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We introduce the variational iteration method for solving the generalized Degasperis-Procesi equation. Firstly, according to the
variational iteration, the Lagrange multiplier is found after making the correction functional. Furthermore, several approximations
of 𝑢
𝑛+1

(𝑥, 𝑡) which is converged to 𝑢(𝑥, 𝑡) are obtained, and the exact solutions of Degasperis-Procesi equation will be obtained by
using the traditional variational iterationmethod with a suitable initial approximation 𝑢

0
(𝑥, 𝑡). Finally, after giving the perturbation

item, the approximate solution for original equation will be expressed specifically.

1. Introduction

The theory of soliton has extensive applications in physics,
mechanics, and combustion science. In recent years, many
researchers studied the soliton theory in the fields of shock
wave [1, 2], light scattering, quantummechanics, atmospheric
physics, neural networks, explosion, and combustion [3].
There are many new methods for searching the soliton
solution of nonlinear evolution equations such as hyperbolic
tangent function method [4], the homogeneous balance
methods [5], Jacobi elliptic function expansion method [3],
and pseudo-spectral method [6].

The variational iteration method (VIM) was developed,
in 1999, by He [7–13]. The VIM gives rapidly convergent
successive approximations of the exact solution if such a
solution exists; otherwise, a few approximations can be
used for numerical purposes. The Adomian decomposition
method suffers from the complicated computational work
needed for the derivation of Adomian polynomials for
nonlinear terms.TheVIM has no specific requirements, such
as linearization, small parameters for nonlinear operators.
Therefore, the VIM can overcome the foregoing restrictions
and limitations of perturbation techniques, so that it provides
us with a possibility to analyze strongly nonlinear problems.

On the other hand, the VIM is capable of greatly reducing
the size of calculation while still maintaining high accuracy
of the numerical solution [14]. Moreover, the power of the
method gives it a wider applicability in handling a huge
number of analytical and numerical applications. The VIM
was successfully applied to study a variety of differential
equations. It is based on Lagrange multiplier, and it has the
merits of simplicity and easy execution. As a result, it has been
proved by many authors to be a powerful mathematical tool
for addressing various kinds of linear and nonlinear problem.
For example, this method was used for solving nonlinear
wave equations and the Laplace equation by Wazwaz [14].
The VIM for solving linear systems of ODEs with con-
stant coefficients was studied by Khojasteh Salkuyeh [15].
Helmholtz equationwas researched byMomani andAbuasad
[16]. Geng [17] introduced the piecewise VIM for solving
Riccati differential equation. Fractional vibration equation
was researched by Das [18]. Furthermore, higher order
boundary value problems were researched by Xu [19],Noor,
and Mohyud-Din [20]. Noor et al. [21] applied a modified
He’s variational iteration method for solving singular fourth-
order parabolic partial differential equations. The proposed
modification is made by introducing He’s polynomials in
the correction functional. Ghorbani and Saberi-Nadjafi [22]
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modified the VIM by constructing an initial trial function
without unknown parameters. Sevimlican [23] constructed
approximate Green’s function for a vector equation for the
electric field by using VIM.

In this paper, we are concerned with the variational
iterations method for solving the generalized Degasperis-
Procesi equation. As a review, we will recall the VIM briefly
in Section 2.

2. Variational Iteration Method

In this section, the basic concepts of variational iteration
method (VIM) are introduced. Here, a description ofmethod
[7–15] is given to handle the general nonlinear problem.
Consider the differential equation of the form

𝐿𝑢 (𝑥, 𝑡) + 𝑁𝑢 (𝑥, 𝑡) = 𝑓 (𝑥, 𝑡) , (1)

where 𝐿 is a linear operator, 𝑁 is a nonlinear operator,
and 𝑓(𝑥, 𝑡) is the inhomogeneous term. According to He’s
variational iteration method, we can construct a correction
functional for (1) as follows:

𝑢
𝑛+1

(𝑥, 𝑡)

= 𝑢
𝑛
(𝑥, 𝑡)

+ ∫

𝑡

0

𝜆 (𝜏) (𝐿𝑢
𝑛
(𝑥, 𝜏) + 𝑁𝑢̃

𝑛
(𝑥, 𝜏) − 𝑓 (𝑥, 𝜏)) 𝑑𝜏,

(2)

where 𝜆 is a general Lagrange multiplier, which can be
identified optimally via variational theory [12, 24]. Here 𝑢̃

