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Using bifurcation method and numerical simulation approach of dynamical systems, we study a two-component Fornberg-
Whitham equation. Two types of bounded traveling wave solutions are found, that is, the kink-like wave and compacton-like wave
solutions. The planar graphs of these solutions are simulated by using software Mathematica; meanwhile, two new phenomena are
revealed; that is, the periodic wave solution can become the kink-like wave or compacton-like wave solution under some conditions,
respectively. Exact implicit or parameter expressions of these solutions are given.

1. Introduction

The Fornberg-Whitham equation

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
= 𝑢𝑢
𝑥𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑥

(1)

was used to study the qualitative behaviors of wave breaking
[1]. It admits a wave of the greatest height, as a peaked
limiting form of the traveling wave solution [2], 𝑢(𝑥, 𝑡) =

𝐴 exp((1/2)|𝑥 − (4/3)𝑡|), where 𝐴 is an arbitrary constant.
Recently, Zhou and Tian found that (1) possess kink-like
wave solutions in [3]. They obtained some solitons, peakons,
and periodic cusp wave solutions in [4]. Further, they
obtained the smooth periodic wave solutions and loop-
soliton solutions by using elliptic integral [5]. Feng and
Wu [6] considered the classification of single traveling wave
solutions to (1). Chen et al. [7] gave some smooth periodic
wave, smooth solitary wave, periodic cusp wave, and loop-
soliton solutions of (1) and made the numerical simulation.

He et al. [8] studied the following modified Fornberg-
Whitham equation:

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢
2
𝑢
𝑥
= 𝑢𝑢
𝑥𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑥
. (2)

In some parametric conditions, some peakons and solitary
waves were found and their exact parametric representations
in explicit form were obtained.

Jiang and Bi [9] considered the Fornberg-Whitham equa-
tion with linear dispersion term given by

𝑢
𝑡
− 𝑢
𝑥𝑥𝑡

+ 𝑢
𝑥
+ 𝑢𝑢
𝑥
= 𝑢𝑢
𝑥𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑥
− 𝛾𝑢
𝑥𝑥𝑥
, (3)

where 𝛾 is a real constant. When 𝛾 = 0, (3) reduces to (1).
They investigated the existence of the smooth andnonsmooth
traveling wave solutions and gave some analytic expressions
of smooth solitary wave, periodic cusp wave, and peakon
solutions for (3).

Fan et al. [10] presented a two-component Fornberg-
Whitham equation given by

𝑢
𝑡
= 𝑢
𝑥𝑥𝑡

− 𝑢
𝑥
− 𝑢𝑢
𝑥
+ 𝑢𝑢
𝑥𝑥𝑥

+ 3𝑢
𝑥
𝑢
𝑥𝑥
+ 𝜌
𝑥
,

𝜌
𝑡
= −(𝜌𝑢)

𝑥
,

(4)

where 𝑢 = 𝑢(𝑥, 𝑡) is the height of the water surface
above a horizontal bottom and 𝜌 = 𝜌(𝑥, 𝑡) is related to
the horizontal velocity field. When 𝜌 = 0, (4) reduces
to (1). Parametric conditions to smooth soliton solution,
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kink solution, antikink solution, and uncountable infinite
many smooth periodic wave solutions of (4) were given.
Later, Wen [11] further studied (4). He presented all possible
phase portraits determinately and gave all the exact explicit
parametric conditions for various solutions.

The concept of compacton: soliton with compact support
or strict localization of solitary waves appeared in the work
of Rosenau and Hyman [12], where a genuinely nonlinear
dispersive equation𝐾(𝑛, 𝑛) defined by

𝑢
𝑡
+ 𝑎(𝑢
𝑛
)
𝑥
+ (𝑢
𝑛
)
𝑥𝑥𝑥

= 0 (5)

was subjected to experimental and analytical studies. They
found certain solitarywave solutionswhich vanish identically
outside a finite core region. These solutions are called com-
pactons. Several studies have been conducted in [13–18]. The
kink-like wave or generalized kink wave is discovered by Liu
et al. [14], which is defined on semifinal bounded domain and
possesses some properties of the kink wave.

Many methods have been used to investigate traveling
wave solutions to nonlinear equations, such as Jacobi elliptic
function method [19, 20], F-expansion and extended F-
expansion method [21, 22], and (𝐺󸀠/𝐺)-expansion method
[23, 24]. Here, our aim in this paper is to use the bifurcation
method of dynamical systems [25–28] to investigate (4). We
obtain the kink-like wave and compacton-like wave solutions
with implicit or parameter expressions. The planar graphs of
these solutions are simulated by using softwareMathematica;
meanwhile, we point out that the periodic wave solution
can become the kink-like wave or compacton-like wave
solution under some conditions, respectively. To the best of
our knowledge, these solutions and phenomena are new for
(4). Our work may help people to know deeply the described
physical process and possible applications of (4).

The remainder of this paper is organized as follows.
In Section 2, we study the bifurcation phase portraits. In
Section 3, we make the numerical simulation for bounded
integral curves. In Section 4, we derive the exact implicit or
parameter expressions of the kink-like wave and compacton-
like wave solutions. A brief conclusion is given in Section 5.

2. Bifurcation Phase Portraits

We look for the traveling wave solutions of (4) in the form of

𝑢 (𝑥, 𝑡) = 𝜑 (𝜉) + 𝑐, 𝜌 (𝑥, 𝑡) = 𝜓 (𝜉) , 𝜉 = 𝑥 − 𝑐𝑡, (6)

where 𝑐 is the mean level and 𝑐 is the wave speed.
Substituting (6) into (4) and integrating once with respect

to 𝜉, it follows that

(𝑐 − 𝑐 − 1) 𝜑 −

1

2

𝜑
2
+ (𝜑
󸀠
)

2

+ (𝜑 + 𝑐 − 𝑐) 𝜑
󸀠󸀠
+ 𝜓 = 𝜃,

𝜓 = −

𝑔

𝜑 + 𝑐 − 𝑐

,

(7)

where 𝜃, 𝑔 are two integral constants and 𝑔 ̸= 0 (if 𝑔 = 0, then
𝜌 = 0 from the second equation of (7) and (6). In this case
(4) reduces to (1), which was studied in [3–7]).

In order to study conveniently, we choose 𝑐 = 𝑐, and
this only makes a translational movement of the singular line
from 𝜑 = 𝑐 − 𝑐 to 𝜑 = 0, so there is no essential difference for
the results. Thus, substituting the second equation of (7) into
the first equation of (7), we obtain

𝜑
2
𝜑
󸀠󸀠
=

1

2

𝜑
3
+ 𝜑
2
+ 𝜃𝜑 + 𝑔 − 𝜑(𝜑

󸀠
)

2

. (8)

Letting 𝑦 = 𝜑󸀠, we obtain the following planar system:

d𝜑
d𝜉

= 𝑦,

d𝑦
d𝜉

=

(1/2) 𝜑
3
+ 𝜑
2
+ 𝜃𝜑 + 𝑔 − 𝜑𝑦

2

𝜑
2

,

(9)

under the transformation𝑑𝜉 = 𝜑2𝑑𝜏, and system (9) becomes

d𝜑
d𝜏

= 𝑦𝜑
2
,

d𝑦
d𝜏

=

1

2

𝜑
3
+ 𝜑
2
+ 𝜃𝜑 + 𝑔 − 𝜑𝑦

2
.

