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By using themethod of differential subordinations, we derive someproperties ofmultivalent analytic functions. All results presented
here are sharp.

This paper is dedicated to Professor Miodrag Mateljević on the occasion of his 65th birthday

1. Introduction

Let 𝐴(𝑝) denote the class of functions 𝑓(𝑧) of the form

𝑓 (𝑧) = 𝑧
𝑝
+

∞

∑

𝑛=1

𝑎𝑝+𝑛𝑧
𝑝+𝑛

(𝑝 ∈ 𝑁 = {1, 2, 3, . . .}) , (1)

which are analytic in the open unit disk𝐷 = {𝑧 ∈ 𝐶 : |𝑧| < 1}.
Let 𝑓(𝑧) and 𝑔(𝑧) be analytic in 𝐷. Then, we say that 𝑓(𝑧)
is subordinate to 𝑔(𝑧) in 𝐷, written as 𝑓(𝑧) ≺ 𝑔(𝑧), if there
exists an analytic function 𝑤(𝑧) in 𝐷, such that |𝑤(𝑧)| ≤ |𝑧|

and 𝑓(𝑧) = 𝑔(𝑤(𝑧)) (𝑧 ∈ 𝐷). If 𝑔(𝑧) is univalent in 𝐷, then
the subordination 𝑓(𝑧) ≺ 𝑔(𝑧) is equivalent to 𝑓(0) = 𝑔(0)

and 𝑓(𝐷) ⊂ 𝑔(𝐷). Let 𝑝(𝑧) = 1 + 𝑝1𝑧 + ⋅ ⋅ ⋅ be analytic in 𝐷.
Then, for −1 ≤ 𝐵 < 𝐴 ≤ 1, it is clear that

𝑝 (𝑧) ≺
1 + 𝐴𝑧

1 + 𝐵𝑧
(𝑧 ∈ 𝐷) (2)

if and only if

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑝 (𝑧) −

1 − 𝐴𝐵

1 − 𝐵2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
<

𝐴 − 𝐵

1 − 𝐵2
(−1 < 𝐵 < 𝐴 ≤ 1; 𝑧 ∈ 𝐷) ,

(3)

Re𝑝 (𝑧) >
1 − 𝐴

2
(𝐵 = −1; 𝑧 ∈ 𝐷) . (4)

Recently, a number of results for argument properties
of analytic functions have been obtained by several authors
(see, e.g., [1–5]). The objective of the present paper is to
derive some further interesting properties of multivalent
analytic functions. The basic tool used here is the method of
differential subordinations.

To derive our results, we need the following lemmas.

Lemma 1 (see [6, Theorem 1, page 776]). Let ℎ(𝑧) be analytic
and starlike univalent in𝐷 with ℎ(0) = 0. If 𝑔(𝑧) is analytic in
𝐷 and 𝑧𝑔

󸀠
(𝑧) ≺ ℎ(𝑧), then

𝑔 (𝑧) ≺ 𝑔 (0) + ∫

𝑧

0

ℎ (𝑡)

𝑡
𝑑𝑡. (5)

Lemma 2 (see [5, Theorem 1, page 1814]). Let 0 < 𝛼1 ≤ 1,
0 < 𝛼2 ≤ 1, 𝛽 = (𝛼1 − 𝛼2)/(𝛼1 + 𝛼2), and 𝑐 = 𝑒

𝛽𝜋𝑖. Also let

𝜆0𝑎 ≥ 0, 𝜆 (𝑏 + 2) ≥ 0, (𝑏 + 1)Re 𝜇 ≥ 0,

|𝑏 + 1| ≤
2

𝛼1 + 𝛼2

, |𝑎 − 𝑏 − 1| ≤
1

max {𝛼1, 𝛼2}
.

(6)

If 𝑞(𝑧) is analytic in𝐷 with 𝑞(0) = 1 and

𝜆0(𝑞 (𝑧))
𝑎
+ 𝜆(𝑞 (𝑧))

𝑏+2
+ 𝜇(𝑞 (𝑧))

𝑏+1

+𝑧𝑞
󸀠
(𝑧) (𝑞 (𝑧))

𝑏
≺ ℎ (𝑧) (𝑧 ∈ 𝐷) ,

(7)
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where

ℎ (𝑧) = 𝜆0(
1 + 𝑐𝑧

1 − 𝑧
)

𝑎((𝛼
1
+𝛼
2
)/2)

+ (
1 + 𝑐𝑧

1 − 𝑧
)