𝑛

is considered as a restricted variation [14, 25] which means
𝛿𝑢̃
𝑛
= 0; the subscript 𝑛 denotes the 𝑛th approximations.The

successive approximations 𝑢
𝑛+1

(𝑥, 𝑡), of the solution 𝑢 (𝑥, 𝑡),
can be obtained after using the obtained Lagrange multiplier
and the zeroth approximation 𝑢

0
(𝑥, 𝑡), which are selected

from any function that satisfies the initial conditions. With 𝜆

determined, several approximations 𝑢
𝑛+1

(𝑥, 𝑡), 𝑛 ⩾ 0 follow.
Consequently, the exaction solution may be obtained as

𝑢 (𝑥, 𝑡) = lim
𝑛→+∞

𝑢
𝑛+1

(𝑥, 𝑡) . (3)

In fact, the VIM depends on the suitable selection of the ini-
tial approximation 𝑢

0
(𝑥, 𝑡). Moreover, we use a well-known,

powerful tool to prove the convergence of the sequence
obtained via the VIM and its rate. It is the Banach’s fixed point
theorem that follows.

Theorem 1 (Banach’s fixed point theorem). Assume that𝑋 is
a Banach space and

𝐴 : 𝑋 󳨀→ 𝑋 (4)

is a nonlinear mapping, and suppose that

‖𝐴 [𝑢] − 𝐴 [V]‖ ⩽ 𝛼 ‖𝑢 − V‖ , 𝑢, V ∈ 𝑋 (5)

for some constant 𝛼 < 1. Then 𝐴 has a unique fixed point.
Furthermore, the sequence

𝑢
𝑛+1

= 𝐴 [𝑢
𝑛
] , (6)

with an arbitrary choice of 𝑢
0
∈ 𝑋 converges to the fixed point

of 𝐴.

According toTheorem 1, for the nonlinear mapping

𝐴 [𝑢
𝑛
(𝑥, 𝑡)]

= 𝑢
𝑛
(𝑥, 𝑡)

+ ∫

𝑡

0

𝜆 (𝜏) {𝐿𝑢
𝑛
(𝑥, 𝜏) + 𝑁 (𝑥, 𝜏) − 𝑓 (𝑥, 𝜏)} 𝑑𝜏

(7)

a sufficient condition for the convergence of the variational
iteration method is strict contraction of 𝐴. Furthermore,
the sequence (2) converges to the fixed point of 𝐴 which
is also the solution of problem (1). Some modifications to
prove the convergence speed and to lengthen the interval of
convergence for VIM series solution are suggested in [17, 26–
30].

3. The Variational Iteration of Generalized
Degasperis-Procesi Equation

Degasperis and Procesi consider the following family of
third-order dispersive conservation laws [31],

𝑢
𝑡
+ 𝑐
0
𝑢
𝑥
+ 𝛾𝑢
𝑥𝑥𝑥

− 𝛼
2

𝑢
𝑥𝑥𝑡

= (𝑐
1
𝑢
2

+ 𝑐
2
𝑢
2

𝑥
+ 𝑐
3
𝑢𝑢
𝑥𝑥
)
𝑥

, (8)

where 𝛼, 𝛾, 𝑐
0
, 𝑐
1
, 𝑐
2
, and 𝑐

3
are real constants. In this

family, only three equations satisfy asymptotic integrability
conditions [31]. That is, if 𝑐

0
= 1, 𝑐

1
= −1/2, 𝑐

2
= 0, 𝑐

3
= 0,

𝛼
2

= 0, and 𝛾 = 1, (8) is the KdV equation

𝑢
𝑡
+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
+ 𝑢
𝑥𝑥𝑥

= 0. (9)

If 𝑐
0
= 0, 𝑐
1
= −3/2, 𝑐

2
= 1/2, 𝑐

3
= 1, 𝛼2 = 1, and 𝛾 = 0, (8) is

the Camassa-Holm equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 3𝑢𝑢
𝑥
= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

. (10)

If 𝑐
0
= 0, 𝑐
1
= −2, 𝑐

2
= 1, 𝑐
3
= 1, 𝛼2 = 1, and 𝛾 = 0, (8) is the

Degasperis-Procesi equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 4𝑢𝑢
𝑥
= 3𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

. (11)

It should be mentioned that both C-H and D-P equations are
derived as members of a one-parameter family of asymptotic
shallowwater approximations to the Euler equations. It shows
that the two equations are physically relevant; otherwise, the
D-P equation would be of purely theoretical interest.

