
Research Article
Test Purpose Oriented I/O Conformance Test Selection with
Colored Petri Nets

Jing Liu, Xinming Ye, and Jiantao Zhou

College of Computer Science, Inner Mongolia University, Hohhot 010021, China

Correspondence should be addressed to Jing Liu; liujing@imu.edu.cn

Received 28 January 2014; Accepted 14 March 2014; Published 14 April 2014

Academic Editor: Guiming Luo

Copyright © 2014 Jing Liu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper proposes an input-output conformance (IOCO) test selection method directed by test purpose model specified with
colored Petri nets (CPN). Based on conformance testing oriented CPN models for specifying software functional behaviors and
specific test purposes, respectively, feasible test cases are generated, guided by the CPN based IOCO relation, using synchronized
model simulation with the proof of the soundness of test generation and the coverage towards test purposes. This test selection
method integrates themerits the IOCO testing theory and the CPNmodeling synergistically and is applied as a novel and applicable
test selection method for actual testing practice of large-scale software systems. As the synchronized model simulation with two
CPNmodels is irrespective of their model scale, the effectiveness and practicability of our test selection method are enhanced with
scalability.

1. Introduction

Software systems running based on network environment
are ubiquitous. It is quite significant to validate their func-
tional correctness. Conformance testing [1] just aims at
checking whether the software implementation conforms to
its functional specification. Therefore, conformance testing
is indispensable in such software system validation pro-
cess. Nowadays, model based testing (MBT) technology is
introduced and well developed to promote the efficiency
and effectiveness of conformance test generation [2–6]. It
allows for generating test cases with test oracles from a
formal model that specifies the software behaviors explicitly,
which improves the low-level efficiency and inaccuracy of
the manual test case generation process. In particular, con-
cerning the conformance testing towards network based soft-
ware systems, the well-established input-output conformance
(IOCO) testing theory and technologies [6–9] are more
feasible, because the IOCO relation formally defines what
external output should be observed through the practical test
execution and how to determine the conformance based on
these observations. In our studies, network based software
systems are adopted as our system under testing (SUT) and
the IOCO testing theory is the most significant theoretical
foundation in our testing research.

In original IOCO testing theory, labeled transition system
(LTS) is utilized as its basic formal models. However, com-
pared with LTS or other formal modeling methods such as
automata or process algebra, colored Petri nets (CPN) [10]
have more advantages for specifying and validating compli-
cated functional behaviors of network software systems. First,
CPN could not only specify the detailed and complicated
software functionalities intuitively and hierarchically but also
support visible simulation and efficient analysis to validate
the correctness of software behaviors. Validated models are
indispensable for successful application of MBT approaches.
Second, CPN models can execute dynamically, which is
directed by the data-dependent control flow of system behav-
iors. Generating test cases by such model simulation process,
they certainly contain actual test data and test oracles, so they
are quite feasible for guiding practical test execution.

We have proposed the introductory idea of CPN model
based IOCO test generation approach in our conference
paper [11]. However, that paper just focuses on elementary
test case generation approach, and, in this paper, we focus
on test case selection; that is, test purpose is considered in
test case generation to improve its pertinence, and a novel
test purpose model oriented IOCO test selection method is
proposed. Specifically, conformance testing oriented colored

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 645235, 10 pages
http://dx.doi.org/10.1155/2014/645235

http://dx.doi.org/10.1155/2014/645235

2 Journal of Applied Mathematics

Petri nets (CT-CPN) models are used as formal models
for modeling software specification, and PN-ioco relation is
defined [11]. Then, we model test purposes as CT-CPN mod-
els, and test cases are generated using synchronized model
simulation between a specification CT-CPNmodel and a test
purpose CT-CPNmodel. Besides, we prove the soundness of
test generation; that is, as long as the implementation fails one
test case, it will definitely not conform to its specification.
We also prove the coverage towards test purpose; that is,
generated test cases should cover and only cover functional
behaviors which are specified in test purpose models. We
finally apply the test selection method into a file sharing
software system to illustrate its feasibility and effectiveness.

CPNmodel based IOCO test selection has several advan-
tages, compared with current IOCO test selection method in
literatures [12–14]. First, CPN models can execute dynami-
cally, which is directed by the data-dependent control flow
of system behaviors. Generating by such model simulation
process, test cases certainly contain actual test data and test
oracles, so they are quite feasible for guiding practical test
execution. Second, as the synchronized model simulation
with two CPNmodels is irrespective of their model scale, the
effectiveness and practicability of our test selection method
are enhanced with scalability. In a word, a CPN model based
IOCO test selection method tends to be a promising testing
technology to validate the correctness of reactive network
software systems more efficiently and more effectively.

The paper is organized as follows. The related work
and preliminaries are discussed in Section 2. The framework
of our CPN model based IOCO test selection method is
introduced in Section 3. The formal definition of CT-CPN
models and PN-ioco relation is recalled in Section 4 as basic
knowledge. Then, in Section 5, a novel test case selection
algorithm is proposed using synchronized simulation tech-
nology in CPN modeling context to guarantee that all test
cases are feasible for practical test execution and totally cover
test purposes. In Section 6, we prove the soundness of test
generation and the coverage degree towards test purposes.
As a representative, we apply the test selection method into
a file sharing software system and perform its actual test
selection and execution procedure to illustrate the feasibility
and effectiveness of our test selection method.

2. Related Work and Preliminaries

As for test case generation approaches based on CPNmodels,
Watanabe and Kudoh [15] propose a basic test generation
algorithm, which could be considered as the first step in
this field. First, the reachability tree of a CPN model is
constructed, and all input-output sequences from the root
node to leaf nodes in this tree are traversed to form the
test cases, and, then, equivalent markings in that tree are
combined to construct the corresponding reachability graph,
and FSM model based test case generation approaches are
applied directly based on this graph. Recently, Farooq et al.
[16] use random walking technology to randomly traverse
the model state space to generate the test cases, where several
sequential coverage criteria and concurrent coverage criteria

are proposed to guide the test selection. Zhu and He [17]
have proposed four specific testing strategies towards the
high-level Petri nets. For each strategy, they first define a
set of schemes to observe and record the testing results, and
they also define a set of coverage criteria to measure the
test adequacy. But, no detailed test generation algorithms are
explicitly presented. We have proposed the introductory idea
of CPN model based IOCO testing approach [11]. It focuses
on elementary test case generation approach, and, in this
paper, we focus on test selection method.

In order to promote the pertinence of testing projects,
certain test selection criterion is always adopted in test
generation process to produce finite and indispensable actual
test cases. It is quite propitious for performing feasible testing
projects under constraint of testing execution time and cost.
Generally, test selection for function testing is classified
as test purposed oriented methods [9, 12, 13, 18], random
testing methods [8, 19, 20], property coverage based methods
[21, 22], and symbolic test data selection methods [14].
However, test purposed oriented methods usually specify
part of functional behaviors of software as test purpose
model and make generated test cases focus on testing such
specific behaviors. It is quite propitious for performing
feasible conformance testing towards network based software
systems with black-box and reactive behavior characteristics.
In this paper, a novel IOCO test selectionmethod is proposed
using synchronized model simulation technology between
two CPN models. It has high scalability for dealing with the
larger software models.