(10)

Obviously, system (9) and system (10) have the same first
integral

𝐻(𝜑, 𝑦) = 𝜑
2
𝑦
2
− (

1

4

𝜑
4
+

2

3

𝜑
3
+ 𝜃𝜑
2
+ 2𝑔𝜑) = ℎ, (11)

where ℎ is an integral constant. Consequently, these two
systems have the same topological phase portraits except for
the straight line 𝜑 = 0. Thus, we can understand the phase
portraits of system (9) from those of system (10).

In order to state conveniently, for given constants 𝜃 and
𝑔, let

𝑓
0
(𝜑) =

1

2

𝜑
3
+ 𝜑
2
+ 𝜃𝜑 + 𝑔,

𝑔
1
(𝜃) =

2

27

(−2 (2 + √4 − 6𝜃) + 3 (3 + √4 − 6𝜃) 𝜃) ,

𝑔
2
(𝜃) = −

2

729

(4 + √16 − 27𝜃) (8 + 2√16 − 27𝜃 − 27𝜃) ,

𝑔
3
(𝜃) = −

2

729

(−4 + √16 − 27𝜃) (−8 + 2√16 − 27𝜃 + 27𝜃) ,

𝑔
4
(𝜃) = −

2

27

(4 − 2√4 − 6𝜃 + 3 (−3 + √4 − 6𝜃) 𝜃) ,

𝑔
5
(𝜃) =

2

27

(−4 + 9𝜃) .

(12)

Assume that 𝜑
1
, 𝜑
2
, and 𝜑

3
are three roots of equation

𝑓
0
(𝜑) = 0, where

𝜑
1
= −

2

3

+

1

6

(−1 + √3𝑖) 𝛿 +

(1 + √3𝑖) (3𝜃 − 2)

3𝛿

,

𝜑
2
= −

2

3

−

1

6

(1 + √3𝑖) 𝛿 +

(1 − √3𝑖) (3𝜃 − 2)

3𝛿

,
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Table 1: The singular point and phase portrait for different cases.

Case Root of 𝑓
0
(𝜑) = 0 Center Saddle Degenerate saddle Phase portrait

Case 1 𝜑
3
> 0 — (𝜑

3
, 0) — Figure 1(a)

Case 2 𝜑
1
= 𝜑
2
< 0 < 𝜑

3
— (𝜑

3
, 0) (𝜑

1
, 0) Figure 1(b)

Case 3 𝜑
1
< 𝜑
2
< 0 < 𝜑

3
(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(c)

Case 4 𝜑
1
< 𝜑
2
< 0 < 𝜑

3
(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) 𝐻(𝜑

1
, 0) = 0 — Figure 1(d)

Case 5 𝜑
1
< 𝜑
2
< 0 < 𝜑

3
(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(e)

Case 6 𝜑
1
< 0 < 𝜑

2
< 𝜑
3

(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(f)

Case 7 𝜑
1
< 0 < 𝜑

2
< 𝜑
3

(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) 𝐻(𝜑

3
, 0) = 0 — Figure 1(g)

Case 8 𝜑
1
< 0 < 𝜑

2
< 𝜑
3

(𝜑
2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(h)

Case 9 𝜑
1
< 0 < 𝜑

2
= 𝜑
3

— (𝜑
1
, 0) (𝜑

3
, 0) Figure 1(i)

Case 10 𝜑
1
< 0 — (𝜑

1
, 0) — Figure 1(j)

Case 11 𝜑
1
< 𝜑
2
< 𝜑
3
< 0 (𝜑

2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(k)

Case 12 𝜑
1
< 𝜑
2
= 𝜑
3
< 0 — (𝜑

1
, 0) (𝜑

2
, 0) Figure 1(l)

Case 13 𝜑
1
< 𝜑
2
< 𝜑
3
< 0 (𝜑

2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(m)

Case 14 𝜑
1
< 𝜑
2
< 𝜑
3
< 0 (𝜑

2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) 𝐻(𝜑

1
, 0) = 𝐻(𝜑

3
, 0) — Figure 1(n)

Case 15 𝜑
1
= 𝜑
2
< 𝜑
3
< 0 — (𝜑

3
, 0) (𝜑

1
, 0) Figure 1(o)

Case 16 𝜑
1
< 𝜑
2
< 𝜑
3
< 0 (𝜑

2
, 0) (𝜑

1
, 0) (𝜑

3
, 0) — Figure 1(p)

𝜑
3
= −

2

3

+

4 − 6𝜃

3𝛿

+

𝛿

3

,

𝛿 = ( − 8 − 27𝑔 + 18𝜃

+ 3√3√𝑔 (16 + 27𝑔) − 36𝑔𝜃 − 4𝜃
2
+ 8𝜃
3
)

1/3

.

(13)

Meanwhile, we give conditions as follows.

Case 1. 𝜃 < (2/3), 𝑔 < 𝑔
1
(𝜃) or 𝜃 ≥ (2/3), 𝑔 < 0.

Case 2. 𝜃 < (2/3)(𝜃 ̸= (1/2)) and 𝑔 = 𝑔
1
(𝜃).

Case 3. 𝜃 < (1/2) and 𝑔
1
(𝜃) < 𝑔 < 𝑔

2
(𝜃).

Case 4. 𝜃 < (1/2) and 𝑔 = 𝑔
2
(𝜃).

Case 5. 𝜃 < (1/2) and 𝑔
2
(𝜃) < 𝑔 < 0.

Case 6. 𝜃 ≤ 0 and 0 < 𝑔 < 𝑔
3
(𝜃).

Case 7. 𝜃 ≤ 0 and 𝑔 = 𝑔
3
(𝜃).

Case 8. 𝜃 ≤ 0 and 𝑔
3
(𝜃) < 𝑔 < 𝑔

4
(𝜃).

Case 9. 𝜃 ≤ 0 and 𝑔 = 𝑔
4
(𝜃).

Case 10. 𝜃 < (2/3), 𝑔 > 𝑔
4
(𝜃) or 𝜃 ≥ (2/3), 𝑔 > 0.

Case 11. 0 < 𝜃 < (1/2), 0 < 𝑔 < 𝑔
4
(𝜃) or (1/2) ≤ 𝜃 < (2/3),

𝑔
5
(𝜃) < 𝑔 < 𝑔

4
(𝜃).