Variational iteration method for KdV-Burgers and Lax’s
seventh-order KdV equations has been studied by Soliman
[32]. In this paper, we consider the generalized Degasperis-
Procesi equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 4𝑢𝑢
𝑥
− 3𝑢𝑢

𝑥𝑥
− 𝑢𝑢
𝑥𝑥𝑥

= 𝑓 (𝑢, 𝑢
𝑥
, 𝑢
𝑡
, 𝑢
𝑥𝑥
, 𝑢
𝑥𝑥𝑥

, 𝑢
𝑥𝑥𝑡

)

(12)

that was proposed in [33]. 𝑓 is the generalized perturbation
item. We suppose 𝑓 is a sufficiently smooth function of the
variable.
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Step 1. Make the independent variable transformation:

𝜉 = 𝑘 (𝑥 − 𝜔𝑡) + 𝜉
0
. (13)

Here, 𝜉
0

∈ 𝐶 is an arbitrary complex number. 𝑘 is wave
number;𝜔 is wave velocity. Substituting (13) into (12), we have

−𝜔𝑢
󸀠

+ 𝑘
2

𝜔𝑢
󸀠󸀠󸀠

+ 4𝑢𝑢
󸀠

− 3𝑘𝑢𝑢
󸀠󸀠

− 𝑘
2

𝑢𝑢
󸀠󸀠󸀠

= 𝑓
1
. (14)

Here, 𝑢󸀠 is the derivative of 𝑢 with respect to 𝜉; that is, 𝑢󸀠 =
𝑑𝑢/𝑑𝜉. 𝑓

1
= 𝑓
1
(𝑢, 𝑢
󸀠

, 𝑢
󸀠󸀠

, 𝑢
󸀠󸀠󸀠

).

Step 2. From [34], we find the special solution, when 𝑓 is
identical to 0:

𝑢
0
(𝜉) = −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
] . (15)

Remark 2. Notice that 𝜉
0
∈ 𝐶, 𝑖 tanh (𝑖𝜉) = − tan 𝜉, tanh (𝜉 +

(𝜋𝑖/2)) = coth 𝜉, 𝑖 coth (𝑖𝜉) = cot𝜉, and tanh [(1/2)(𝜉 +

(𝑖/2)𝜋)] = tanh 𝜉 + 𝑖 sech𝜉, where 𝑖 = √−1. These solutions
contain the other four types of forms named coth 𝜉, tan 𝜉,
cot 𝜉, and tanh 𝜉 + 𝑖 sech𝜉.

Step 3. Make the correction functional

𝑢
𝑛+1

(𝜉)

= 𝑢
𝑛
(𝜉) − ∫

𝜉

0

𝜆 (𝑠) [−𝜔𝑢̃
󸀠

𝑛
+ 𝑘
2

𝜔𝑢
󸀠󸀠󸀠

𝑛
+ 4𝑢̃
𝑛
𝑢̃
󸀠

𝑛

− 3𝑘𝑢̃
𝑛
𝑢̃
󸀠󸀠

𝑛
− 𝑘
2

𝑢̃
𝑛
𝑢̃
󸀠󸀠󸀠

𝑛
−

̃
𝑓
1
] 𝑑𝑠.

(16)

Here, 𝑢̃
𝑛
, 𝑢̃󸀠
𝑛
, 𝑢̃󸀠󸀠
𝑛
, and 𝑢̃

󸀠󸀠󸀠

𝑛
are considered as a restricted

variation [35]. That is,

𝛿𝑢̃
𝑛
= 𝛿𝑢̃
󸀠

𝑛
= 𝛿𝑢̃
󸀠󸀠

𝑛
= 𝛿𝑢̃
󸀠󸀠󸀠

𝑛
= 0. (17)

Step 4. Under the above condition, make the correct func-
tional stationary with respect to 𝑢

𝑛
; noticing that 𝛿𝑢

𝑛
(0) = 0,

we have

𝛿𝑢
𝑛+1

(𝜉)