CPN is advantaged for modeling and validation of sys-
tems where concurrency and communication are key charac-
teristics. Its formal definitions are referred to in [10]. Besides,
other key definitions concerning the behavior simulation of
CPN models which are used in following sections are listed
as follows.

Definition 1. For a CPN = (P, T, A, Σ, V, C, G, E, I), consider

(1) preset and postset of the place or the transition:

∀𝑝 ∈ 𝑃 : pre (𝑝) = {𝑡 ∈ 𝑇 | (𝑡, 𝑝) ∈ 𝐴} ;

post (𝑝) = {𝑡 ∈ 𝑇 | (𝑝, 𝑡) ∈ 𝐴} ,

∀𝑡 ∈ 𝑇 : pre (𝑡) = {𝑝 ∈ 𝑃 | (𝑝, 𝑡) ∈ 𝐴} ;

post (𝑡) = {𝑝 ∈ 𝑃 | (𝑡, 𝑝) ∈ 𝐴} ;

(1)

(2) 𝑀
𝜎

⇒ =def ∃𝑀𝑖 : 𝑀
𝜎

⇒ 𝑀
𝑖
, where 𝜎 = (𝑡

0
, 𝑏
0
),

(𝑡
1
, 𝑏
1
) ⋅ ⋅ ⋅ (𝑡

𝑖−1
, 𝑏
𝑖−1
),𝑀

(𝑡0 ,𝑏0)

→ 𝑀
1

(𝑡1 ,𝑏1)

→ ⋅ ⋅ ⋅
(𝑡𝑖−1,𝑏𝑖−1)

→

𝑀
𝑖
, if |𝜎| = 1,𝑀 𝜎→ is used instead;

(3) trace(𝑀) =def {𝜎 ∈ BE(𝑇)∗ | 𝑀
𝜎

⇒};

(4) M fires 𝜎=def {𝑀𝑛 | 𝑀
𝜎

⇒ 𝑀
𝑛
, 𝜎 ∈ BE(𝑇)∗};

(5) CPN is deterministic, if |𝑀 fires 𝜎| ≤ 1;
(6) CPN has finite output, if |𝑀 fires 𝜎| ≤ 𝑛 (𝑛 ∈ 𝑁);
(7) CPN has finite behavior, if ∃𝑛 ∈ 𝑁, ∀𝜎 ∈ trace (𝑀

0
) :

|𝜎| < 𝑛.

Journal of Applied Mathematics 3

Specification

Modeling

Synchronized
simulation

Test
execution

PN-ioco Prove
soundness

Test
purpose

Modeling

Prove
coverage

Conforms

CT-CPNTP

CT-CPNS

Implementation
(CT-CPNI)

Test cases
(CT-CPNTC)

Figure 1: The framework of IOCO test selection method with CPN
models.

In this definition, 𝑀 stands for markings, 𝜎 stands for
occurrence trace of system behavioral execution, and BE
stands for binding elements with a transition and its value
bindings into variables.

3. Methodology Overview

Integrating the merits of the IOCO testing theory and the
CPN modeling synergistically and then constructing a novel
IOCO test selection method based on test purpose CPN
models are the major research goals of this paper. However,
simply replacing LTS modeling with CPNmodeling does not
make sense. In Figure 1, we propose a framework of IOCO
test selection methodology based on CPN models, which is
composed of three related parts in the whole test selection
process.

First, modified CPN modeling is proposed as CT-CPN
models to specify key characteristics and requirements
for conformance testing scenario accurately. For example,
CT-CPN

𝑆
models software functional behaviors according to

software requirement specification, CT-CPN
𝐼
models actual

software implementation behaviors, CT-CPNTP models soft-
ware functional behaviors of specific test purposes, and
CT-CPNTC models finally generated test cases. SuchCT-CPN
series models explicitly specify external visible actions which
are significant in practical test execution, that is, to make the
most of both the place and the transition elements inCT-CPN
models to distinguish visible actions from internal actions. In
particular, to deal with the special output actions, such as the
quiescence or deadlock [7], it introduces new kind of tran-
sitions to model them accurately. Besides, a corresponding
implementation relation in the context of CT-CPNmodeling
is proposed as PN-ioco relation to precisely specify what it
means for an implementation to conform to its functional
specification. In CPN model context, software behaviors are
simulated with specific system data, so we have to determine
the IOCO conformance via comparing the output actions
with specific data. This part of contents had been proposed
in our conference paper [11], and, in order to make this paper
self-contained, we will show the basic formal definition of
CT-CPN model and PN-ioco relation in Section 4.

Second, based on the above CT-CPN modeling and PN-
ioco relation, we need to develop a novel test selection

approach with two desired goals. One is to make the test
selection with high scalability for dealing with more compli-
cated system models, and the other one is to make all test
cases feasible for the practical test executions. Therefore, in
Section 5, we model test purposes as CT-CPNTP models and
then propose a novel IOCO test case selectionmethod, where
test cases are generated using synchronizedmodel simulation
between a CT-CPN

𝑆
model and a CT-CPNTP model. When

the synchronized simulation procedure terminated, a final
test case is produced and specified as a CT-CPNTC model. As
the synchronized model simulation is irrespective of model
scale, its effectiveness and practicability tend to be enhanced
with high scalability.

Third, in Section 6, we prove the soundness of test
generation; that is, as long as the software implementation
fails one test case, it will definitely not conform to its func-
tional specifications. We also prove the coverage towards test
purposes; that is, generated test cases should cover and only
cover functional behaviors which are specified in test purpose
models. In this way, under constraint of testing execution
time and cost, we could generate finite and indispensable
actual test cases to promote the pertinence of testing projects.

Developing a CPN model based IOCO test selection
method is challenging but quite promising. It has solid
theoretical foundation and bright application prospect, so it
tends to be used as a competent and effective conformance
testing technology to validate the correctness of network
based software systems.

4. CT-CPN Modeling and PN-ioco Relation

4.1. Specification Modeling

Definition 2. A CT-CPN
𝑆
is a triple CT-CPN

𝑆
= (CPN, 𝑃

𝑆
,

𝑇
𝑆
):

(1) CPN is a basic colored Petri nets model;
(2) 𝑃
𝑆
= 𝑃,𝑃

𝑆
= 𝑃
𝑂

𝑆
∪𝑃
𝐸

𝑆
:𝑃𝑂
𝑆
is the set of observable places;

𝑃
𝐸

𝑆
is the set of internal places; 𝑃𝑂

𝑆
∩ 𝑃
𝐸

𝑆
= 𝜙;

(3) 𝑇
𝑆
= 𝑇, 𝑇

𝑆
= 𝑇
𝐼

𝑆
∪ 𝑇
𝑂

𝑆
∪ 𝑇
𝐸

𝑆
: 𝑇𝐼
𝑆
is the set of input

transitions; 𝑇𝑂
𝑆
is the set of output transitions; 𝑇𝐸

𝑆
is

the set of internal transitions; 𝑇𝐼
𝑆
∩ 𝑇
𝑂

𝑆
= 𝑇
𝐼

𝑆
∩ 𝑇
𝐸

𝑆
=

𝑇
𝑂

𝑆
∩ 𝑇
𝐸

𝑆
= 𝜙;

(4) CT-CPN
𝑆
has finite output; that is, |trace(𝑀

0
)| ≤

𝑛 (𝑛 ∈ 𝑁);
(5) CT-CPN

𝑆
does not have infinite sequences of internal

actions; that is, ¬∃𝑀 : 𝑀
𝜎

⇒ 𝑀,𝜎 ∈ BE(𝑇𝐸
𝑆
)
∗.