(1/2)(𝑏+1)(𝛼
1
+𝛼
2
)

× (𝜇 + 𝜆(
1 + 𝑐𝑧

1 − 𝑧
)

(𝛼
1
+𝛼
2
)/2

+
𝛼1 + 𝛼2

2
(

𝑧

1 − 𝑧
+

𝑐𝑧

1 + 𝑐𝑧
))

(8)

is (close-to-convex) univalent in 𝐷, then

−
𝜋

2
𝛼2 < arg (𝑞 (𝑧)) < 𝜋

2
𝛼1 (𝑧 ∈ 𝐷) . (9)

The bounds 𝛼1 and 𝛼2 in (9) are sharp for the function 𝑞(𝑧)

defined by

𝑞 (𝑧) = (
1 + 𝑐𝑧

1 − 𝑧
)

(𝛼
1
+𝛼
2
)/2

. (10)

Remark 3 (see [5, Lemma 2, page 1813]). The function 𝑞(𝑧)

defined by (10) is analytic and univalent convex in𝐷 and

𝑞 (𝐷) = {𝑤 : 𝑤 ∈ 𝐶, −
𝜋

2
𝛼2 < arg𝑤 <

𝜋

2
𝛼1} . (11)

2. Main Results

Our first result is contained in the following.

Theorem 4. Let 𝛼 ∈ (0, 1/2] and 𝛽 ∈ (0, 1). If 𝑓(𝑧) ∈ 𝐴(𝑝)

satisfies 𝑓(𝑧) ̸= 0 (0 < |𝑧| < 1) and
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑝

𝑓 (𝑧)
(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝛿 (𝑧 ∈ 𝐷) , (12)

where 𝛿 is the smallest positive root of the equation

𝛼 sin(
𝜋𝛽

2
)𝑥
2
− 𝑥 + (1 − 𝛼) sin(

𝜋𝛽

2
) = 0, (13)

then
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑓 (𝑧)

𝑧𝑝
− 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

<
𝜋

2
𝛽 (𝑧 ∈ 𝐷) . (14)

The bound 𝛽 is sharp for each 𝛼 ∈ (0, 1/2].

Proof. Let

𝑔 (𝑥) = 𝛼 sin(
𝜋𝛽

2
)𝑥
2
− 𝑥 + (1 − 𝛼) sin(

𝜋𝛽

2
) . (15)

We can see easily that (13) has two positive roots. Since 𝑔(0) >
0 and 𝑔(1) < 0, we have

0 <
𝛼

1 − 𝛼
𝛿 ≤ 𝛿 < 1. (16)

Put

𝑓 (𝑧)

𝑧𝑝
= 𝛼 + (1 − 𝛼) 𝑝 (𝑧) . (17)

Then, from the assumption of the theorem, we can see that
𝑝(𝑧) is analytic in 𝐷 with 𝑝(0) = 1 and 𝛼 + (1 − 𝛼)𝑝(𝑧) ̸= 0

for all 𝑧 ∈ 𝐷. Taking the logarithmic differentiations in both
sides of (17), we get

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝 =

(1 − 𝛼) 𝑧𝑝
󸀠
(𝑧)

𝛼 + (1 − 𝛼) 𝑝 (𝑧)
, (18)

𝑧
𝑝

𝑓 (𝑧)
(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝) =

(1 − 𝛼) 𝑧𝑝
󸀠
(𝑧)

(𝛼 + (1 − 𝛼) 𝑝 (𝑧))
2

(19)

for all 𝑧 ∈ 𝐷. Thus, inequality (12) is equivalent to

(1 − 𝛼) 𝑧𝑝
󸀠
(𝑧)

(𝛼 + (1 − 𝛼) 𝑝 (𝑧))
2
≺ 𝛿𝑧. (20)

By using Lemma 1, (20) leads to

∫

𝑧

0

(1 − 𝛼) 𝑝
󸀠
(𝑡)

(𝛼 + (1 − 𝛼) 𝑝 (𝑡))
2
𝑑𝑡 ≺ 𝛿𝑧 (21)

or to

1 −
1

𝛼 + (1 − 𝛼) 𝑝 (𝑧)
≺ 𝛿𝑧. (22)

According to (16), (22) can be written as

𝑝 (𝑧) ≺
1 + (𝛼/ (1 − 𝛼)) 𝛿𝑧

1 − 𝛿𝑧
. (23)