= 𝛿𝑢
𝑛
(𝜉) − 𝛿∫

𝜉

0

𝜆 (𝑠) [−𝜔𝑢̃
󸀠

𝑛
+ 𝑘
2

𝜔𝑢
󸀠󸀠󸀠

𝑛
+ 4𝑢̃
𝑛
𝑢̃
󸀠

𝑛

− 3𝑘
2

𝑢̃
𝑛
𝑢̃
󸀠󸀠

𝑛
− 𝑘
2

𝑢̃
𝑛
𝑢̃
󸀠󸀠󸀠

𝑛
−

̃
𝑓] 𝑑𝑠

= 𝛿𝑢
𝑛
(𝜉) − [𝜆𝛿𝑢

󸀠󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

− 𝜆
󸀠

(𝑠) 𝛿𝑢
󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

+ 𝜆
2

(𝑠) 𝛿𝑢 (𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

− ∫

𝜉

0

𝜆
󸀠󸀠󸀠

(𝑠) 𝛿𝑢 𝑑𝑠] = 0.

(18)

For arbitrary 𝛿𝑢
𝑛+1

, from the above relation, we obtain the
Euler-Language equation:

1 − 𝑘
2

𝜔𝜆
󸀠󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

= 0,

𝑘
2

𝜔𝜆
󸀠󸀠󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

= 0,

𝑘
2

𝜔𝜆
󸀠

(𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

= 0,

𝑘
2

𝜔𝜆 (𝑠)

󵄨
󵄨
󵄨
󵄨
󵄨𝑠=𝜉

= 0.

(19)

Solve (19), we derive

𝜆 (𝑠) = −

1

2

⋅

1

𝑘
2
𝜔

(𝑠 − 𝜉)
2

. (20)

Substituted (20) into (16), we have the integration form:

𝑢
𝑛+1

= 𝑢
𝑛

+ ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

× [𝑘
2

𝜔𝑢
󸀠󸀠󸀠

𝑛
− 𝜔𝑢
󸀠

𝑛
+ 4𝑢
𝑛
𝑢
󸀠

𝑛

− 3𝑘𝑢
𝑛
𝑢
󸀠󸀠

𝑛
− 𝑘
2

𝑢
𝑛
𝑢
󸀠󸀠󸀠

𝑛
− 𝑓
1
] 𝑑𝑠, 𝑛 = 0, 1, 2, . . . .

(21)

From the above solution procedure, we can see that the
approximate solutions converge to its exact solution. That
is, 𝑢 (𝑥, 𝑡) = lim

𝑛→∞
𝑢
𝑛
(𝑥, 𝑡), 𝑢

𝑛
(𝑥, 𝑡) is the approximate

solution with arbitrary degree of accurate solitary wave of
Degasperis-Procesi equation.

Step 5. Calculation of the approximate solution.
According to the integration form (21),we can calculate

the approximate solution. Firstly, let (15) be the zero-order
approximate solution:

𝑢
0
(𝜉) = −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
] . (22)

Substitute (15) into (21). We obtain the one-order approxi-
mate solution 𝑢

1
(𝜉)

𝑢
1
(𝜉)

= 𝑢
0
(𝜉) + ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

(−𝑓
1
(𝑢
0
)) 𝑑𝑠

= −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
]

− ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

𝑓
1
(𝑢
0
(𝑠) , 𝑢
󸀠

0
(𝑠) , 𝑢
󸀠󸀠

0
(𝑠) , 𝑢
󸀠󸀠󸀠

0
(𝑠)) 𝑑𝑠

= −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
] + V
0
(𝜉) ,

(23)
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Table 1: Numerical example for the solution of DP equation, 𝜉
0
= 0, 𝜔 = 1, 𝑡 = 0, and 𝜀 = 0.1.

𝑥 Initial solution 𝑢
0

1th approximate solution 𝑢
1

Absolute error
0.1 −0.498752 −0.498762 −4.16770 ∗ 10

−6

0.11 −0.498491 −0.498497 5.54752 ∗ 10
−6

0.12 −0.498204 −0.498211 7.2026 ∗ 10
−6

0.13 −0.497893 −0.497902 9.15804 ∗ 10
−6

0.14 −0.497558 −0.497694 1.53894 ∗ 10
−5

0.15 −0.497198 −0.497212 1.407042 ∗ 10
−5

0.16 −0.496814 −0.496831 1.706776 ∗ 10
−5

0.17 −0.496405 −0.496426 2.04856 ∗ 10
−5

0.18 −0.495972 −0.495996 2.43198 ∗ 10
−5

0.19 −0.495515 −0.495543 2.86050 ∗ 10
−5

0.2 −0.495033 −0.495066 3.33668 ∗ 10
−5

Table 2: Numerical example for the solution of DP equation, 𝜉
0
= 0, 𝜔 = 1, 𝑡 = 0, and 𝜀 = 0.05.