In the CT-CPN
𝑆
modeling, token data in the observable

places could present the externally observed data, so an
observable place is always the postset of an input transition or
an output transition to display what data should be observed
after executing those external transitions. The input transi-
tion models input actions that accept input data provided by
testers and the output transition models output actions that
produce visible output observations. Thus, observable places
and input/output transitions are used together to explicitly

4 Journal of Applied Mathematics

specify external visible behaviors of a certain system. Besides,
the internal transitions and internal places could represent
internal and unobservable execution of system behaviors.
Modelsmust not have loops of internal transitions, whichwill
make system implementations have no response to help us to
distinguish this scenario from the deadlock.

4.2. Implementation Modeling. As system implementations
are actual physical thing, that is, software, hardware, or a
hybrid system, rather than formal objects, a test hypothesis
[7] assumes that every system implementation corresponds to
an a-priori formal model, but these formal models cannot be
explicitly constructed. Therefore, CT-CPN

𝐼
is just proposed

to formally specify system implementations.

Definition 3. A CT-CPN
𝐼
is a triple CT-CPN

𝐼
= (CPN, 𝑃

𝐼
,

𝑇
𝐼
):

(1) CPN is a basic colored Petri nets model;

(2) 𝑃𝑂
𝐼

= 𝑃
𝑂

𝑆
and 𝑇

𝐼

𝐼
= 𝑇
𝐼

𝑆
, 𝑇𝑂
𝐼

= 𝑇
𝑂

𝑆
the implementa-

tion models and the specification model of the
same system having the same observable places and
input/output transitions;

(3) {𝛿} ⊂ 𝑇
𝐼
: 𝛿 is the suspension transition, and𝑀 𝛿→ 𝑀.

Any possible test output, such as real data, deadlock,
or quiescence should be managed in CT-CPN

𝐼
modeling.

In particular, the quiescence represents a scenario where
software implementations have no visible outputs because
they wait for input action to trigger following executions.
Producing quiescence is a kind of special output action,
which is modeled as the suspension transition 𝛿. Firing a
suspension action indicates that an implementation stays in
the same state and needs input data as a trigger to continue
executing.

4.3. PN-ioco Relation. In context of CT-CPNmodeling, con-
formance relation should be determined according to specific
data in CT-CPN models, so PN-ioco relation is defined.

Definition 4. PN-ioco is a binary relation with 𝑠𝑠 ∈ CT-CPN
𝑆

and 𝑖𝑖 ∈ CT-CPN
𝐼
:

𝑖𝑖 PN-ioco 𝑠𝑠 =def ∀𝜎 ∈ SPtrace(𝑀
𝑆
): outtoken(𝑀

𝐼
fires

𝜎) = outtoken(𝑀
𝑆
fires 𝜎).

(1) Consider SPtrace(𝑀
𝑆
) =def {𝜎 ∈ (BE(𝑇

𝑆
) ∪ 𝛿)

∗

|

𝑀
𝑆

𝜎

⇒}; it enumerates all traces of the model ss,
including the suspension transitions.𝑀

𝑆
and 𝑀

𝐼
are

initial markings, respectively.

(2) Consider outtoken(𝑀) =def {𝑀(𝑃) | 𝑃 ∈ 𝑃
𝑂

𝑆
∪ 𝑃
𝑂

𝐼
};

it represents the observable output token data. In the
model ss, it records the token data of current observ-
able places under a specific marking, while, in the
model ii, it just corresponds to the actual observable
output data produced by the system implementations
during the test execution.

Guided by the PN-ioco definition, the conformance is
determined by comparing token data in the observable places
along a specific SPtrace with the actually observed output
from the implementation. If the actual observed output data
are different from what are prescribed in the ss model,
we could conclude with non-conformance decision. The
equivalence of two outtoken sets indicates that all prescribed
observations should be actually observed in the practical
test executions; that is, prescribed functionalities must be
completely implemented.Therefore, the implementation that
has valid but partial functionalities will not be said to
conform to its specification model.

5. Synchronized Simulation
Based Test Selection

In Section 3, we mention that, based on CT-CPN modeling
and PN-ioco relation, a novel test selection method should
be developed with two desired goals. One is to make such test
selection with high scalability for dealing with more compli-
cated system models, and the other one is to make all test
cases feasible for practical test executions. Accordingly, we
develop a test purpose oriented IOCO test selection method
to meet these two goals, where test cases are generated
through synchronizedmodel simulation between aCT-CPN

𝑆

model and a CT-CPNTP model. When synchronized simula-
tion procedure terminates, a final and feasible test case model
is produced and specified as CT-CPNTC.

The intuitive idea of our test selection method is essen-
tially a synchronized traversal between a CT-CPN

𝑆
model

and a CT-CPNTP model. It is performed bymodel simulation
execution under given initial markings in these two models.
Specifically, each given initial marking in a CT-CPN

𝑆
model

and a CT-CPNTP model could conduct a synchronized
simulation between these twomodels once. During following
synchronized simulation steps, enabled transitions in both
models are capable of firing sequentially in a synchronized
way. However, CT-CPNTP model is responsible for choosing
which execution sequence should be cover, and actual test
sequences and the data-dependent test oracles are all gen-
erated based on CT-CPN

𝑆
model. If both models have no

further enabled transitions, synchronized model simulation
procedure will terminate, and a corresponding test case
model is finally generated and specified as a CT-CPNTC
model, while, in context of LTS based test selection in
original IOCO testing theory, synchronous product of two
LTS model is performed. However, with expansion of model
scale, synchronous product operation cannot be executed
accurately; thus such LTS based test selection approach fails
to support testing large-scale software systems.

In the following subsections, we first propose the formal
definitions of test purpose and test case in CT-CPNmodeling
context.Then, a detailed test selection algorithm is developed
with several test generation rules towards different kinds of
model transitions. Finally, we adopt a file sharing software
system as a representative to demonstrate practical test
selection and test execution procedures.