Now, by taking 𝐴 = (𝛼/(1 − 𝛼))𝛿 and 𝐵 = −𝛿 in (2) and (3),
we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑓 (𝑧)

𝑧𝑝
− 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨arg𝑝 (𝑧)

󵄨󵄨󵄨󵄨

< arcsin(
𝛿

1 − 𝛼 + 𝛼𝛿2
) =

𝜋

2
𝛽

(24)

for all 𝑧 ∈ 𝐷 because of 𝑔(𝛿) = 0. This proves (14).
Next, we consider the function 𝑓(𝑧) defined by

𝑓 (𝑧) =
𝑧
𝑝

1 − 𝛿𝑧
(25)

for all 𝑧 ∈ 𝐷. It is easy to see that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑧
𝑝

𝑓 (𝑧)
(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= |𝛿𝑧| < 𝛿 (26)

for all 𝑧 ∈ 𝐷. Since
𝑓 (𝑧)

𝑧𝑝
− 𝛼 = (1 − 𝛼)

1 + (𝛼/ (1 − 𝛼)) 𝛿𝑧

1 − 𝛿𝑧
, (27)

it follows from (3) that

sup
𝑧∈𝑈

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg(
𝑓 (𝑧)

𝑧𝑝
− 𝛼)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= arcsin(
𝛿

1 − 𝛼 + 𝛼𝛿2
) =

𝜋

2
𝛽. (28)

Hence, we conclude that the bound 𝛽 is the best possible for
each 𝛼 ∈ (0, 1/2].

Next, we derive the following.
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Theorem 5. If 𝑓(𝑧) ∈ 𝐴(𝑝) satisfies 𝑓(𝑧) ̸= 0 (0 < |𝑧| < 1)

and

Re{ 𝑧
𝑝

𝑓 (𝑧)
(
𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝)} < 𝛾 (𝑧 ∈ 𝐷) , (29)

where

0 < 𝛾 <
1

2 log 2
, (30)

then

Re 𝑧
𝑝

𝑓 (𝑧)
> 1 − 2𝛾 log 2 (𝑧 ∈ 𝐷) . (31)

The bound in (31) is sharp.

Proof. Let

𝑝 (𝑧) =
𝑓 (𝑧)

𝑧𝑝
. (32)

Then, from the assumption of the theorem we can see that
𝑝(𝑧) is analytic in𝐷 with 𝑝(0) = 1 and 𝑝(𝑧) ̸= 0 for all 𝑧 ∈ 𝐷.
According to (32) and (29), we have immediately

1 −
𝑧𝑝
󸀠
(𝑧)

𝛾𝑝2 (𝑧)
≺

1 + 𝑧

1 − 𝑧
; (33)

that is,

𝑧(
1

𝑝 (𝑧)
)

󸀠

≺
2𝛾𝑧

1 − 𝑧
. (34)

Now, by using Lemma 1, we obtain

1

𝑝 (𝑧)
≺ 1 − 2𝛾 log (1 − 𝑧) . (35)

Since the function 1 − 2𝛾 log(1 − 𝑧) is convex univalent in 𝐷

and

Re (1 − 2𝛾 log (1 − 𝑧)) > 1 − 2𝛾 log 2 (𝑧 ∈ 𝐷) , (36)

from (35), we get inequality (31).
To show that the bound in (31) cannot be increased, we

consider

𝑓 (𝑧) =
𝑧
𝑝

1 − 2𝛾 log (1 − 𝑧)
(𝑧 ∈ 𝐷) . (37)

It is easy to verify that the function 𝑓(𝑧) satisfies inequality
(29). On the other hand, we have

Re 𝑧
𝑝

𝑓 (𝑧)
󳨀→ 1 − 2𝛾 log 2 (38)

as 𝑧 → −1. Now, the proof of the theorem is complete.

Finally, we discuss the following theorem.

Theorem 6. Let 𝛼, 𝛾 ∈ (0, 1). If 𝑓(𝑧) ∈ 𝐴(𝑝) satisfies
𝑓(𝑧) ̸= 0 (0 < |𝑧| < 1) and

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

arg{
𝑓 (𝑧)

𝑧𝑝
(𝛾(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝) + (1 − 𝛾)

𝑓 (𝑧)

𝑧𝑝
)

− (1 − 𝛾) 𝛼
2
}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝜋𝛿

(39)

for all 𝑧 ∈ 𝐷, where

𝛿 =
1

2
+

1

𝜋
tan−1(

√𝛾 (2 (1 − 𝛼) (1 − 𝛾) + 𝛾)

2𝛼 (1 − 𝛾)
) , (40)

then

Re
𝑓 (𝑧)

𝑧𝑝
> 𝛼 (𝑧 ∈ 𝐷) . (41)

The bound 𝛿 in (39) is sharp.