𝑥 Initial solution 𝑢
0

1th approximate solution 𝑢
1

Absolute error
0.1 −0.498752 −0.4987524 2.08385 ∗ 10

−6

0.11 −0.498491 −0.498493 2.77376 ∗ 10
−6

0.12 −0.498204 −0.4982076 3.6013 ∗ 10
−6

0.13 −0.497893 −0.4978976 4.57902 ∗ 10
−6

0.14 −0.497558 −0.4975637 5.71902 ∗ 10
−6

0.15 −0.497198 −0.497205 7.03521 ∗ 10
−6

0.16 −0.496814 −0.4968225 8.5388 ∗ 10
−6

0.17 −0.496405 −0.496415 1.02428 ∗ 10
−5

0.18 −0.495972 −0.4959842 1.21599 ∗ 10
−5

0.19 −0.495515 −0.495529 1.43025 ∗ 10
−5

0.2 −0.495033 −0.495049 1.66834 ∗ 10
−5

in which V
0
(𝜉) = − ∫

𝜉

0

(1/2𝑘
2

𝜔)(𝑠 − 𝜉)
2

𝑓
1
(𝑢
0
(𝑠), 𝑢
󸀠

0
(𝑠), 𝑢
󸀠󸀠

0
(𝑠),

𝑢
󸀠󸀠󸀠

0
(𝑠))𝑑𝑠.
Then, substitute (23) into (21). We can obtain the second-

order approximate solution 𝑢
2
(𝜉):

𝑢
2
(𝜉) = 𝑢

1
(𝜉) + ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

× [𝑘
2

𝜔𝑢
󸀠󸀠󸀠

1
(𝑠) − 𝜔𝑢

󸀠

1
(𝑠) + 4𝑢

1
(𝑠) 𝑢
󸀠

1
(𝑠)

− 3𝑘
2

𝑢
1
(𝑠) 𝑢
󸀠󸀠

1
(𝑠) − 𝑘

2

𝑢
1
(𝑠) 𝑢
󸀠󸀠󸀠

1
(𝑠)

− 𝑓
1
(𝑢
1
(𝑠) , 𝑢
󸀠

1
(𝑠) , 𝑢
󸀠󸀠

1
(𝑠) , 𝑢
󸀠󸀠󸀠

1
(𝑠))] 𝑑𝑠

= −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
] + V
0
(𝜉)

+ ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

× [𝑘
2

𝜔(𝑢
0
(𝑠) + V

0
(𝑠))
󸀠󸀠󸀠

− 𝜔(𝑢
0
(𝑠) + V

0
(𝑠))
󸀠

+ 4 (𝑢
0
(𝑠) + V

0
(𝑠))

× (𝑢
0
(𝑠) + V

0
(𝑠))
󸀠

− 3𝑘
2

(𝑢
0
(𝑠) + V

0
(𝑠)) (𝑢

0
(𝑠) + V

0
(𝑠))

󸀠󸀠

− 𝑘
2

(𝑢
0
(𝑠) + V

0
(𝑠)) (𝑢

0
(𝑠) + V

0
(𝑠))
󸀠󸀠󸀠

− 𝑓
1
(𝑢
0
(𝑠) + V

0
(𝑠) , 𝑢
󸀠

0
(𝑠) + V󸀠

0
(𝑠) , 𝑢
󸀠󸀠

0
(𝑠)

+ V󸀠󸀠
0
(𝑠) , 𝑢
󸀠󸀠󸀠

0
(𝑠) + V󸀠󸀠󸀠

0
(𝑠))] 𝑑𝑠.

(24)

Using the same method, we can get the higher order
approximate solution.