Journal of Applied Mathematics 5

5.1. Test Purpose Modeling. Test purpose is utilized to specify
parts of software functional behaviors; for example, in the
network based software systems, sending request packets,
receiving data packets, or updating local key data structure
could be modeled as a test purpose each. In order to promote
the pertinence of testing large-scale software systems, test
purposemodels should participate in test generation process,
since it can constrain the scope of test generation; that is,
it just selects finite and indispensable test cases to only test
expected partial software behaviors under constraint of test-
ing execution time and cost. Obviously, a CT-CPNTP model
is essentially constructed from a corresponding CT-CPN

𝑆

model, because it just specifies parts of software behaviors
which need to be tested. Therefore, we propose the formal
definition of CT-CPNTP model based on the CT-CPN

𝑆

definition.

Definition 5. A CT-CPNTP is a triple (CT-CPN𝑆, 𝑃TP, ΣTP):

(1) CT-CPN
𝑆
is a CT-CPN

𝑆
model;

(2) 𝑃TP = 𝑃
𝑆
∪ {𝑝ℎ}, {𝑝ℎ} is the coverage verdict place, and

only covered token can appear in this place;

(3) ΣTP = Σ
𝑆
∪ {𝑐𝑜V𝑒𝑟𝑒𝑑}.

In CT-CPNTP model, ph is always the postset of an output
transition and used as the termination place in that model. If
a covered token appears in ph place, it indicates that, based
on a given initial marking, a generated test sequence just
corresponds to an execution path of behaviors specified in
the test purpose model.Thus, we need to add some necessary
guard functions towards input or output transitions in the test
purpose model to guarantee such behavior path be executed
as expected. It is well demonstrated in Section 5.4 through the
practical test selection to a file sharing software system.

5.2. Test Case Modeling. Several modeling constraints should
be fulfilled in CT-CPNTC modeling. CT-CPNTC models
should have only one input transition enabled at each step.
Besides, they should be deterministic and every feasible trace
should have finite length; otherwise, the test execution based
on this model cannot terminate in finite steps with the
definite testing results.

Definition 6. A CT-CPNTC is a triple (CPN, 𝑃TC, 𝑇TC), where

(1) CPN is a basic colored Petri nets model;

(2) 𝑃TC = 𝑃, 𝑃TC = 𝑃
𝐼

TC∪𝑃
𝑂

TC∪𝑃
TO
TC ∪𝑃

𝑉

TC: 𝑃
𝐼

TC is the set of
input places; 𝑃𝑂TC is the set of observable places; 𝑃TO

TC is
the set of test oracle places; 𝑃𝑉TC is the set of test verdict
places; each pair of them had no intersections;

(3) 𝑇TC = 𝑇, 𝑇TC = 𝑇
𝐼

TC ∪ 𝑇
𝑂

TC ∪ 𝑇
𝛿

TC ∪ 𝑇
𝑉

TC: 𝑇
𝐼

TC is the set
of input transitions;𝑇𝑂TC is the set of output transitions;
𝑇
𝛿

TC is the set of suspension transitions; 𝑇𝑉TC is the set
of test verdict transitions; each pair of them had no
intersections either;

(4) CT-CPNTC has finite behavior and is deterministic;

(5) CT-CPNTC has at most one input transition enabled

in each step; that is, ¬∃𝑀 : 𝑀
(𝑡1 ,𝑏1)

→ ∧𝑀
(𝑡2 ,𝑏2)

→,
𝑡
1
∈ 𝑇
𝐼

𝑇𝐶
∧ 𝑡
2
∈ 𝑇
𝐼

TC.

It should be noted that, in the test verdict places, only
three kinds of token data can appear, that is, pass/fail/covered
tokens. A pass token indicates that current test execution step
is successfully passed; a fail token indicates an implemen-
tation fault with current test execution step and results in
the nonconformance decision; a covered token indicates that
current test execution step covers that behaviors specified in
test purpose model.

CT-CPNTC models could facilitate the actual test exe-
cution for their better feasibility and readability, because
they not only prescribe the test sequences from the data-
dependent control flow of the system behaviors but also
provide necessary and definite test oracles for determining
the conformance relation.

5.3. Test Selection via Synchronized Model Simulation. To
develop a test purpose model oriented IOCO test selection
method, we need considering simulation paths in CT-CPN

𝑆

model and CT-CPNTP model at the same time. The reason
is that the simulation in the CT-CPN

𝑆
model reflects actual

execution paths of a software system, including real input
and output data, which is the basis of test case generation.
However, the simulation in the CT-CPNTP model conducts
to select expected execution paths among all enabled paths.
Thus, test generation scope is well constrained into those
software behaviors we want to test does not consider other
behaviors which are not specified in test purpose models.
To accomplish such goal, the CT-CPN

𝑆
model and the

CT-CPNTP model should simulate in a synchronized way.
Specifically, under guidance of PN-ioco relation, given an
initialmarking𝑀

𝑆
in CT-CPN

𝑆
model and an initialmarking

𝑀TP in CT-CPNTP model, the IOCO test selection method
selects feasible and expected test sequences from the set of
SPtrace(𝑀

𝑆
‖𝑀TP) in order to cover behaviors specified in test

purposemodels; that is, corresponding enabled transitions in
these two models are fired in a synchronized way according
to different test generation rules towards different kinds of
transitions. Meanwhile, the IOCO test selection method also
presents explicit way to decide the conformance relation via
test output and test oracle and indicate whether the test
purpose is covered. Finally, if no further transitions could fire,
that is, a termination marking is reached, the synchronized
simulation procedure will terminate. If this final marking
represents a valid termination of test purpose directed system
behavioral execution, a final CT-CPNTC test case model
covering specific test purpose is generated. Otherwise, if
this final marking happens to stand for an invalid deadlock
scenario, we need to improve the accuracy of both models
and perform the synchronized simulation procedure again.

Rule 1 (synchronized firing rule to input transition). ∃ 𝑡 ∈ 𝑇
𝐼

𝑆

and 𝑡 ∈ 𝑇
𝐼

TP, (𝑡, 𝑏𝑆) ∈ BE
𝑆
and (𝑡, 𝑏TP) ∈ BETP are all enabled:

generating 𝑡 ∈ 𝑇
𝐼

TC and ∀𝑝 ∈ {𝑝 ∈ 𝑃
𝐼

𝑆
| 𝑝 ∈ pre(𝑡)} : 𝑝 ∈ 𝑃

𝐼

TC,

6 Journal of Applied Mathematics

keeping token data in 𝑀(𝑝), and generating a new internal
place 𝑝 ∈ 𝑃

𝐸

TC | 𝑝

= post(𝑡).
Firing (𝑡, 𝑏

𝑆
) and (𝑡, 𝑏TP), that is, 𝑀(𝑝

) = {𝑀 |

𝑀(𝑝)
(𝑡,𝑏𝑆)

→}, to accomplish a synchronized firing of input
transitions.