Case 12. 0 < 𝜃 < (2/3) and 𝑔 = 𝑔
4
(𝜃).

Case 13. 𝜃 = (1/2) and 0 < 𝑔 < 𝑔
5
(𝜃).

Case 14. (1/2) ≤ 𝜃 < (2/3) and 𝑔 = 𝑔
5
(𝜃).

Case 15. (1/2) < 𝜃 < (2/3) and 𝑔 = 𝑔
1
(𝜃).

Case 16. (1/2) < 𝜃 < (2/3) and 𝑔
1
(𝜃) < 𝑔 < 𝑔

5
(𝜃).

According to the qualitative theory of differential equa-
tions and the above conditions, we have the results as Table 1.

3. Numerical Simulation for
Bounded Integral Curves

In this section, we make the numerical simulation for
bounded integral curves. For convenience, throughout the
following work we only discuss the solution 𝜑(𝜉)with respect
to the first component 𝑢 = 𝜑(𝜉) + 𝑐 and omit the second
component 𝜌 = 𝜓(𝜉) = −𝑔/𝜑 of (4).

From the derivation in Section 2 we see that the bounded
traveling waves of (4) correspond to the bounded integral
curves of (8) and the bounded integral curves of (8) cor-
respond to the orbits of system (9) in which 𝜑 = 𝜑(𝜉) is
bounded. Therefore we can simulate the bounded integral
curves of (8) by using the information of the phase portraits
of system (9).

It follows from [14–18] that the open orbits𝐾
𝑖
(𝑖 = 1–5) of

system (9) correspond to the compacton-likewaves of (4), the
heteroclinic orbits 𝐽

𝑖
(𝑖 = 1,2) of system (9) correspond to the

kink-like waves of (4), and the periodic orbits surrounding
the center point (𝜑

2
, 0) correspond to the periodic waves of

(4). Here we only make the numerical simulation for Cases
4 and 5 as Examples 1 and 2. The other cases are similar to
Examples 1 and 2, so we omit them.

Example 1. ForCase 4, taking 𝜃 = −1 < 1/2, then𝑔 = 𝑔
2
(𝜃) =

−1.39361, 𝜑
1
= −2.3461, 𝜑

2
= −0.930567, and 𝜑

3
= 1.27666.
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(1) From (11), the two heteroclinic orbits 𝐽
±

1
(see

Figure 1(d)) passing through the saddle point (𝜑
3
, 0) have

expressions, respectively,

𝑦 = ±√
(1/4) 𝜑

4
+ (2/3) 𝜑

3
+ 𝜃𝜑
2
+ 2𝑔𝜑 + ℎ (𝜑

3
)

𝜑
2

, (14)

where ℎ(𝜑
3
) = 𝐻(𝜑

3
, 0) and 0 < 𝜑 < 𝜑

3
. We assume that 𝜑(0)

and 𝜑󸀠(0) are the initial values for the orbit of system (9). For
any given 𝜑∗

1
(0 < 𝜑∗

1
< 𝜑
3
), then from the first equation of

system (9) we have𝜑󸀠 = 𝑦(𝜑∗
1
) at𝜑 = 𝜑∗

1
. For example, setting

𝜑
∗

1
= 1, we have 𝑦(𝜑∗

1
) = ±0.5160826789900144. Thus taking

𝜑(0) = 1 and 𝜑󸀠(0) = ±0.5160826789900144 as initial values,
respectively, we simulate the integral curves of (8) as (a) and
(b) in Figure 2.

(2) From (11), the two heteroclinic orbits 𝐽
±

2
(see

Figure 1(d)) passing through the saddle point (𝜑
1
, 0) have

expressions, respectively,

𝑦 = ±√
(1/4) 𝜑

4
+ (2/3) 𝜑

3
+ 𝜃𝜑
2
+ 2𝑔𝜑 + ℎ (𝜑

1
)

𝜑
2

, (15)

where ℎ(𝜑
1
) = 𝐻(𝜑

1
, 0) = 𝐻(0, 0) = 0 and 𝜑

1
< 𝜑 < 0.

For any given 𝜑∗
2
(𝜑
1
< 𝜑
∗

2
< 0), then from the first equation

of system (9) we have 𝜑󸀠 = 𝑦(𝜑
∗

2
) at 𝜑 = 𝜑

∗

2
. For example,

setting 𝜑∗
2
= −1, we have 𝑦(𝜑∗

2
) = ±1.1707040231039854.

Thus taking 𝜑(0) = −1 and 𝜑󸀠(0) = ±1.1707040231039854 as
initial values, respectively, we simulate the integral curves of
(8) as (c) and (d) in Figure 2.

(3) From (11), the orbit 𝐾
1
(see Figure 1(d)) passing

through (𝜑
0
, 0) has expressions

𝑦 = ±√
(1/4) 𝜑

4
+ (2/3) 𝜑

3
+ 𝜃𝜑
2
+ 2𝑔𝜑 + ℎ (𝜑

0
)

𝜑
2

, (16)

where ℎ(𝜑
0
) = 𝐻(𝜑

0
, 0), 0 < 𝜑 ≤ 𝜑

0
, and 0 < 𝜑

0
< 𝜑
3
. Choos-

ing 𝜑
0
= 1 ∈ (0, 𝜑

3
) and taking 𝜑(0) = 𝜑

0
and 𝜑󸀠(0) = 0 as

initial values, respectively, we simulate the integral curve of
(8) as (e) in Figure 2.

Example 2. For Case 5, taking 𝜃 = −1 < (1/2), then 𝑔 =

(1/2)𝑔
2
(𝜃) = −0.696804 ∈ (𝑔

2
(𝜃), 0), 𝜑

1
= −2.56755, 𝜑

2
=

−0.50572, and 𝜑
3
= 1.07327. From (11), the orbit 𝐾

3
(see

Figure 1(e)) passing through (𝜑
3𝑟
, 0) has expressions

𝑦 = ±√
(1/4) 𝜑

4
+ (2/3) 𝜑

3
+ 𝜃𝜑
2
+ 2𝑔𝜑 + ℎ (𝜑

3
)

𝜑
2

, (17)

where ℎ(𝜑
3
) = 𝐻(𝜑

3
, 0), 𝜑

3𝑟
≤ 𝜑 < 0, and 𝜑

3𝑟
=

−1.624378546433569. Taking 𝜑(0) = 𝜑
3𝑟

and 𝜑󸀠(0) = 0 as
initial values, respectively, we simulate the integral curve of
(8) as (f) in Figure 2.