4. The Optical Soliton Perturbation Solution
and the Numerical Example

Specially, we set

𝑓 = 𝜀𝑔 (𝑢) = 𝜀𝑢, 0 < 𝜀 ≪ 1. (25)

Then (12) change to

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 4𝑢𝑢
𝑥
− 3𝑢𝑢

𝑥𝑥
− 𝑢𝑢
𝑥𝑥𝑥

= 𝜀𝑔 (𝑢) = 𝜀𝑢. (26)
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We obtain the zero-order and the one-order approximate
solution of (20)

𝑢
0
(𝜉) = −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
]

= −

1

2

+

1

2

tanh2 (𝜉) , 𝑘 =

1

2

,

𝑢
1
(𝜉) = 𝑢

0
(𝜉) + ∫

𝜉

0

1

2𝑘
2
𝜔

(𝑠 − 𝜉)
2

(−𝜀𝑢 (𝑠)) 𝑑𝑠

= −

1

2

+

1

2

tanh2𝜉

−

𝜀

2𝑘
2
𝜔

∫

𝜉

0

𝑠
2

(−

1

2

+

1

2

tanh2𝑠) 𝑑𝑠

+

𝜀𝜉

2𝑘
2
𝜔

∫

𝜉

0

𝑠 (−

1

2

+

1

2

tanh2𝑠) 𝑑𝑠

−

𝜀𝜉
2

2𝑘
2
𝜔

∫

𝜉

0

(−

1

2

+

1

2

tanh2𝑠) 𝑑𝑠

= −

1

2

+

1

2

tanh2𝜉 +

𝜀

2𝑘
2
𝜔

∫

𝜉

0

ln cosh 𝑠 𝑑𝑠

= −

1

2

+

1

2

tanh2 [1
2

(𝑥 − 𝜔𝑡) + 𝜉
0
]

+

2𝜀

𝜔

∫

𝜉

0

ln cosh 𝑠 𝑑𝑠, 𝑘 =

1

2

.

(27)

We set

𝜉
0
= 0, 𝜔 = 1, 𝑡 = 0, 𝜀 = 0.1,

𝜉
0
= 0, 𝜔 = 1, 𝑡 = 0, 𝜀 = 0.05;

(28)

we will obtain the following numerical example. See Tables 1
and 2.

5. Conclusion

By the analysis of structure on the left side of (8) and the
properties of 𝑓 about the variable and the analytical varia-
tional iteration formula, we can prove that the sequence of
functions of {𝑢

𝑛
(𝜉)} decided by (21) is uniform convergence.

So the limit function of {𝑢
𝑛
(𝜉)} is the solution of the equation.

Moreover, the zero-order approximate solution 𝑢
0
(𝜉) is the

soliton of (8) in which 𝑓 = 0; it should be specially pointed
out that the more accurate the identification of the multiplier
is, the faster the approximations converge to their exact
solution.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgment

The work is supported by the Youth Foundation of National
Natural Science Foundation of China (Grant no. 71101072).

References

[1] M. J. McPhaden and D. Zhang, “Slowdown of the meridional
overturning circulation in the upper PacificOcean,”Nature, vol.
415, no. 6872, pp. 603–608, 2002.

[2] D. Gu and S. G. H. Philander, “Interdecadal climate fluctuations
that depend on exchanges between the tropics and extratropics,”
Science, vol. 275, no. 5301, pp. 805–807, 1997.

[3] S. K. Liu, Z. T. Fu, and S. D. Liu, “The envelope periodic nonlin-
ear wave equations with Jacobi Elliptic function solutions,”Acta
Physica Sinica, vol. 51, no. 1, pp. 10–14, 2002 (Chinese).

[4] W. Malfliet, “Solitary wave solutions of nonlinear wave equa-
tions,” American Journal of Physics, vol. 60, no. 7, pp. 650–654,
1992.

[5] E. Fan and H. Zhang, “A note on the homogeneous balance
method,” Physics Letters A, vol. 246, no. 5, pp. 403–406, 1998.

[6] P. Rosenau and J. M. Hyman, “Compactons: solitons with finite
wavelength,” Physical Review Letters, vol. 70, no. 5, pp. 564–567,
1993.

[7] J. H. He, “Approximate solution of non linear differential
equations with convolution product nonlinearities,” Computer
Methods in Applied Mechanics and Engineering, vol. 167, no. 1-2,
pp. 69–73, 1998.