Proof. Define the function 𝑝(𝑧) by (17). For 𝛼, 𝛾 ∈ (0, 1), it
follows from (17) and (18) that

1

𝛾 (1 − 𝛼)
{
𝑓 (𝑧)

𝑧𝑝
(𝛾(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝) + (1 − 𝛾)

𝑓 (𝑧)

𝑧𝑝
)

− (1 − 𝛾) 𝛼
2
}

=
(1 − 𝛼) (1 − 𝛾)

𝛾
𝑝
2
(𝑧) +

2𝛼 (1 − 𝛾)

𝛾
𝑝 (𝑧) + 𝑧𝑝

󸀠
(𝑧)

(42)

for all 𝑧 ∈ 𝐷. Putting

𝑎 = 𝑏 = 𝜆0 = 0, 𝛼1 = 𝛼2 = 1,

𝜆 =
(1 − 𝛼) (1 − 𝛾)

𝛾
, 𝜇 =

2𝛼 (1 − 𝛾)

𝛾

(43)

in Lemma 2 and using (42), we see that if

1

𝛾 (1 − 𝛼)
{
𝑓 (𝑧)

𝑧𝑝
(𝛾(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝) + (1 − 𝛾)

𝑓 (𝑧)

𝑧𝑝
)

− (1 − 𝛾) 𝛼
2
} ≺ ℎ (𝑧) ,

(44)

where

ℎ (𝑧)

= (
1 + 𝑧

1 − 𝑧
)(

(1 − 𝛼) (1 − 𝛾)

𝛾
(
1 + 𝑧

1 − 𝑧
) +

2𝛼 (1 − 𝛾)

𝛾

+
2𝑧

1 − 𝑧2
) ,

(45)

then (41) holds true.
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Letting 0 < 𝜃 < 𝜋 and 𝑥 = cot(𝜃/2), we deduce that

arg ℎ (𝑒𝑖𝜃)

=
𝜋

2
+ arg{

(1 − 𝛼) (1 − 𝛾)

𝛾
𝑥𝑒
𝜋𝑖/2

+
2𝛼 (1 − 𝛾)

𝛾

+
𝑖

2
(𝑥 +

1

𝑥
)}

=
𝜋

2
+ tan−1 (

(2 (1 − 𝛼) (1 − 𝛾) + 𝛾) 𝑥
2
+ 𝛾

4𝛼 (1 − 𝛾) 𝑥
) .

(46)

Making use of (46), we obtain that

inf
|𝑧|=1(𝑧 ̸= ±1)

󵄨󵄨󵄨󵄨arg ℎ (𝑧)
󵄨󵄨󵄨󵄨

= min
0<𝜃<𝜋

arg ℎ (𝑒𝑖𝜃)

=
𝜋

2
+min
𝑥>0

tan−1 (
(2 (1 − 𝛼) (1 − 𝛾) + 𝛾) 𝑥

2
+ 𝛾

4𝛼 (1 − 𝛾) 𝑥
)

=
𝜋

2
+ tan−1(

√𝛾 (2 (1 − 𝛼) (1 − 𝛾) + 𝛾)

2𝛼 (1 − 𝛾)
)

= 𝜋𝛿.

(47)

Therefore, if 𝑓(𝑧) ∈ 𝐴(𝑝) satisfies (39), then the subordina-
tion (44) holds, and, thus, we obtain (41).

For the function

𝑓 (𝑧)

𝑧𝑝
=

1 + (1 − 2𝛼) 𝑧

1 − 𝑧
, (48)

we find that

1

𝛾 (1 − 𝛼)
{
𝑓 (𝑧)

𝑧𝑝
(𝛾(

𝑧𝑓
󸀠
(𝑧)

𝑓 (𝑧)
− 𝑝) + (1 − 𝛾)

𝑓 (𝑧)

𝑧𝑝
)

− (1 − 𝛾) 𝛼
2
} = ℎ (𝑧) ,

(49)

where ℎ(𝑧) is defined by (45). In view of (46) and (49), we
conclude that the bound 𝛿 in (39) is the largest number such
that (41) holds true. This completes the proof.
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