Remark 3. The kink-like waves in Figures 2(a) and 2(b)
are defined on (−∞,

̃
𝜉
1
) and (−

̃
𝜉
1
, +∞), respectively. The

kink-like waves in Figures 2(c) and 2(d) are defined on
(−
̃
𝜉
2
, +∞) and (−∞,

̃
𝜉
2
), respectively. The compacton-like

wave in Figure 2(e) has peak form on (−̃𝜉
3
,
̃
𝜉
3
), where ̃𝜉

1
, ̃𝜉
2
,

and ̃𝜉
3
satisfy

̃
𝜉
1
= ∫

𝜑
∗

1

0

𝑠 d𝑠

√(1/4) 𝑠
4
+ (2/3) 𝑠

3
+ 𝜃𝑠
2
+ 2𝑔𝑠 + ℎ (𝜑

3
)

,

for 0 < 𝜑∗
1
< 𝜑
3
,

̃
𝜉
2
= ∫

0

𝜑
∗

2

−𝑠 d𝑠

√(1/4) 𝑠
4
+ (2/3) 𝑠

3
+ 𝜃𝑠
2
+ 2𝑔𝑠 + ℎ (𝜑

1
)

,

for 𝜑
1
< 𝜑
∗

2
< 0,

̃
𝜉
3
= ∫

𝜑
0

0

𝑠 d𝑠

√(1/4) 𝑠
4
+ (2/3) 𝑠

3
+ 𝜃𝑠
2
+ 2𝑔𝑠 + ℎ (𝜑

0
)

,

for 0 < 𝜑
0
< 𝜑
3
,

(18)

where ℎ(𝜑
0
) = 𝐻(𝜑

0
, 0), ℎ(𝜑

1
) = 𝐻(𝜑

1
, 0), and ℎ(𝜑

3
) =

𝐻(𝜑
3
, 0). Take the data of Example 1, that is, 𝜃 = −1, 𝑔 =

−1.39361, 𝜑∗
1
= 1, 𝜑∗

2
= −1, 𝜑

3
= 1.27666, 𝜑

1
= −2.3461, and

𝜑
0
= 1, then from (18) we obtain ̃𝜉

1
= 0.54746, ̃𝜉

2
= 0.480057,

and ̃𝜉
3
= 0.915546 which are identical with the simulations

(see Figures 2(a)–2(e)).

Remark 4. The compacton-like wave in Figure 2(f) is defined
on (−̃𝜉

4
,
̃
𝜉
4
), where ̃𝜉

4
satisfies

̃
𝜉
4
= ∫

0

𝜑
3𝑟

−𝑠 d𝑠

√(1/4) 𝑠
4
+ (2/3) 𝑠

3
+ 𝜃𝑠
2
+ 2𝑔𝑠 + ℎ (𝜑

3
)

, (19)

where ℎ(𝜑
3
) = 𝐻(𝜑

3
, 0). Take the data of Example 2;

that is, 𝜃 = −1, 𝑔 = −0.696804, 𝜑
3
= 1.07327, and

𝜑
3𝑟
= −1.624378546433569, and then from (19) we obtain

̃
𝜉
4
= 1.73392 which is identical with the simulation (see

Figure 2(f)).

Remark 5. For Cases 4 and 5, there are a family of
periodic orbits surrounding the center point (𝜑

2
, 0), but

the boundaries of the periodic orbits are different. For
Case 4, the boundaries of the periodic orbits are the two
heteroclinic orbits 𝐽±

2
(see Figure 3(a)), while for Case 5,

the boundary of the periodic orbits is the open orbit 𝐾
4

(see Figure 3(b)). Taking the data of Example 1 and a set of
initial values (𝜑(0), 𝜑󸀠(0)), that is, 𝜃 = −1, 𝑔 = −1.39361 and
(𝜑(0), 𝜑

󸀠
(0)) = (−1, 0.7), (−1, 1.1), (−1, 1.17), (−1, 1.170704),

we simulate the periodic orbits of (8) as Figure 4. Similarly,
taking the data of Example 2 and a set of initial values
(𝜑(0), 𝜑

󸀠
(0)), that is, 𝜃 = −1, 𝑔 = −0.696804, and

(𝜑(0), 𝜑
󸀠
(0)) = (−0.7, 0), (−0.9, 0), (−0.98, 0),(−0.9854465, 0),

we simulate the periodic orbits of (8) as Figure 5. The
simulations in Figure 4 imply that the periodic waves tend
to two kink-like waves when the periodic orbits tend to the
heteroclinic orbits 𝐽±

2
. The simulations in Figure 5 imply that

the periodic waves tend to the periodic compacton-like wave
when the periodic orbits tend to the open orbit𝐾

4
.
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4. The Expressions of Kink-Like and
Compacton-Like Waves

In this section we derive the exact expressions of the kink-
like and compacton-like waves in different cases 𝑖 (𝑖 = 1–16).
Assuming that (𝜑(0), 𝜑󸀠(0)) is the initial point of an orbit of
system (9). Let

𝐹 (𝜑) =

1

4

𝜑
4
+

2

3

𝜑
3
+ 𝜃𝜑
2
+ 2𝑔𝜑 + ℎ

0
, (20)

where ℎ
0
= 𝐻(𝜑(0), 𝜑

󸀠
(0)), then form 𝐻(𝜑, 𝑦) = ℎ

0
, the

following equation:

𝜑
2
𝑦
2
= 𝐹 (𝜑) (21)

determines the orbit passing through (𝜑(0), 𝜑󸀠(0)).

4.1. Solutions of Kink-Like Wave. (1) In Cases 𝑖 (𝑖 = 1–4)
corresponding to phase portraits in Figures 1(a)–1(d), (20)
becomes

𝐹 (𝜑) =

1

4

(𝜑
3
− 𝜑)
2

(𝜑
2
+ 𝑚
1
𝜑 + 𝑛
1
) , (22)

where 𝑚
1
= (8/3) + 2𝜑

3
, 𝑛
1
= 4𝜃 + (1/3)𝜑

3
(16 + 9𝜑

3
).

Thus the orbits 𝐽±
1
passing through saddle point (𝜑

3
, 0) have

expressions

𝑦 = ±

(𝜑
3
− 𝜑)√𝜑

2
+ 𝑚
1
𝜑 + 𝑛
1

2𝜑

,
(23)

where 0 < 𝜑 < 𝜑
3
. Substituting (23) into d𝜑/d𝜉 = 𝑦 and

integrating along 𝐽+
1
and 𝐽−
1
for initial value 𝜑(0) = 𝜑∗

1
, where

0 < 𝜑
∗

1
< 𝜑
3
, we obtain two kink-like wave solutions of

implicit expression as follows:

𝑓
1
(𝜑) = 𝑓

1
(𝜑
∗

1
) 𝑒
(1/2)𝜉

, −𝜉
1
< 𝜉 < ∞,

𝑓
1
(𝜑) = 𝑓

1
(𝜑
∗

1
) 𝑒
−(1/2)𝜉

, −∞ < 𝜉 < 𝜉
1
,

(24)

where

𝜉
1
= 2 ln

𝑓
1
(𝜑
∗

1
)

𝑓
1
(0)

,

𝑓
1
(𝑠) =

(2√𝑎1
√𝑠
2
+ 𝑚
1
𝑠 + 𝑛
1
+ 𝑏
1
(𝜑
3
− 𝑠) + 2𝑎

1
)

𝜇
1

(𝜑
3
− 𝑠)
𝜇
1

(2√𝑠
2
+ 𝑚
1
𝑠 + 𝑛
1
+ 2𝑠 + 𝑚

1
)

,

𝜇
1
=

𝜑
3

√𝑎1

,

𝑎
1
= 𝜑
2

3
+ 𝑚
1
𝜑
3
+ 𝑛
1
, 𝑏

1
= −𝑚
1
− 2𝜑
3
.

