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The method of least absolute deviation (LAD) finds applications in many areas, due to its robustness compared to the least squares
regression (LSR) method. LAD is robust in that it is resistant to outliers in the data. This may be helpful in studies where outliers
may be ignored. Since LAD is nonsmooth optimization problem, this paper proposed a metaheuristics algorithm named novel
global harmony search (NGHS) for solving. Numerical results show that the NGHS method has good convergence property and
effective in solving LAD.

1. Introduction

Least squares regression (LSR) method is one of the oldest
and the most widely used statistical tools for linear models.
Its theoretical properties have been extensively studied and
are fully understood. Despite its many superior properties,
the LSR estimate can be sensitive to outliers and, therefore,
nonrobust [1]. In order to overcome these problems, the
researchers have recently investigated the alternative regres-
sionmethodwhich is least absolute deviation (LAD)method.

Least absolute deviation (LAD), also known as least
absolute errors (LAE), least absolute value (LAV), or least
absolute residual (LAR), or the 𝐿

1
norm problem, is a

mathematical optimization technique similar to the LSR that
attempts to find a function which closely approximates a set
of data (𝑥

𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑛. In the simple case, the approx-

imation function is a simple “trend line” in two-dimensional
Cartesian coordinates [2]. Themethod minimizes the sum of
absolute errors (SAE) (the sum of the absolute values of the
vertical “residuals” between points generated by the function
and corresponding points in the data).

The method of LAD finds applications in many areas,
due to its robustness compared to the LSR method. LAD is
robust in that it is resistant to outliers in the data.This may be
helpful in studies where outliers may be safely and effectively
ignored. Despite its long history and many ground-breaking
works, the LAD has not been explored in theory as well as in

application to the extent as the LSR [3].This is largely because
computing LAD estimates are more difficult than computing
LSR estimates due to the fact that algorithmic method must
be employed to calculate LAD estimates. Therefore, LAD
estimation method is not popular as LSR method.

Over the past few years, a number of approaches have
been developed for solving the LAD using classical math-
ematical programming methods. Since Charnes et al. [4]
reduced the LAD method to a linear programming problem,
the computational difficulty is now entirely overcome by
the availability of computing power and the effectiveness
of linear programming. A comprehensive summary of the
subject can be found inKoenker andD’Orey [5]. Large sample
properties of the LAD estimates are obtained in Koenker and
Bassett Jr. [6], Chen et al. [7], and Pollard [8]. Due to these
developments in theoretical and computational aspects, the
LADmethod has become increasingly popular. In particular,
it has many applications in econometrics and biomedical
studies; see Bassett and Koenker [9], Powell [10], Buchinsky
[11], among many others.

Since LAD is a class of nondifferentiable optimization
problem, this paper proposed a metaheuristics algorithm
named novel global harmony search (NGHS) [12] for solving
LAD model. The NGHS algorithm includes two important
operations: position updating and genetic mutation with
a small probability (𝑝

𝑚
). The former enables the worst

harmony of harmony memory to move to the global best
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harmony rapidly in each iteration, and the latter can effec-
tively maintain population diversity and prevent the NGHS
from trapping into the local optimum.

The remaining sections of this chapter are organized as
follows. In Section 2, LAD model is shown. In Sections 3
and 4, the classical HS and NGHS are described. Numerical
results are presented and compared in Section 5. Lastly,
Section 6 outlines our conclusions.

2. Least Absolute Deviations Model

TheLADmethod is awidely known alternative to the classical
LSR method for statistical analysis of linear regression mod-
els. Instead of minimizing the sum of squared errors (SSE) in
LSR, it minimizes the sum of absolute errors (SAE).

Suppose that the data set consists of 𝑛 points (data pairs)
(𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 𝑛, where 𝑥

𝑖
is an independent variable

and 𝑦
𝑖
is a dependent variable whose value is found by

observation. We want to find a function 𝑓 such that 𝑓(𝑥
𝑖
) =

𝑦
𝑖
.
To attain this goal, we suppose that the function 𝑓 is of

a particular form containing some parameters which need
to be determined. For instance, the simplest form would be
linear: 𝑓(𝑥, 𝛽) = 𝛽

0
+ 𝛽
1
𝑥, where 𝛽

0
and 𝛽

1
are parameters

whose values are not known but which we would like to
estimate.

We now seek estimated values of the unknown parame-
ters that minimize the SAE:

min 𝑆 =
𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖) − 𝑦𝑖
󵄨󵄨󵄨󵄨 . (1)

Let

𝐴
𝑇
= [

1 1 ⋅ ⋅ ⋅ 1

𝑥
1
𝑥
2
⋅ ⋅ ⋅ 𝑥
𝑛

] , 𝛽 = [
𝛽
0

𝛽
1

] ,

𝑏
𝑇
= [𝑦
1
, 𝑦
2
, . . . , 𝑦

𝑛
] .