Rule 2 (synchronized firing rule to internal transition). ∃ 𝑡 ∈

𝑇
𝐸

𝑆
and 𝑡 ∈ 𝑇

𝐸

TP, (𝑡, 𝑏𝑆) ∈ BE
𝑆
and (𝑡, 𝑏TP) ∈ BETP

are all enabled, if these two internal transitions could be
fired to produce the same token data, then just fire them
to accomplish a synchronized firing of internal transitions.
Otherwise, fire (𝑡, 𝑏

𝑆
) time after time until 𝑡 ∈ 𝑇

𝐸

TP; that is,
certain internal transition appearing only in the CT-CPN

𝑆

model should be firstly fired several times before reaching the
state that synchronized internal transition appearing in both
CT-CPN

𝑆
model and CT-CPNTP model is able to execute.

However, such internal behaviors do not need to be handled
by test case models.

Rule 3 (synchronized firing rule to output transition). ∃ 𝑡 ∈

𝑇
𝑂

𝑆
and 𝑡 ∈ 𝑇

𝑂

TP, (𝑡, 𝑏𝑆) ∈ BE
𝑆
and (𝑡, 𝑏TP) ∈ BETP are all

enabled: generating 𝑡 ∈ 𝑇
𝑂

TC and ∀𝑝 ∈ {𝑝 ∈ 𝑃
𝑂

𝑆
| 𝑝 ∈

post(𝑡)} : 𝑝 ∈ 𝑃
𝑂

TC.
If ∃𝑝 ∈ {𝑝 ∈ 𝑃

𝐸

𝑆
| 𝑝 ∈ post(𝑡)}, we generate a new internal

place 𝑝 ∈ 𝑃
𝐸

TC | 𝑝

= post(𝑡).
Firing (𝑡, 𝑏

𝑆
) and (𝑡, 𝑏TP) to accomplish a synchronized

firing of output transitions and constructing a test verdict unit
for every 𝑝 ∈ 𝑃

𝑂

TC are as follows:

(i) generating 𝑞 ∈ 𝑃
TO
TC , 𝑡V ∈ 𝑇

𝑉

TC, 𝑝V ∈ 𝑃
𝑉

TC: {pre(𝑡V) =

𝑝∪𝑞} and {post(𝑡V) = 𝑝V};𝑀(𝑞) = 𝑀(𝑝), where𝑀(𝑞)

records the test oracle data with respect to 𝑝;
(ii) generating 𝑎 ∈ (𝑡V, 𝑝V), 𝑟 = pre(𝑡V) (𝑟 ∈ 𝑃

𝑂

TC), and,
without loss of generality, 𝐸(𝑎) could be specified as
follows: if 𝑀(𝑟) = 𝑀(𝑞), then 1pass + 1covered else
1fail; that is, if observed test output in 𝑀(𝑟) is the
same as the test oracle data in𝑀(𝑞), and test purpose
is definitely covered, a pass token and a covered token
are both generated into the test verdict place 𝑝V;

(iii) connecting 𝑡 ∈ 𝑇
𝑂

TC with newly generated internal
place or existing observable place, that is, 𝑟 ∈ 𝑃

𝐸

TC ∪

𝑃
𝑂

TC | 𝑟 = pre(𝑡) to keep the connectivity of current
test case model.

Rule 4 (adding suspension transition). Consider ∃𝑝 ∈ 𝑃
𝐼

𝑇𝐶
, if

quiescence is allowed, adding a suspension transition with p;
that is, 𝑡 ∈ 𝑇

𝛿

TC : 𝑝 = pre(𝑡) ∧ 𝑝 = post(𝑡).

Given sets of initial markings 𝑀
𝑆
and 𝑀TP, through

applying a suitable rule of aforesaid four test generation rules
step by step, CT-CPNTC models covering specific test purpose
are generated for testing corresponding software behaviors.
Besides, it is guaranteed that the scenario never exists where
transitions in CT-CPNTP model are enabled but related
transitions in CT-CPN

𝑆
model are not enabled, because a

CT-CPNTP model is constructed from the corresponding
CT-CPN

𝑆
model. Furthermore, based on above test selection

method, each SPtrace has finite length, so the test selection
algorithm is terminated in finite steps with generating a
CT-CPNTP model that has finite behaviors for practical test
executions.

Two more aspects should be noted. First, CT-CPN mod-
els are not modified with new kinds of model elements,
and modeling constraints are just used to avoid generating
infeasible traces for testing scenarios. So, the semantic rules
defined in [10] are all kept in CT-CPN models; that is, we
still use its original enabling rules and occurrence rules
to generate CT-CPNTC test case models. Second, this test
selection approach can be applied into the hierarchical CPN
model without modification. The reason comes from two
aspects: first, a hierarchical CPN model could definitely be
unfolded to a behavioral equivalent nonhierarchical CPN
model, and, then, test case selection process just utilizes
ordinary simulation techniques which could be applied into
hierarchical or nonhierarchical CPN models without differ-
ences. Thus, our test selection method has better scalability
to deal with most of actual software behavior models.

We could compare the computation cost in test purpose
oriented test selection methods. In context of LTS, the state
space produced by synchronous product of two LTS models
tends to grow exponentially, which needs enormous even
unpractical computation resources to generate suitable test
cases. But, in context of CPN, synchronizedmodel simulation
based selection approach is irrespective of their model scale,
so it just needs linear computation cost to produce feasible
test cases. The effectiveness and practicability of our test
selection method are enhanced with better scalability.

5.4. An Example: File Sharing Software System. Wenow apply
the test purpose oriented IOCO test selection method into
a file sharing software system to illustrate its feasibility and
effectiveness. The CT-CPN

𝑆
model is presented in Figure 2,

and one example CT-CPNTP model is presented in Figure 3.
Through synchronized simulating of such two models, a
CT-CPNTC model is generated and shown in Figure 4.

In this file sharing software system, peer nodes that have
same functionalities could share the same resource file via
network. The file is composed of several file segments which
are identified as [SN, DATA]. When a peer node receives
a file segment request (req), it searches such data segment
from its data segment sets (DATASET) according to the
segment number (SN) in request packet. If this peer node gets
the requested data segment (DATAENTRY), it immediately
sends the segment to the requesting peer node. While as
a peer node receives a requested file segment, it stores this
segment data into data segment sets firstly and goes on
requesting new file segments which this peer does not have
yet. In its CT-CPN

𝑆
model, rv/sd/set are observable places.

recv is an input transition to specify the receiving of segment
request or data. send/newreq are output transitions to specify
sending segment data, storing segment data and requesting
new file segment, respectively. For example, If send fires, we
could observe which packet is sent according to the tokens in
sd. The rest are internal places and transitions. In particular,
the place sp stores the total set of segment number beforehand

Journal of Applied Mathematics 7

ss1

ins ds en ds

ss2

ds

ss1

ins ss1
(#1 en)

n

else empty

p

newreq

send

store

searchrecv

sp
SNSET

ssn
SNSET

DATAENTRY

set DATASET

da
DATAENTRY

sn
SN

rv
PACKET

sdPACKET Out

In

else empty

If #1 p = req
then #2 p)

If #1 p = rep
then (#2 p, #3 p)

If n<>(#1 (hd ds))