(25)

The derivations of other kink-like wave solutions are
similar to the above case, so we omit the details and only list
the results.

(2) InCases 𝑖 (𝑖 = 5, 6) corresponding to phase portraits in
Figures 1(e) and 1(f), we obtain two kink-like wave solutions
of implicit expression as follows:

𝑓
2
(𝜑) = 𝑓

2
(𝜑
∗

1
) 𝑒
(1/2)𝜉

, −𝜉
2
< 𝜉 < ∞,

𝑓
2
(𝜑) = 𝑓

2
(𝜑
∗

1
) 𝑒
−(1/2)𝜉

, −∞ < 𝜉 < 𝜉
2
,

(26)

where

𝜉
2
= 2 ln

𝑓
2
(𝜑
∗

1
)

𝑓
2
(0)

,

𝑓
2
(𝑠) =

(2√𝑎2
√(𝑠 − 𝜑

3𝑙
) (𝑠 − 𝜑

3𝑟
) + 𝑏
2
(𝜑
3
− 𝑠) + 2𝑎

2
)

𝜇
2

(𝜑
3
− 𝑠)
𝜇
2

(2√(𝑠 − 𝜑
3𝑙
) (𝑠 − 𝜑

3𝑟
) + 2𝑠 − 𝜑

3𝑙
− 𝜑
3𝑟
)

,

𝜇
2
=

𝜑
3

√𝑎2

,

𝑎
2
= (𝜑
3
− 𝜑
3𝑙
) (𝜑
3
− 𝜑
3𝑟
) , 𝑏

2
= 𝜑
3𝑙
+ 𝜑
3𝑟
− 2𝜑
3
,

𝜑
3𝑙
=

1

3

(−4 − 3𝜑
3
− √2√8 − 18𝜃 − 3𝜑

3
(4 + 3𝜑

3
)) ,

𝜑
3𝑟
=

1

3

(−4 − 3𝜑
3
+ √2√8 − 18𝜃 − 3𝜑

3
(4 + 3𝜑

3
)) .

(27)

(3) In Case 7 corresponding to phase portrait in
Figure 1(g), we obtain two kink-likewave solutions of implicit
expression as follows:

𝑓
3
(𝜑) = 𝑓

3
(𝜑
∗

1
) 𝑒
(1/2)𝜉

, −𝜉
3
< 𝜉 < ∞,

𝑓
3
(𝜑) = 𝑓

3
(𝜑
∗

1
) 𝑒
−(1/2)𝜉

, −∞ < 𝜉 < 𝜉
3
,

(28)

where

𝜉
3
= 2 ln

𝑓
3
(𝜑
∗

1
)

𝑓
3
(0)

,

𝑓
3
(𝑠) =

(√𝑠 − 𝜑
∘

3
− √𝑠) (√𝜑

3
(𝑠 − 𝜑

∘

3
) + √(𝜑

3
− 𝜑
∘

3
) 𝑠)

𝜇
3

(√𝑠 − 𝜑
∘

3
+ √𝑠) (√𝜑

3
(𝑠 − 𝜑

∘

3
) − √(𝜑

3
− 𝜑
∘

3
) 𝑠)

𝜇
3

,

𝜇
3
= √

𝜑
3

𝜑
3
− 𝜑
∘

3

, 𝜑
∘

3
= −

8

3

− 2𝜑
3
.

(29)

(4) In Case 11 corresponding to phase portraits in
Figure 1(k), we obtain two kink-likewave solutions of implicit
expression as follows:

𝑓
4
(𝜑) = 𝑓

4
(𝜑
∗

1
) 𝑒
(1/2)𝜉

, −∞ < 𝜉 < 𝜉
4
,

𝑓
4
(𝜑) = 𝑓

4
(𝜑
∗

1
) 𝑒
−(1/2)𝜉

, −𝜉
4
< 𝜉 < ∞,

(30)
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Figure 1: Continued.
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Figure 1: The phase portraits of system (10) in different cases 𝑖 (𝑖 = 1–16).

where

𝜉
4
= 2 ln

𝑓
4
(0)

𝑓
4
(𝜑
∗

1
)

,

𝑓
4
(𝑠) =

(2√𝑎2
√(𝑠 − 𝜑

3𝑙
) (𝑠 − 𝜑

3𝑟
) − 𝑏
2
(𝑠 − 𝜑

3
) + 2𝑎

2
)

𝜇
2

(𝑠 − 𝜑
3
)
𝜇
2

(2√(𝑠 − 𝜑
3𝑙
) (𝑠 − 𝜑

3𝑟
) + 2𝑠 − 𝜑

3𝑙
− 𝜑
3𝑟
)

.

(31)

(5) In Case 12 corresponding to phase portraits in
Figure 1(l), we obtain two kink-like wave solutions of implicit
expression as follows:

𝑓
5
(𝜑) = 𝑓

5
(𝜑
∗

1
) +

1

2

𝜉, −∞ < 𝜉 < 𝜉
5
,

𝑓
5
(𝜑) = 𝑓

5
(𝜑
∗

1
) −

1

2

𝜉, −𝜉
5
< 𝜉 < ∞,

(32)

where

𝜉
5
= 2 (𝑓

5
(0) − 𝑓

5
(𝜑
∗

1
)) ,

𝑓
5
(𝑠) =

2𝜑
3

𝜑
3
− 𝜑
32

√

𝑠 − 𝜑
32

𝑠 − 𝜑
3

− ln(2√(𝑠 − 𝜑
3
) (𝑠 − 𝜑

32
) + 2𝑠 − 𝜑

3
− 𝜑
32
) ,

𝜑
3
=

1

3

(−2 + √4 − 6𝜃) , 𝜑
32
= −

8

3

− 3𝜑
3
.

