 𝛼 at
0.96 showed sluggish response and control action, while the
result for 𝛼 at 0.7 showed fast control actions with excellent
response.Hence, these results show that although the filtering
action does not directly affect the stability of the systems (as
long as it is in the range of 0 to 1), it does affect the shape and
speed of tracking of the response as would be expected of a
filter.
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Figure 3: Set point tracking with IMC strategy—1st data set.
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Figure 4: Open loop training data for neural network model 2nd data set.

The final simulation is done to validate the closed loop
behavior of the IMC strategy, as derived in the theoretical
analysis. This was done by plotting with time the expression
on the left-hand side of the reformulated closed loop equation
for relative order two systems, to see if it equals the right-hand
side for this particular case study. The reformulated closed
loop equation is given below:

(𝑦 (𝑘 + 2) − 𝛼𝑦 (𝑘 + 1))

(𝑦sp (𝑘))
= (1 − 𝛼) . (31)

The results, for one specific tuning constant of 0.04, can be
seen in Figure 8. It gave a constant value of 0.96 (value of the

right-hand side of the equation above) with slight, expected
deviations at the step changes. Hence this shows that the
closed loop behavior of the neural network IMC strategy in
this case study behaves according to the equation derived in
the analysis earlier, which justifies its use in the closed loop
state space representation.

6. Conclusions

This work is a novel, direct attempt at providing the
framework and guideline for directly analyzing the stability
of nonlinear controlled systems involving neural network
inverse models by the use of conventional Lyapunov stability
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Figure 5: Set point tracking with IMC strategy—2nd data set.
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Figure 6: Set point tracking with tuning constant, 𝛼 = 0.96.

techniques. The results of the analysis showed bounded
tracking error converging to a small ball around the equi-
librium point, that is, “ball stability.” The size of the ball
is shown to be dependent on the accuracy of the neural
network inverse model, acting as the controller. In fact, if the
prediction is perfect, it can be shown that asymptotic stability
is achieved. This all makes intuitive sense, as it would be
expected that the performance, tracking error, and stability
of this type of control strategy would be directly dependent
on the accuracy of the inverse model acting as the controller.
The simulation result on a typical relative order two process
system complements the analysis by showing the effect of
the accuracy of the neural network controller on the system’s
performance. It also demonstrates the servo performance
with varying tuning parameters. The results show that when
the tuning parameter was tuned properly, excellent tracking
and smooth control were achieved. Finally the validation
of the closed loop equation of this IMC approach was also
shown in the simulation. The theoretical analysis also lends
itself as the basis for further analyzing systems which utilizes
both known models (such as in GMC and GLC techniques)
and neural networks in a hybrid fashionwithin a feedforwad-
feedback control methodology for better treatment of model
mismatches and disturbances.

Notations

𝐴: Closed loop state matrix
𝐴
𝑐
: Constant

𝐶
0
, 𝐶
1
, 𝐶
2
: Concentration of inlet, first tank, and
second tank

Δ𝐶
𝑐
: Constant

𝐷: Closed loop state space vector
𝑒: Error signal
𝑒
𝑓
: Filtered error signal

𝑒
𝑖
, 𝑒
𝑘
, 𝑒
𝑛
: Standard basic vector

𝐹: Flow rate in tank system
𝑘
𝑟
: Reaction rate constant

𝑘
𝑢
,𝑚
𝑖
: Finite constant

𝑃: Positive definite solution of Lyapunov
equation

𝑄: Symmetric matrices
𝑟: Relative order of controlled output, 𝑦
𝑢: Manipulated variable
Δ𝑢: Deviation variable (from required value)

for 𝑢
𝑉(𝑘): Filter output
𝑉: Volume of tank
Δ
𝑘
𝑉: Derivative of 𝑉 in discrete-time step, 𝑘
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Figure 7: Set point tracking with tuning constant, 𝛼 = 0.70.
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𝑥: State variable
𝑥: State variable obtained from observer
Δ𝑥: Deviation variable (from required value) for

𝑥

𝑦: Output variable
𝑦: Output variable obtained from observer
Δ𝑦: Deviation variable (from required value) for

𝑦

𝑧: State variable for neural network state space
representation

Δ𝑧: Deviation variable (from required value) for
𝑧.

Subscripts

𝑑 Required (set) value
sp: Set point.

Symbols

𝛼 Tuning/filter constant
𝜙: Finite constant.
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