(2)

Then LAD problem is equivalent to following 𝐿
1
optimiza-

tion problem:

min 𝑆 =
𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖) − 𝑦𝑖
󵄨󵄨󵄨󵄨 =

󵄩󵄩󵄩󵄩𝐴𝛽 − 𝑏
󵄩󵄩󵄩󵄩1
. (3)

Meanwhile, then LSR problem is equivalent to following 𝐿
2

optimization problem

min 𝑆 =
𝑛

∑

𝑖=1

󵄨󵄨󵄨󵄨𝑓 (𝑥𝑖) − 𝑦𝑖
󵄨󵄨󵄨󵄨

2

=
󵄩󵄩󵄩󵄩𝐴𝛽 − 𝑏

󵄩󵄩󵄩󵄩

2

2
. (4)

For a given data set, the method of LAD may produce mul-
tiple solutions, whereas the method of LSR always produces
only one solution (the regression line is unique).

3. Harmony Search Algorithm

Recently, a new class of metaheuristics, named harmony
search (HS), has been developed.TheHS algorithm proposed

in [13] has been developed in an analogy with music impro-
visation process where musicians in an ensemble continue
to polish their pitches in order to obtain better harmony.
Jazz improvisation seeks to find musically pleasing harmony
similar to the optimum design process which seeks to find
optimum solution. The pitch of each musical instrument
determines the aesthetic quality, just as the objective function
value is determined by the set of values assigned to each
decision variable. In addition, HS uses a stochastic random
search instead of a gradient search.

The steps in the procedure of standard harmony search
algorithm (HS) are as follows.

Step 1 (initialize the problem and algorithm parameters). The
optimization problem is specified as follows:

Minimize 𝑓 (𝑥)

subject to 𝑥
𝑖
∈ 𝑋
𝑖
, 𝑖 = 1, 2, . . . , 𝑁,

(5)

where 𝑓(𝑥) is an objective function; 𝑥 is the set of each
decision variable 𝑥

𝑖
; 𝑁 is the number of decision variables;

𝑋
𝑖
is the set of the possible range of values for each decision

variable; 𝑋
𝑖
: 𝑥
𝑖

𝐿
≤ 𝑥
𝑖
≤ 𝑥
𝑖

𝑈. The HS algorithm parameters
are also specified in this step.These are the harmonymemory
size (HMS) or the number of solution vectors in the harmony
memory; harmony memory considering rate (HMCR); pitch
adjusting rate (PAR); and the number of improvisations
(Tmax) or stopping criterion.

Step 2 (initialize the harmony memory). The HM matrix is
filled with as many randomly generated solution vectors as
the HMS

HM =

[
[
[
[
[
[

[

𝑥
1

𝑓 (𝑥
1
)

𝑥
2

𝑓 (𝑥
2
)

...
...

𝑥
HMS

𝑓 (𝑥
HMS

)

]
]
]
]
]
]

]

=

[
[
[
[
[

[

𝑥
1

1
𝑥
1

2
⋅ ⋅ ⋅ 𝑥

1

𝑁
𝑓 (𝑥
1
)

𝑥
2

1
𝑥
2

2
⋅ ⋅ ⋅ 𝑥

2

𝑁
𝑓 (𝑥
2
)

...
... ⋅ ⋅ ⋅

...
...

𝑥
HMS
1

𝑥
HMS
2

⋅ ⋅ ⋅ 𝑥
HMS
𝑁

𝑓 (𝑥
HMS

)

]
]
]
]
]

]

.

(6)

Step 3 (improvise a new harmony). Generate a new harmony
is called “improvisation.” A new harmony vector, 𝑥󸀠 =

(𝑥
󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
), is generated based on three rules: (1) mem-

ory consideration, (2) pitch adjustment, and (3) random
selection. The procedure works as Algorthim 1.

𝑥
󸀠

𝑖
(𝑖 = 1, 2, . . . , 𝑁) is the 𝑖th component of 𝑥󸀠, and

𝑥
𝑗

𝑖
(𝑗 = 1, 2, . . . ,HMS) is the 𝑖th component of the 𝑗th

candidate solution vector in HM. Here 𝑟(−1, 1) is uniform
distribution random number in the region of (−1, 1), 𝑏𝑤
is an arbitrary distance bandwidth, and rand() is uniform
distribution random number in the region of (0, 1).