(33)

(6) In Cases 𝑖 (𝑖 = 13, 15, 16) corresponding to phase
portraits in Figures 1(m), 1(o), and 1(p), we obtain two kink-
like wave solutions of implicit expression as follows:

𝑓
6
(𝜑) = 𝑓

6
(𝜑
∗

1
) 𝑒
(1/2)𝜉

, −∞ < 𝜉 < 𝜉
6
,

𝑓
6
(𝜑) = 𝑓

6
(𝜑
∗

1
) 𝑒
−(1/2)𝜉

, −𝜉
6
< 𝜉 < ∞,

(34)
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where

𝜉
6
= 2 ln

𝑓
6
(0)

𝑓
6
(𝜑
∗

1
)

,

𝑓
6
(𝑠) =

(2√𝑎1
√𝑠
2
+ 𝑚
1
𝑠 + 𝑛
1
− 𝑏
1
(𝑠 − 𝜑

3
) + 2𝑎

1
)

𝜇
1

(𝑠 − 𝜑
3
)
𝜇
1

(2√𝑠
2
+ 𝑚
1
𝑠 + 𝑛
1
+ 2𝑠 + 𝑚

1
)

.

(35)

(7) In Case 14 corresponding to phase portrait in
Figure 1(n), we obtain two kink-likewave solutions of implicit
expression as follows:

𝑓
7
(𝜑) = 𝑓

7
(𝜑
∗

1
) +

1

2

𝜉, −∞ < 𝜉 < 𝜉
7
,

𝑓
7
(𝜑) = 𝑓

7
(𝜑
∗

1
) −

1

2

𝜉, −𝜉
7
< 𝜉 < ∞,

(36)

where

𝜉
7
= 2 ln

𝑓
7
(0)

𝑓
7
(𝜑
∗

1
)

,

𝑓
7
(𝑠) =

1

𝜑
3
− 𝜑
1

ln
(𝑠 − 𝜑

1
)
𝜑
1

(𝑠 − 𝜑
3
)
𝜑
3

.

(37)

(8) In Case 4 corresponding to phase portrait in
Figure 1(d), we obtain two kink-likewave solutions of implicit
expression as follows:

𝑓
8
(𝜑) = 𝑓

8
(𝜑
∗

2
) 𝑒
(1/2)𝜉

, −∞ < 𝜉 < 𝜉
8
,

𝑓
8
(𝜑) = 𝑓

8
(𝜑
∗

2
) 𝑒
−(1/2)𝜉

, −𝜉
8
< 𝜉 < ∞,

(38)

where 𝜑
1
< 𝜑
∗

2
< 0 and

𝜉
8
= 2 ln

𝑓
8
(0)

𝑓
8
(𝜑
∗

2
)

,

𝑓
8
(𝑠) =

(√𝜑
∘

1
− 𝑠 + √−𝑠) (√𝜑

1
(𝑠 − 𝜑

∘

1
) − √(𝜑

1
− 𝜑
∘

1
) 𝑠)

𝜇
4

(√𝜑
∘

1
− 𝑠 − √−𝑠) (√𝜑

1
(𝑠 − 𝜑

∘

1
) + √(𝜑

1
− 𝜑
∘

1
) 𝑠)

𝜇
4

,

𝜇
4
= √

𝜑
1

𝜑
1
− 𝜑
∘

1

, 𝜑
∘

1
= −

8

3

− 2𝜑
1
.

(39)

(9) In Cases 𝑖 (𝑖 = 5–12) corresponding to phase portraits
in Figures 1(e)–1(l), we obtain two kink-like wave solutions of
implicit expression as follows:

𝑓
9
(𝜑) = 𝑓

9
(𝜑
∗

2
) 𝑒
(1/2)𝜉

, −∞ < 𝜉 < 𝜉
9
,

𝑓
9
(𝜑) = 𝑓

9
(𝜑
∗

2
) 𝑒
−(1/2)𝜉

, −𝜉
9
< 𝜉 < ∞,

(40)

where

𝜉
9
= 2 ln

𝑓
9
(0)

𝑓
9
(𝜑
∗

2
)

,

𝑓
9
(𝑠) =

(2√𝑎3
√𝑠
2
+ 𝑚
2
𝑠 + 𝑛
2
+ 𝑏
3
(𝑠 − 𝜑

1
) + 2𝑎

3
)

𝜇
5

(𝑠 − 𝜑
1
)
𝜇
5

(2√𝑠
2
+ 𝑚
2
𝑠 + 𝑛
2
+ 2𝑠 + 𝑚

2
)

,

𝜇
5
=

𝜑
1

√𝑎3

,

𝑎
3
= 𝜑
2

1
+ 𝑚
2
𝜑
1
+ 𝑛
2
, 𝑏

3
= 2𝜑
1
+ 𝑚
2
,

𝑚
2
=

8

3

+ 2𝜑
1
, 𝑛

2
= 4𝜃 +

1

3

𝜑
1
(16 + 9𝜑

1
) .

(41)

4.2. Solutions of Compacton-Like Wave. (1) In Cases 𝑖 (𝑖 = 1–
4) corresponding to phase portraits in Figures 1(a)–1(d) and
𝜑(0) = 𝜑

0
, (20) becomes

𝐹 (𝜑) =

1

4

(𝜑
0
− 𝜑) (𝜑

01
− 𝜑) (𝜑 − 𝜑

02
) (𝜑 − 𝜑

02
) , (42)

where 𝜑
0
and 𝜑

01
are real roots and 𝜑

02
and 𝜑

02
are conjugate

complex roots of 𝐹(𝜑) = 0 and 0 < 𝜑
0
< 𝜑
3
< 𝜑
01
. Thus the

orbit𝐾
1
has expressions:

𝑦 = ±

√(𝜑
0
− 𝜑) (𝜑

01
− 𝜑) (𝜑 − 𝜑

02
) (𝜑 − 𝜑

02
)

2𝜑

,
(43)

where 0 < 𝜑 ≤ 𝜑
0
. By applying transformation d𝜉 = 2𝜑 dV to

d𝜑/d𝜉 = 𝑦, we have

d𝜑
dV

= 2𝜑𝑦. (44)

Substituting (43) into (44) and integrating along 𝐾
1
, we

get

𝜑 =

𝑝𝜑
01
− 𝑞𝜑
0
− (𝑝𝜑

01
+ 𝑞𝜑
0
) cn (𝑤, 𝑘

1
)

𝑝 − 𝑞 − (𝑝 + 𝑞) cn (𝑤, 𝑘
1
)

, |𝑤| ≤ 𝑤
1
,

(45)

where

𝑘
1
=
√
(𝑝 + 𝑞)

2

− (𝜑
0
− 𝜑
01
)
2

4𝑝𝑞

,

𝑝 = √(𝐴 − 𝜑
01
)
2

+ 𝐵
2
, 𝑞 = √(𝐴 − 𝜑

0
)
2

+ 𝐵
2
,

𝐴 =

𝜑
02
− 𝜑
02

2

, 𝐵 = −

(𝜑
02
− 𝜑
02
)
2

4

,

𝑤 = √𝑝𝑞V, 𝑤
1
= cn−1 (

𝑝𝜑
01
− 𝑞𝜑
0

𝑝𝜑
01
+ 𝑞𝜑
0

, 𝑘
1
) .