[8] J.-H. He, “Approximate analytical solution for seepage flowwith
fractional derivatives in porous media,” Computer Methods in
Applied Mechanics and Engineering, vol. 167, no. 1-2, pp. 57–68,
1998.

[9] J.-H. He, “Variational iteration method for autonomous ordi-
nary differential systems,” Applied Mathematics and Computa-
tion, vol. 114, no. 2-3, pp. 115–123, 2000.

[10] J.-H. He, “Variational principles for some nonlinear partial
differential equations with variable coefficients,”Chaos, Solitons
& Fractals, vol. 19, no. 4, pp. 847–851, 2004.

[11] J.-H. He, “Some asymptotic methods for strongly nonlinear
equations,” International Journal of Modern Physics B, vol. 20,
no. 10, pp. 1141–1199, 2006.

[12] J.-H. He and X.-H. Wu, “Variational iteration method: new
development and applications,” Computers &Mathematics with
Applications, vol. 54, no. 7-8, pp. 881–894, 2007.

[13] J.-H. He, “Variational iteration method—some recent results
and new interpretations,” Journal of Computational and Applied
Mathematics, vol. 207, no. 1, pp. 3–17, 2007.

[14] A.-M. Wazwaz, “The variational iteration method: a reliable
analytic tool for solving linear and nonlinear wave equations,”
Computers &Mathematics with Applications, vol. 54, no. 7-8, pp.
926–932, 2007.

[15] D. Khojasteh Salkuyeh, “Convergence of the variational itera-
tion method for solving linear systems of ODEs with constant
coefficients,” Computers & Mathematics with Applications, vol.
56, no. 8, pp. 2027–2033, 2008.

[16] S. Momani and S. Abuasad, “Application of He’s variational
iteration method to Helmholtz equation,” Chaos, Solitons &
Fractals, vol. 27, no. 5, pp. 1119–1123, 2006.

[17] F. Geng, “A modified variational iteration method for solving
Riccati differential equations,” Computers & Mathematics with
Applications, vol. 60, no. 7, pp. 1868–1872, 2010.



6 Abstract and Applied Analysis

[18] S. Das, “Solution of fractional vibration equation by the varia-
tional iteration method and modified decomposition method,”
International Journal of Nonlinear Sciences and Numerical Sim-
ulation, vol. 9, no. 4, pp. 361–366, 2008.

[19] L. Xu, “The variational iteration method for fourth order
boundary value problems,” Chaos, Solitons and Fractals, vol. 39,
no. 3, pp. 1386–1394, 2009.

[20] M. A. Noor and S. T. Mohyud-Din, “Variational iteration
method for solving higher-order nonlinear boundary value
problems using He’s polynomials,” International Journal of
Nonlinear Sciences and Numerical Simulation, vol. 9, no. 2, pp.
141–156, 2007.

[21] M. A. Noor, K. I. Noor, and S. T. Mohyud-Din, “Modified
variational iteration technique for solving singular fourth-order
parabolic partial differential equations,” Nonlinear Analysis:
Theory, Methods & Applications, vol. 71, no. 12, pp. e630–e640,
2009.

[22] A. Ghorbani and J. Saberi-Nadjafi, “An effective modification
of He’s variational iteration method,” Nonlinear Analysis: Real
World Applications, vol. 10, no. 5, pp. 2828–2833, 2009.

[23] A. Sevimlican, “Constructing approximate Green’s function for
a vector equation for the electric field using the variational
iteration method,” Applied Mathematics Letters, vol. 23, no. 5,
pp. 533–536, 2010.

[24] M. Inokuti, H. Sekine, and T. Mura, “General use of the
Lagrange multiplier in nonlinear mathematical physics,” in
Variational Method in the Mechanics of Solids, S. Nemat-Nasser,
Ed., pp. 159–162, Pergamon Press, NewYork, NY, USA, 1978.

[25] J.-H. He, “Variational iteration method—a kind of non-linear
analytical technique: some examples,” International Journal of
Non-Linear Mechanics, vol. 34, no. 4, pp. 699–708, 1999.

[26] A.-M.Wazwaz, “A comparison between the variational iteration
method and Adomian decomposition method,” Journal of
Computational andAppliedMathematics, vol. 207, no. 1, pp. 129–
136, 2007.

[27] T. A. Abassy, M. A. El-Tawil, and H. El Zoheiry, “Solving
nonlinear partial differential equations using the modified
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