Step 4 (update harmony memory). If the new harmony
vector 𝑥󸀠 = (𝑥󸀠

1
, 𝑥
󸀠

2
, . . . , 𝑥

󸀠

𝑁
) is better than the worst harmony
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For each 𝑖 ∈ [1, 2, . . . , 𝑁] do
If rand() <HMCR

𝑥
󸀠

𝑖
= 𝑥
𝑗

𝑖
(𝑗 = 1, 2, . . . ,HMS) //memory consideration

If rand() < PAR
𝑥
󸀠

𝑖
= 𝑥
󸀠

𝑖
+ 𝑟(−1, 1) × 𝑏𝑤 // pitch adjustment

𝑥
󸀠

𝑖
= min[max(𝑥󸀠

𝑖
, 𝑥
𝑖

𝐿
), 𝑥
𝑖

𝑈
] //truncation processing

End
Else

𝑥
󸀠

𝑖
= 𝑥
𝑖

𝐿
+ rand() × (𝑥

𝑖

𝑈
− 𝑥
𝑖

𝐿
) //random selection

End
End

Algorithm 1: Generating a new harmony by classical HS algorithm.

For each 𝑖 ∈ [1, 2, . . . , 𝑁] do
𝑥
𝑠
= 2 × 𝑥

best
𝑖
− 𝑥

worst
𝑖

𝑥
𝑠
= min[max(𝑥

𝑠
, 𝑥
𝑖

𝐿
), 𝑥
𝑖

𝑈
] //truncation processing

𝑥
󸀠

𝑖
= 𝑥

worst
𝑖

+ rand() × (𝑥
𝑠
− 𝑥

worst
𝑖

) //position updating
If rand() < 𝑝

𝑚

𝑥
󸀠

𝑖
= 𝑥
𝑖

𝐿
+ rand() × (𝑥

𝑖

𝑈
− 𝑥
𝑖

𝐿
) //genetic mutation

End
End

Algorithm 2: Generating a new harmony by NGHS algorithm.

in the HM, judged in terms of the objective function value,
the new harmony is included in the HM and the existing
worst harmony is excluded from the HM.

Step 5 (check stopping criterion). If the stopping criterion
(maximum number of improvisations) is satisfied, computa-
tion is terminated. Otherwise, Steps 3 and 4 are repeated.

4. Novel Global Harmony Search Algorithm

Experiments with the classical HS algorithm over the bench-
mark problems show that the algorithm suffers from the
problem of premature and/or false convergence and slow
convergence especially over multimodal fitness landscape. To
enrich the searching behavior and to avoid being trapped
into local optimum, more improved HS algorithms were
presented. Zou et al. [12] proposed an NGHS algorithm and
it has been successfully used in reliability problems [14], and
0-1 knapsack problems [15].

The NGHS algorithm modifies the improvisation step of
the HS such that the new harmony canmimic the global-best
harmony in the HM. In Step 3 it works as Algorthim 2.

Here, “best” and “worst” are the indexes of the best and
worst harmony in HM, respectively.

The NGHS proposed algorithm has strong global search
ability in the early stage of optimization and has strong local
search ability in the late stage of optimization. In the early
stage of optimization, all solution vectors are sporadic in
feasible space, so most 𝑥

𝑠
is large, which is beneficial to

the global search of the NGHS, while in the late stage of

optimization, all nonbest solution vectors are inclined to
move to the global-best solution vector, so most solution
vectors are close to each other. In this case, most 𝑥

𝑠
is small

and most trust regions are narrow, which is beneficial to the
local search of the NGHS.

In Step 4, the NGHS replaces the worst harmony 𝑥worst in
HM with the new harmony 𝑥󸀠 even if 𝑥󸀠 is worse than 𝑥worst.

The NGHS and the HS are different in following. (i) In
Step 1, harmony memory considering rate (HMCR), pitch
adjusting rate (PAR), and adjusting step (𝑏𝑤) are excluded
from the NGHS, and genetic mutation probability (𝑝

𝑚
) is

included in the NGHS. (ii) The HS carries out mutation
with the probability HMCR × PAR and carries out random
selection with the probability 1-HMCR, while the NGHS
carries out genetic mutation with the probability 𝑝

𝑚
. In fact,

both operations are exactly the same, and they are used
to keep the individual variety better, which can effectively
prevent both algorithms from being trapped into the local
optimum.

5. Computational Results

In this section we solve an LAD problem in order to illustrate
the implementation and efficiency of the NGHS method. All
the experiments were performed on MatlabR2009a system
with Intel(R) Core(TM) 4 × 3.3GHz and 2GBRAM.

The data pairs (𝑥
𝑖
, 𝑦
𝑖
), 𝑖 = 1, 2, . . . , 23, are listed in Tables

1 and 2, where 𝑥
𝑖
is an independent variable and 𝑦

𝑖
is a

dependent variable whose value is found by observation.
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Table 1: Given data.