(46)
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𝜑
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𝜑

1.4

1.2

1.0

0.8

0.6

0.4

0.2

−1 0 1 2 3 4 5
𝜉

(b)

𝜑

2 4 6 8 10

−0.5

−1.0

−1.5

−2.0

−2.5

𝜉

(c)

𝜑

−10 −8 −6 −4 −2

−0.5

−1.0

−1.5

−2.0

−2.5

𝜉

(d)

𝜑
1.2

1.0

0.8

0.6

0.4

0.2

𝜉
−0.5−1.0 0.0 0.5 1.0

(e)

1 2

𝜑

−2 −1

−0.5

−1.0

−1.5

−2.0

𝜉

(f)

Figure 2: The simulations of integral curves of (8) when 𝜃 = −1, 𝑔 = −1.39361 (corresponding to Example 1), and 𝑔 = −0.696804 (corre-
sponding to Example 2). (a) 𝜑(0) = 1 and 𝜑󸀠(0) = −0.5160826789900144. (b) 𝜑(0) = 1 and 𝜑󸀠(0) = 0.5160826789900144. (c) 𝜑(0) = −1 and
𝜑
󸀠
(0) = −1.1707040231039854. (d) 𝜑(0) = −1 and 𝜑󸀠(0) = 1.1707040231039854. (e) 𝜑(0) = 1 and 𝜑󸀠(0) = 0. (f) 𝜑(0) = −1.624378546433569

and 𝜑󸀠(0) = 0.

Substituting (45) into d𝜉 = 2𝜑dV and integrating once, we
get

𝜉 =

2

√𝑝𝑞

(

𝑝𝜑
01
+ 𝑞𝜑
0

𝑝 + 𝑞

𝑤 +

(𝑝 − 𝑞) (𝜑
0
− 𝜑
01
)

2 (𝑝 + 𝑞)

×(Π(sin−1 (sn (𝑤, 𝑘
1
)) ,

𝛼
2

1

𝛼
2

1
− 1

, 𝑘
1
)−𝛼
1
𝛽)) ,

(47)

where

𝛼
1
=

𝑝 + 𝑞

𝑞 − 𝑝

,

𝛽 =

1

2

√

𝛼
2

1
− 1

𝑘
2

1
+ (𝑘
󸀠

1
𝛼
1
)
2
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𝜑
−0.5−1.5−3.0 −2.0 𝜑2𝜑1

y

J+2

J−2

2

4

−4

−2

(a)

𝜑
−0.4 −0.2−0.8 −0.6−1.2 −1.0 𝜑2

y

2

4

−4

−2

K4

(b)

Figure 3: The periodic orbits surrounding the center point (𝜑
2
, 0) and their boundaries, where (a) for Case 4 and (b) for Case 5.

𝜑

−6 −4 −2 2 4 6 8

−0.5

−1.0

−1.5

−2.0

−2.5

𝜉

(a)

𝜑
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−1.0
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−2.0

−2.5

𝜉
−10 −5 5

(b)

𝜑
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−2.0

−2.5

𝜉
−10 −5 5 10

(c)

10

𝜑

−0.5

−1.0

−1.5

−2.0

−2.5

𝜉
−10 −5 5

(d)

Figure 4: The simulations of periodic integral curves of (8) for Case 4, where the initial values (𝜑(0), 𝜑
󸀠
(0)) =

(−1, 0.7), (−1, 1.1), (−1, 1.17), (−1, 1.170704).
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𝜑

𝜉
−4 −2 2 4
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−0.2
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𝜑

𝜉
−4 −2 2 4

−1.0

−0.8
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−0.4

−0.2

(b)

𝜑

𝜉
−4 −2 2 4
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−0.4

−0.2

(c)

𝜑

𝜉
−4 −2 2 4
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−0.8

−0.6

−0.4

−0.2

(d)

Figure 5: The simulations of periodic integral curves of (8) for Case 5, where the initial values (𝜑(0), 𝜑󸀠(0)) = (−0.7, 0), (−0.9, 0), (−0.98, 0),
(−0.9854465, 0).

× ln
√𝑘
2

1
+ (𝑘
󸀠

1
𝛼
1
)
2dn (𝑤, 𝑘

1
) + √𝛼

2

1
− 1sn (𝑤, 𝑘

1
)

√𝑘
2

1
+ (𝑘
󸀠

1
𝛼
1
)
2dn (𝑤, 𝑘

1
) − √𝛼

2

1
− 1sn (𝑤, 𝑘

1
)

,

𝑘
󸀠

1
= √1 − 𝑘

2

1
.

(48)

Thus we obtain a compacton-like wave solution of para-
metric expression as follows:

𝜑 =

𝑝𝜑
01
− 𝑞𝜑
0
− (𝑝𝜑

01
+ 𝑞𝜑
0
) cn (𝑤, 𝑘

1
)

𝑝 − 𝑞 − (𝑝 + 𝑞) cn (𝑤, 𝑘
1
)

,

𝜉 =

2

√𝑝𝑞

(

𝑝𝜑
01
+ 𝑞𝜑
0

𝑝 + 𝑞

𝑤 +

(𝑝 − 𝑞) (𝜑
0
− 𝜑
01
)

2 (𝑝 + 𝑞)

× (Π (sin−1 (sn (𝑤, 𝑘
1
)) ,

𝛼
2

1

𝛼
2

1
− 1

, 𝑘
1
)

− 𝛼
1
𝛽)) ,

(49)

where 𝑤 is a parameter variable and −𝑤
1
≤ 𝑤 ≤ 𝑤

1
, 0 < 𝜑 ≤

𝜑
0
.

The derivations of other compacton-like solutions are
similar to the above case, so we omit the details and only list
the results.

(2) In Cases 𝑖 (𝑖 = 7–10) corresponding to phase portraits
in Figures 1(g)–1(j), we obtain a compacton-like wave solu-
tion of parametric expression as follows:

𝜑 =

𝑝𝜑
0
− 𝑞𝜑
01
+ (𝑝𝜑

0
+ 𝑞𝜑
01
) cn (𝑤, 𝑘

1
)

𝑝 − 𝑞 + (𝑝 + 𝑞) cn (𝑤, 𝑘
1
)

,

𝜉 =

2

√𝑝𝑞

(

𝑝𝜑
0
+ 𝑞𝜑
01

𝑝 + 𝑞

𝑤 −

(𝑝 − 𝑞) (𝜑
0
− 𝜑
01
)

2 (𝑝 + 𝑞)

× (Π(sin−1 (sn (𝑤, 𝑘
1
)) ,

𝛼
2

1

𝛼
2

1
− 1

, 𝑘
1
)