(tl ds)∧∧
((hd ds)::[])

if not (List.null (listsub ss2 ss1))

else empty

then 1 (req,
hd (listsub ss2 ss1),“”)

else empty
then 1 (hd ds)
if n = (#1 (hd ds))then 1 n else empty

nd (n, d)

(rep, n, d)

en

closet FLAG = with req | rep;
closet SN = int; closet DATA = string;

var n: SN; var d: DATA; var p: PACKET;
var en: DATAENTRY; var ds: DATASET;
var ss1, ss2: SNSET;

closet PACKET = product FLAG ∗ SN ∗DATA;
closet DATAENTRY = product SN ∗DATA;
closet DATASET = list DATAENTRY with 0 · · · 10;
closet SNSET = list SN with 0 · · · 10;

1

1

1

1

Figure 2: The CT-CPN
𝑆
model of the file sharing software system.

enen
enp

sendsearchrecv nd
DATAENTRY

ph
VERDICT

set
DATAENTRY

sn
SN

rv
PACKET

[#1 p = req]

#2 p n

[n = (#1 en)]

 covered1

Figure 3: CT-CPNTP model of file sharing software system.

vt

susp

sendrecv vd
VERDICT

rr
PACKET

ar
PACKET

sn
INNER

rv
PACKET

p

rp

then pass++ covered
else fail

 (rep, 2,“two”)

1 (req, 2,“”)
If p = rp

1

1

1

1

1

Figure 4: CT-CPNTC model of file sharing software system.

to help to choose which segment should be requested. In
this way, necessary external behaviors of a system for its
conformance testing are modeled accurately. However, in
system modeling practice, the selection of observable places
should also consider the actual observation points in the
actual test execution, such as the points of control and
observation [1].

In Figure 3, we present a test purpose CT-CPNTP model
as a representative. This test purpose focuses on the function
that whether a peer node could get the requested date
segment from its data segment sets according to the segment
number (constrained by the guard function [𝑛 = (#1en)]),
when it receives a file segment request (constrained by the
guard function [(#1𝑝) = req]). If a covered token appears
in ph place, it indicates that generated test sequence just
covers the behaviors specified in this test purpose model.
The CT-CPNTC model in Figure 4 is used to check whether
a peer node gets the requested date segment from its data
segment sets according to the segment number. The detailed
test selection procedure is discussed as follows.

(i) Initial marking is assigned as𝑀
𝑆
(𝑟V) = {1

(req,2,“”)},
𝑀
𝑆
(𝑠𝑝) = {[1, 2, 3, 4]}, 𝑀

𝑆
(𝑠𝑒𝑡) = {[(1,“one”),

(2,“two”)]}; 𝑀TP(𝑟V) = {1

(req, 2,“”)}, 𝑀TP(𝑠𝑒𝑡) =

{[(2,“two”)]}.
(ii) Rule 1 is applied to dealwith input transition recv.This

transition could be fired as (𝑟𝑒𝑐V, {𝑝 = (req, 2,“”)})
in a synchronized execution in both models. A new
internal place sn is added as the postset of recv and
𝑀TC(𝑟V) = {1

(req, 2,“”)}.
(iii) Rule 2 is applied to deal with internal transi-

tion search. In the CT-CPNS model, this transi-
tion relates two enabled scenarios, that is, (search,
{𝑛 = 2, ds = [(1,“one”), (2,“two”)]}) and (search,
{𝑛 = 2, ds = [(2,“two”), (1,“one”)]}), while, in the
CT-CPNTP model, it only relates one enabled sce-
nario, that is, (search, {𝑛 = 2, en = (2,“two”)}).
Thus, we fire search in CT-CPN

𝑆
model twice, where

at the first time it is fired independently, and in the
second time it is synchronized fired with that in the
CT-CPNTP model. Consider 𝑀

𝑆
(𝑛𝑑) = 𝑀TP(𝑛𝑑) =

{(2,“two”)}.
(iv) Rule 3 is applied to deal with output transition

send. This transition could be fired as (send, {𝑛 =

2, 𝑑 =“two”}) and (send, {en = (2,“two”)}) in a syn-
chronized execution in each model and get𝑀

𝑆
(𝑠𝑑) =

{(rep, 2,“two”)}, 𝑀TP(𝑝ℎ) = {𝑐𝑜V𝑒𝑟𝑒𝑑}, which indi-
cates that the test purpose covered sequence is exe-
cuted. The output transition send and its postset
observable place ar are both generated in CT-CPNTC
model. Furthermore, its test oracle place rr, test
verdict transition vt, and test verdict place vd are
all generated as an integrated test verdict unit for
validating whether the actual output data is the
same with the test oracle data. Consider 𝑀TC(𝑟𝑟) =

𝑀
𝑆
(𝑠𝑑) = {(rep, 2,“two”)}. Finally, we need to relate

the output transition send with internal place sn,
that is, pre(send) = sn, to keep the connectivity of
generated CT-CPNTC model.

(v) Rule 4 is applied to add a suspension transition to-
wards the input transition rv, which allows for waiting
to send the data packet in a quiescence scenario.

Using above test case model, we perform actual test
executions to further illustrate feasibility and effectiveness
of our test selection method. We program eight software

8 Journal of Applied Mathematics

Table 1: System implementations and test results.

(a)

Software implementations
Number Type Description
i1 Totally correct Implementing all functions correctly
i2 Faulty Error on sending request packet
i3 Faulty Error on matching segment number
i4 Faulty Error on storing segment data

i5 Faulty Error on calculating the new segment
number

i6 Faulty Error on parsing received segment
packet

i7 Partially correct Not supporting segment retrieval
i8 Partially correct Not supporting segment storage

(b)

Testing results
i1 i2 i3 i4 i5 i6 i7 i8
Pass Fail Fail Pass Pass Fail Fail Pass

implementations of the file sharing system with preinjected
errors to act as SUT.

In Table 1, software implementations description and
testing results are all listed. (1) i1 passes this test case, so it
conforms to the specification model in Figure 2. (2) i2, i3,
and i6 have fatal errors, respectively, which this test purpose
just covers, so they do not pass this test case where fail token
appears in test case executions. (3) i4 and i5 pass the test
case, but the fact is that error behaviors in i4 and i5 are not
tested at all by this test case. Test purpose model in Figure 3
does not contain such behaviors; thus definitely the generated
test case model does not aim to test these implementation
errors. (4) i7 only implements partial functions; that is, it
does not support segment retrieval. However, this function
is just to be tested by this test case, so i7 does not pass as we
do not observe the output segment data packet in actual test
execution. Compared with basic IOCO relation definition, i7
does not conform to the specification according to PN-ioco
relation, so partially correct implementations are no longer
determined with conformance. (5) i8 passes this test case,
because the test case does not touch such segment storage
functionality.

From the above analysis, we could see that test case
models generated using our test selection method are quite
feasible for guiding actual test execution intuitively and
also effective for finding various implementation faults.
According to testing results, conformance relation between
a specific implementation and its specification model could
be accurately determined.