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝑥
𝑖

20 19.6 19.6 19.4 18.4 19 19 18.3 18.2 18.6 19.2 18.2
𝑦
𝑖

1.0 1.2 1.1 1.4 2.3 1.7 1.7 2.4 2.1 2.1 1.2 2.3
𝑖 13 14 15 16 17 18 19 20 21 22 23
𝑥
𝑖

18.7 18.5 18 17.4 16.5 17.2 17.3 17.8 17.3 18.4 16.9
𝑦
𝑖

1.9 2.4 2.6 2.9 4.0 3.3 3.0 3.4 2.9 1.9 3.9

Table 2: Given data with outlier.

𝑖 1 2 3 4 5 6 7 8 9 10 11 12
𝑥
𝑖

20 19.6 19.6 19.4 18.4 19 19 18.3 18.2 18.6 19.2 18.2
𝑦
𝑖

1.0 1.2 1.1 1.4 2.3 1.7 1.7 2.4 2.1 2.1 1.2 2.3
𝑖 13 14 15 16 17 18 19 20 21 22 23
𝑥
𝑖

18.7 18.5 10 17.4 16.5 17.2 17.3 17.8 17.3 18.4 16.9
𝑦
𝑖

1.9 2.4 2.6 2.9 4.0 3.3 3.0 3.4 2.9 1.9 3.9

Table 3: The Statistical results for 10 runs on given data in Table 2.

Algorithm Best Mean Worst Standard Mean Time (s)

LAD

HS 1.0830𝐸 + 01 2.2618𝐸 + 01 5.9845𝐸 + 01 1.7983𝐸 + 01 2.9411𝐸 − 03

HSCH 1.0723𝐸 + 01 2.9073𝐸 + 01 1.4305𝐸 + 02 4.0622𝐸 + 01 3.4392𝐸 − 03

HSWB 1.1861𝐸 + 01 1.9807𝐸 + 02 7.5315𝐸 + 02 2.3679𝐸 + 02 3.5885𝐸 − 03

NGHS 9.9041𝐸 + 00 1.2058𝐸 + 01 1.4555𝐸 + 01 1.7163𝐸 + 00 3.5500𝐸 − 03
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Given data (xi, yi) with outlier

Figure 1: Data fitting results by LSR method. Here 𝑓
1
(𝑥) =

−0.8940𝑥 + 18.6746 is fitting results of data in Table 1, and 𝑓
2
(𝑥) =

−0.2288𝑥 + 6.4055 is fitting results of data in Table 2.

For data pairs listed in Tables 1 and 2, solved by LSR
model [16], respectively, the results of data fitting are shown
in Figure 1.

From Figure 1, LSR method is sensitive to outliers and,
therefore, nonrobust. Its performance in terms of accuracy

and statistical inferences may be compromised when the
errors are large and heterogeneous.

Following we use LAD model to fit given data with
outlier in Table 2. Since LAD is a kind of nondifferentiable
optimization problem, we solved it by NGHS. In order
to show the optimization capabilities of the NGHS, the
results of classical HS, HSCH [17], and HSWB [18] are listed
too. To make the comparison fair, the populations for all
the competitor algorithms were initialized using the same
random seeds. The HS-variants algorithm parameters were
set the same parameters: harmony memory size HMS = 15,
harmony memory consideration rate HMCR = 0.85, pitch
adjusting rate PAR = 0.35, and Tmax = 400. In NGHS, we set
𝑝
𝑚
= 0.005. If using a random number, we set the random-

number generator to the state of 0 so that the same data can
be regenerated.

To judge the accuracy of different algorithms, 10 inde-
pendent runs of each of the four algorithms were carried out
and the best, the mean, and the worst fitness values and the
standard deviation (Std) were recorded in Table 3.

Figure 2 shows the convergence and its boxplot figure of
the best fitness in the population for the different algorithms.
The values plotted for every generation are averaged over 10
independent runs. As can be seen, the NGHS algorithm is the
best.

Moreover, the results of data fitting by NGHS algorithm
are shown in Figure 3.

Unlike the LSR method, the LADmethod is not sensitive
to outliers and produces robust estimates.
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Figure 2: The convergence and its boxplot of the best fitness for LAD.
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Figure 3: Data fitting results by LSR and LAD. Here 𝑓
1
(𝑥) =

−0.8940𝑥+18.6746 is fitting results of data in Table 1 by LSR,𝑓
2
(𝑥) =

−0.2288𝑥 + 6.4055 is fitting results of data in Table 2 by LSR, and
𝑓
3
(𝑥) = −0.7306𝑥 + 15.5965 is fitting results of data in Table 2 by

LAD.

6. Conclusion

TheLADmethod is awidely known alternative to the classical
LSR method for statistical analysis of linear regression mod-
els. Since LAD is a class of nondifferentiable optimization
problem, this paper given NGHS algorithm for solving.

Unlike the LSR, the LAD is not sensitive to outliers and
produces robust estimates. Moreover, NGHS algorithm is
effective for solving LAD model. The future works include
investigating the application of LAD or other algorithm for
solving LAD.
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