+ 𝛼
1
𝛽)) ,

(50)

where 𝑤 is a parameter variable, −𝑤
2
≤ 𝑤 ≤ 𝑤

2
, and 𝑤

2
=

cn−1(((𝑝𝜑
0
− 𝑞𝜑
01
)/(𝑝𝜑

0
+ 𝑞𝜑
01
)) ⋅ 𝑘
1
), 𝜑
0
≤ 𝜑 < 0,

(3) In Cases 𝑖 (𝑖 = 5, 6) corresponding to phase portraits
in Figures 1(e) and 1(f), we obtain a compacton-like wave
solution of implicit expression as follows:

𝑓
2
(𝜑) = 𝑓

2
(𝜑
3𝑟
) 𝑒
−(1/2)|𝜉|

,
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝜉
10
, (51)
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where

𝜉
10
= 2 ln

𝑓
2
(𝜑
3𝑟
)

𝑓
2
(0)

. (52)

(4) In Case 5 corresponding to phase portraits in
Figure 1(e), we obtain a compacton-like wave solution of im-
plicit expression as follows:

4√

−𝜑
∘

0𝑙

𝜑
∘

0𝑟
− 𝜑
∘

0

(sn−1(√
𝜑
∘

0𝑙
(𝜑 − 𝜑

∘

0
)

𝜑
∘

0
(𝜑 − 𝜑

∘

0𝑙
)

, 𝑘
2
) −

𝜑
∘

0𝑙
− 𝜑
∘

0

𝜑
∘

0𝑙

× Π (sin−1(√
𝜑
∘

0𝑙
(𝜑 − 𝜑

∘

0
)

𝜑
∘

0
(𝜑 − 𝜑

∘

0𝑙
)

) , 𝛼
2

2
, 𝑘
2
))

=
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝜉
11
,

(53)

where 𝜑∘
0
is a root of equation 𝐹(𝜑) = 0 and

𝜉
11
= 4√

−𝜑
∘

0𝑙

𝜑
∘

0𝑟
− 𝜑
∘

0

(sn−1 (1, 𝑘
2
) −

𝜑
∘

0𝑙
− 𝜑
∘

0

𝜑
∘

0𝑙

Π(

𝜋

2

, 𝛼
2

2
, 𝑘
2
)) ,

𝛼
2
= √

𝜑
∘

0

𝜑
∘

0𝑙

, 𝑘
2
= √

(𝜑
∘

0𝑟
− 𝜑
∘

0𝑙
) 𝜑
∘

0

(𝜑
∘

0𝑟
− 𝜑
∘

0
) 𝜑
∘

0𝑙

,

𝜑
∘

0𝑙
=

1

6

(−8 − 3𝜑
∘

0
− √−144𝜃 − (8 + 3𝜑

∘

0
) (−8 + 9𝜑

∘

0
)) ,

𝜑
∘

0𝑟
=

1

6

(−8 − 3𝜑
∘

0
+ √−144𝜃 − (8 + 3𝜑

∘

0
) (−8 + 9𝜑

∘

0
)) .

(54)

(5) In Case 6 corresponding to phase portraits in
Figure 1(f), we obtain a compacton-like wave solution of
implicit expression as follows:

4√

𝜑
∘

0𝑟

𝜑
∘

0
− 𝜑
∘

0𝑙

(sn−1(√
𝜑
∘

0𝑟
(𝜑
∘

0
− 𝜑)

𝜑
∘

0
(𝜑
∘

0𝑟
− 𝜑)

, 𝑘
3
) +

𝜑
∘

0
− 𝜑
∘

0𝑟

𝜑
∘

0𝑟

× Π(sin−1(√
𝜑
∘

0𝑟
(𝜑
∘

0
− 𝜑)

𝜑
∘

0
(𝜑
∘

0𝑟
− 𝜑)

) , 𝛼
2

3
, 𝑘
3
))

=
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
,

󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝜉
12
,

(55)

where

𝜉
12
= 4√

𝜑
∘

0𝑟

𝜑
∘

0
− 𝜑
∘

0𝑙

(sn−1 (1, 𝑘
3
) +

𝜑
∘

0
− 𝜑
∘

0𝑟

𝜑
∘

0𝑟

Π(

𝜋

2

, 𝛼
2

3
, 𝑘
3
)) ,

𝛼
3
= √

𝜑
∘

0

𝜑
∘

0𝑟

, 𝑘
3
= √

(𝜑
∘

0𝑟
− 𝜑
∘

0𝑙
) 𝜑
∘

0

(𝜑
∘

0
− 𝜑
∘

0𝑙
) 𝜑
∘

0𝑟

.

(56)

(6) In Case 16 corresponding to phase portraits in
Figure 1(p), we obtain a compacton-like wave solution of im-
plicit expression as follows:

𝑓
10
(𝜑) = 𝑓

10
(𝜑
1𝑟
) 𝑒
(1/2)|𝜉|

,
󵄨
󵄨
󵄨
󵄨
𝜉
󵄨
󵄨
󵄨
󵄨
≤ 𝜉
13
, (57)

where

𝜉
13
= 2 ln

𝑓
10
(0)

𝑓
10
(𝜑
1𝑟
)

,

𝑓
10
(𝑠) =

(2√𝑎4
√(𝑠 − 𝜑

1𝑙
) (𝑠 − 𝜑

1𝑟
) + 𝑏
4
(𝑠 − 𝜑

1
) + 2𝑎

4
)

𝜇
6

(𝑠 − 𝜑
1
)
𝜇
6

(2√(𝑠 − 𝜑
1𝑙
) (𝑠 − 𝜑

1𝑟
) + 2𝑠 − 𝜑

1𝑙
− 𝜑
1𝑟
)

,

𝜇
6
=

𝜑
1

√𝑎4

,

𝑎
4
= (𝜑
1
− 𝜑
1𝑙
) (𝜑
1
− 𝜑
1𝑟
) , 𝑏

4
= 2𝜑
1
− 𝜑
1𝑙
+ 𝜑
1𝑟
,

𝜑
1𝑙
=

1

3

(−4 − 3𝜑
1
− √2√8 − 18𝜃 − 3𝜑

1
(4 + 3𝜑

1
)) ,

𝜑
1𝑟
=

1

3

(−4 − 3𝜑
1
+ √2√8 − 18𝜃 − 3𝜑

1
(4 + 3𝜑

1
)) .

(58)

5. Conclusion

In this paper, we have found two types of bounded traveling
wave solutions for a two-component Fornberg-Whitham
equation (see (4)), that is, the compacton-like wave and kink-
like wave solutions. Their planar graphs of these solutions
are simulated by using software Mathematica (see Figure 2).
Meanwhile we reveal two kinds of new phenomena; that is,
the periodic wave solution can become the kink-like wave
or compacton-like wave solution under some conditions,
respectively (see Figures 4 and 5). In different Cases 𝑖 (𝑖 = 1–
16), the exact implicit or parameter expressions of kink-like
wave and compacton-like wave solutions are given.
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