6. Proof of Soundness and Test
Purpose Coverage

The conformance relation between a software implementa-
tion ii and its specification model ss is determined through

test executions, specified as ii PN-ioco ss ⇔ ii pass 𝑇
𝑆
.

If all test cases in completer set TS are passed, “ii PN-
ioco ss” is consequently determined. However, in practical
conformance testing, generating all test cases in the 𝑇

𝑆
is

almost infeasible. Moreover, conformance testing just aims
to find nonconformance faults rather than to completely
prove the conformance.Thus, aweaker requirement is usually
considered; that is, as long as the implementation does not
pass one test case, it definitely does not conform to its
specification. This weaker requirement corresponds to the
left-to-right implication of ii PN-ioco ss ⇔ ii pass 𝑇

𝑆
and is

referred as the soundness of test case generation approach.

Theorem 7. Let 𝑠𝑠 ∈ 𝐶𝑇-𝐶𝑃𝑁
𝑆
be a specification model, and

𝑡𝑝 ∈ 𝐶𝑇-𝐶𝑃𝑁
𝑇𝑃

a test purpose model; let 𝑇
𝑆
be a complete set

of test cases that generated from ss and tp with our test selection
algorithm, that is, TestSel; let 𝐶𝑇-𝐶𝑃𝑁

𝑆
× 𝐶𝑇-𝐶𝑃𝑁

𝑇𝑃
→

𝐶𝑇-𝐶𝑃𝑁
𝑇𝐶

be the test case selecting function that satisfies
TestSel(𝑠𝑠, 𝑡𝑝) ⊆ 𝑇

𝑆
; then TestSel is sound for ss with respect

to PN-ioco.

Proof. Supposing ∃𝑖𝑖 ∈ CT-CPN
𝐼
with corresponding 𝑠𝑠 ∈

CT-CPN
𝑆
, ∃𝑡𝑝 ∈ CT-CPNTP and ∃𝑡𝑡 ∈ TestSel(ss,tp)

satisfying not (ii pass tt) and ii PN-ioco ss, then
not (ii pass tt)

⇒ ∃𝑒 ∈ 𝑀(𝑝), 𝑝 ∈ 𝑃
𝑉

TS, 𝑒 ∈ {𝑓𝑎𝑖𝑙}; [a fail token appears
in the test verdict place p]

⇒ ∃𝑟 ∈ 𝑃
𝑂

TS ∧∃𝑞 ∈ 𝑃
TO
TS ,𝑀(𝑟) ̸=𝑀(𝑞); [token data in the

observable place 𝑟 and its coupled test oracle place 𝑞
are different]

⇒ ∃𝜎 ∈ SPtrace(MS): outtoken(MI fires 𝜎) ̸= outto-
ken(MS fires 𝜎), where 𝑀(𝑟) ⊆ (M

𝐼
fires 𝜎) and

𝑀(𝑞) ⊆ (MS fires 𝜎). [trace 𝜎 results in unexpected
output observations in the practical test execution].

Obviously, there exists a contradiction with the assump-
tion ii PN-ioco ss. Therefore, we could conclude that if one
test case does not pass, that is, not (ii pass tt), then, ii PN-
ioco ss does not hold definitely; that is, TestSel is sound for ss
and tp with respect to PN-ioco. However, it should be noted
that TestSel is not empty since SPtrace is always produced
as a specific initial marking is assigned in actual ss and tp
models.

It should be noted that as CT-CPNTP model is con-
structed from its corresponding CT-CPN

𝑆
model, when valid

specific initial markings are assigned in actual CT-CPN
𝑆

model and CT-CPNTP model, at least one SPtrace exists
definitely, so at least one test case model is generated. Given
sets of initial markings, several test case models covering
specific test purposes are generated consequently. That is,
the special case where empty set of TestSel(ss,tp) tends to be
sound never exists.

Based on the guarantee that test case selection is sound,
we need further guarantee that test selection should cover
test purposes; that is, any passed test case is definitely testing

Journal of Applied Mathematics 9

and only testing those software behaviors which are specified
in corresponding test purpose models. The coverage towards
test purpose is formally described as cover-pass relation as
follows:

∃𝑖𝑖 ∈ CT-CPN
𝐼
with related 𝑠𝑠 ∈ CT-CPN

𝑆
, ∃𝑡𝑝 ∈

CT-CPNTP, ∃𝑡𝑡 ∈ 𝑇
𝑆
(a complete set of test cases generated

from ss and tp):
ii cover-pass tt → ii exhibit tp:

ii cover-pass 𝑡𝑡 =def ii pass tt and {𝑐𝑜V𝑒𝑟𝑒𝑑} ∈ 𝑀(𝑃
𝑉

TC);
ii exhibit 𝑡𝑝 =def ∀𝜎 ∈ SPtrace(𝑀TP): outtoken(MI
fires 𝜎) ⊇ outtoken(𝑀TP fires 𝜎).

From the angle of converse negative proposition in above
relation, we could conclude that if a system implementation
does not perform the behaviors which are specified in a test
purpose model, it must not pass any test case generated using
such test purpose model.

Theorem 8. Let 𝑠𝑠 ∈ 𝐶𝑇-𝐶𝑃𝑁
𝑆
be a specification model

and 𝑡𝑝 ∈ 𝐶𝑇-𝐶𝑃𝑁
𝑇𝑃

a test purpose model; let 𝑇
𝑆
be a

complete set of test cases that generated from ss and tp with
our test selection algorithm, that is, TestSel, let 𝐶𝑇-𝐶𝑃𝑁

𝑆
×

𝐶𝑇-𝐶𝑃𝑁
𝑇𝑃

→ 𝐶𝑇-𝐶𝑃𝑁
𝑇𝐶

be the test selecting function that
satisfies TestSel(ss, tp) ⊆ 𝑇

𝑆
; then TestSel covers behaviors in tp

model.

Proof. ∃𝑖𝑖 ∈ CT-CPN
𝐼
with corresponding 𝑠𝑠 ∈ CT-CPN

𝑆
,

∃𝑡𝑝 ∈ CT-CPNTP and ∃𝑡𝑡 ∈TestSel(ss,tp):
ii cover-pass tt

⇒ ii pass tt ∧∃𝑝 ∈ 𝑃
𝑉

TC, {𝑐𝑜V𝑒𝑟𝑒𝑑} ∈ 𝑀(𝑝)

⇒ ∀𝑝

∈ 𝑃
𝑉

TC, {𝑓𝑎𝑖𝑙} ∉ 𝑀(𝑝

) ∧ ∃𝑝 ∈ 𝑃
𝑉

TC, {𝑐𝑜V𝑒𝑟𝑒𝑑} ∈
𝑀(𝑝) [only pass and covered token data can appear in
the test verdict place]

⇒ ∀𝜎 ∈ SPtrace(𝑀
𝑆
‖𝑀TP): outtoken(𝑀TP fires 𝜎) ⊆

outtoken(𝑀
𝑆
fires 𝜎) and outtoken(𝑀

𝑆
fires 𝜎) =

outtoken(𝑀
𝐼
fires 𝜎)

⇒ ∀𝜎 ∈ SPtrace(𝑀
𝑆
‖𝑀TP): outtoken(𝑀TP fires 𝜎) =

outtoken(𝑀
𝐼
fires 𝜎) [trace 𝜎 results in expected

output observations in the practical test execution].

7. Conclusion

To make the best of advantages of the IOCO testing theory
and the CPNmodeling, we integrate them directly to develop
a novel test purpose model oriented IOCO test selection
method. Based on conformance testing orientedCPNmodels
for specifying software functional behaviors and specific
test purposes, respectively, guided by the CPN based IOCO
relation, feasible test cases are generated using synchro-
nized model simulation with the proof of the soundness
of test generation and the coverage towards test purposes.
Throughout practical test selection and test execution for a
file sharing software system as a representative, the feasibility
and effectiveness of the preceding test selection method are
well elaborated.

Our CPN model based IOCO test selection method has
several advantages. First, conformance test cases are gener-
ated through synchronized simulation process with actual
test input data and test oracles, so they are well feasible for
guiding practical testing executions. Second, as synchronized
model simulations with two CPN models are irrespective
of their model scale, their effectiveness and practicability
are enhanced with better scalability. Therefore, our CPN
model based IOCO test selection method is promising and
competent for validating the correctness of reactive network
software systems more efficiently and more effectively.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This work was supported in part by the National Natural
Science Foundation of China (61262017 and 61262082), the
Key Project of Chinese Ministry of Education (212025), the
InnerMongolia Science Foundation for Distinguished Young
Scholars (2012JQ03), and the Introduction Foundation for
High-Level Talents of InnerMongoliaUniversity.The authors
wish to thank the anonymous reviewers for their helpful
comments in reviewing this paper.

References

[1] International Organization for Standardization, Information
Technology—Open Systems Interconnection—Conformance Test-
ing Methodology and Framework—Part 1: General Concepts,
ISO/IEC 9646-1, International Organization for Standardiza-
tion, Geneva, Switzerland, 2nd edition, 1994.

[2] R. M. Hierons, K. Bogdanov, J. P. Bowen et al., “Using formal
specifications to support testing,”ACMComputing Surveys, vol.
41, no. 2, article 9, 2009.

[3] S. R. Dalal, A. Jain, N. Karunanithi et al., “Model-based testing
in practice,” in Proceedings of the International Conference on
Software Engineering (ICSE ’99), pp. 285–294, Los Angeles,
Calif, USA, May 1999.

[4] J. Yan, J. Wang, and H. W. Chen, “Survary of model-based
software testing,” Computer Science, vol. 31, no. 2, pp. 184–187,
2004 (Chinese).

[5] M. Broy, B. Jonsson, J. P. Katoen,M. Leucker, and A. Pretschner,
Model-Based Testing of Reactive Systems, vol. 3472 of Lecture
Notes in Computer Science, Springer, Heidelberg, Germany,
2005.

[6] J. Tretmans, “Model based testing with labelled transition
systems,” in Formal Methods and Testing, vol. 4949 of Lecture
Notes in Computer Science, pp. 1–38, Springer, Heidelberg,
Germany, 2008.

[7] J. Tretmans, “Test generationwith inputs, outputs and repetitive
quiescence,” Software-Concepts and Tools, vol. 17, no. 3, pp. 103–
120, 1996.

[8] J. Tretmans and E. Brinksma, “TorX: automated model based
testing,” in Proceedings of the 1st European Conference on
Model-Driven Software Engineering (ECMDSE ’03), pp. 1–13,
Nuremberg, Germany, December 2003.

10 Journal of Applied Mathematics

[9] C. Jard and T. Jéron, “TGV: theory, principles and algorithms.
A tool for the automatic synthesis of conformance test cases
for non-deterministic reactive systems,” International Journal
on Software Tools for Technology Transfer, vol. 7, no. 4, pp. 297–
315, 2005.

[10] K. Jensen and L. M. Kristensen, Coloured Petri Nets: Modelling
and Validation of Concurrent Systems, Springer, Heidelberg,
Germany, 2009.

[11] J. Liu, X.-M. Ye, and J. Li, “Colored Petri nets model based
conformance test generation,” in Proceedings of the 16th IEEE
Symposium on Computers and Communications (ISCC ’11), pp.
967–970, Corfu, Greece, July 2011.

[12] R. G. Vries and J. Tretmans, “Towards formal test purposes,”
in Proceedings of the 1st International Workshop on Formal
Approaches to Testing of Software (FATES ’01), pp. 61–76, Aarhus,
Denmark, August 2001.

[13] M. Weiglhofer, G. Fraser, and F. Wotawa, “Using coverage to
automate and improve test purpose based testing,” Information
and Software Technology, vol. 51, no. 11, pp. 1601–1617, 2009.

[14] T. Jéron, “Symbolicmodel-based test selection,” Electronic Notes
in Theoretical Computer Science, vol. 240, no. 7, pp. 167–184,
2009.

[15] H. Watanabe and T. Kudoh, “Test suite generation methods for
concurrent systems based on colouredPetri nets,” inProceedings
of the 2nd Asia-Pacific Software Engineering Conference (APSEC
’95), pp. 242–251, Brisbane, Australia, 1995.

[16] U. Farooq, C. P. Lam, and H. Li, “Towards automated test
sequence generation,” in Proceedings of the 19th Australian
Software Engineering Conference (ASWEC ’08), pp. 441–450,
Perth, Australia, March 2008.

[17] H. Zhu andX.-D.He, “Amethodology of testing high-level Petri
nets,” Information and Software Technology, vol. 44, no. 8, pp.
473–489, 2002.

[18] Y. Ledru, L. du Bousquet, P. Bontron, O. Maury, C. Oriat, and
M. L. Potet, “Test purposes: adapting the notion of specification
to testing,” in Proceedings of the 16th Annual International
Conforence on Automated Software Engineering (ASE ’01), pp.
127–134, Antwerp, Belgium, November 2001.

[19] K. P. Chan, T. Y. Chen, and D. Towey, “Good random testing,”
in Proceedings of the 9th International Conforence on Reliable
Software Technology (Ada-Europe ’04), pp. 200–212, Palma de
Mallorea, Spain, 2004.

[20] C. Pachecol, S. K. Lahiri, M. D. Ernst, and T. Ball, “Feedback-
directed random test generation,” in Proceedings of the 29th
International Conforence on Software Engineering (ICSE ’07), pp.
75–84, Minneapolis, Minn, USA, May 2007.

[21] J. Fernandez, L. Mounier, and C. Pachon, “Property oriented
test case generation,” in Proceedings of the 3rd International
Workshop on Formal Approaches to Testing of Software (FATES
’03), pp. 147–163, Montreal, Canada, October 2003.

[22] G. Fraser, F. Wotawa, and P. E. Ammann, “Testing with model
checkers: a survey,” Software Testing Verification and Reliability,
vol. 19, no. 3, pp. 215–261, 2009.

