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We establish the oscillation criteria of Philos type for second-order half-linear neutral delay dynamic equations with damping on
time scales by the generalized Riccati transformation and inequality technique. Our results are new even in the continuous and the
discrete cases.

1. Introduction

In reality, it is known that the movement in the vacuum
or ideal state is rare, while the movement with damping
and disturbance is extensive. In recent years, the study of
the oscillation of the second-order dynamic equations with
damping on time scales is emerging; see [1–7], for example.
Besides, the study of the oscillation for the second-order
linear and nonlinear or semilinear dynamic equations can
be found in [8–23] and of the oscillation for the high-order
dynamic equations can be found in [24–33].Then, inspired by
the above work, this paper will study the oscillatory behavior
of all solutions of a more extensive second-order half-linear
neutral delay dynamic equationwith damping, which is given
as follows:

(𝑎 (𝑡)Φ (𝑧Δ (𝑡)))
Δ

+ 𝑝 (𝑡)Φ (𝑧Δ (𝑡))

+ 𝑞 (𝑡) 𝑓 (Φ (𝑥 (𝜏 (𝑡)))) = 0, 𝑡 ∈ T , 𝑡 ≥ 𝑡
0
,

(1)

where Φ(𝑠) = |𝑠|𝛾−2𝑠, 𝑧(𝑡) = 𝑥(𝑡) + 𝑟(𝑡)𝑥(𝜏(𝑡)), 𝛾 > 1.
Here, we give the following hypotheses at first.

(H
1
) T is a time scale (i.e., a nonempty closed subset of the
real numbersR) which is unbounded above andwhen
𝑡
0
∈ T with 𝑡

0
> 0, we define the time scale interval of

the form [𝑡
0
,∞)T by [𝑡0,∞)T = [𝑡0,∞) ∩ T .

(H
2
) 𝑎, 𝑟, 𝑝, 𝑞 : T → R are positive rd-continuous
functions such that 0 ≤ 𝑟(𝑡) < 1, −𝑝/𝑎 ∈ R+,

where R is defined as the set of all regressive and
rd-continuous functions and R+ is all positively
regressive elements ofR.

(H
3
) 𝜏 : T → T is a strictly increasing and differentiable
function such that

𝜏 (𝑡) ≤ 𝑡, lim
𝑡→∞

𝜏 (𝑡) = ∞, 𝜏 (T) = T . (2)

(H
4
) 𝑓 : R → R is a continuous function such that, for
some positive constant 𝐿,

𝑓 (𝑥)
𝑥

≥ 𝐿 for all 𝑥 ̸= 0. (3)

The solution of (1) defines a nontrivial real-valued func-
tion 𝑥 satisfying (1) for 𝑡 ∈ T . A solution 𝑥 of (1) is called
oscillatory if it is neither eventually positive nor negative;
otherwise, it is called nonoscillatory. Equation (1) is called
oscillatory if all its solutions are oscillatory. Here, we pay
attention to those solutions of (1) which are not the eventually
identical zero.

The purpose of this paper is to establish the oscillation
criteria of Philos [34] for (1).The two famous results of Philos
[34] about oscillation of second-order linear differential
equations are extended to (1), while it satisfies

∫
∞

𝑡0

[ 1
𝑎 (𝑡)

𝑒
−𝑝/𝑎

(𝑡, 𝑡
0
)]
1/(𝛾−1)

Δ𝑡 = ∞. (4)
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Besides, two criteria of (1) about the fact that each solution is
either oscillatory or converges to zero are obtained when

∫
∞

𝑡0

[ 1
𝑎(𝑡)

𝑒
−𝑝/𝑎

(𝑡, 𝑡
0
)]
1/(𝛾−1)

Δ𝑡 < ∞. (5)

The paper is organized as follows. In Section 2, we present
some basic definitions and results about the theory of calculus
on time scales. In Section 3, we give some lemmas. Section 4
introduces the main results of this paper. We established four
new oscillatory criteria when conditions (4) and (5) hold,
respectively, for the solutions of (1) in this paper.

2. Some Preliminaries

On the time scaleT wedefine the forward and backward jump
operators by

𝜎 (𝑡) = inf {𝑠 ∈ T : 𝑠 > 𝑡} ,

𝜌 (𝑡) = sup {𝑠 ∈ T : 𝑠 < 𝑡} .
(6)

A point 𝑡 ∈ T is said to be left-dense if it satisfies 𝜌(𝑡) = 𝑡,
right-dense if it satisfies 𝜎(𝑡) = 𝑡, left-scattered if it satisfies
𝜌(𝑡) < 𝑡, and right-scattered if it satisfies 𝜎(𝑡) > 𝑡. The
graininess function 𝜇 : T → [𝑡

0
,∞) of the time scale is

defined by 𝜇(𝑡) = 𝜎(𝑡) − 𝑡. For a function 𝑓 : T → R, the
(delta) derivative is defined by

𝑓Δ (𝑡) =
𝑓 (𝜎 (𝑡)) − 𝑓 (𝑡)

𝜎 (𝑡) − 𝑡
, (7)

if 𝑓 is continuous at 𝑡 and 𝑡 is right-scattered. If 𝑡 is right-
dense, then the derivative is defined by

𝑓Δ (𝑡) = lim
𝑠→ 𝑡

𝑓 (𝑡) − 𝑓 (𝑠)
𝑡 − 𝑠

, (8)

provided this limit exists. A function 𝑓 : T → R is said to
be rd-continuous if it is continuous at each right-dense point
and if there exists a finite left limit at every left-dense point.
Denote by 𝐶rd(T ,R) the set of rd-continuous functions 𝑓 :
T → R, and denote by𝐶1rd(T ,R) the set of functions𝑓which
is Δ-differentiable and the derivative 𝑓Δ is rd-continuous.
The derivative 𝑓Δ of 𝑓, the shift 𝑓𝜎 of 𝑓, and the graininess
function 𝜇 are related by the following formula:

𝑓𝜎 = 𝑓 + 𝜇𝑓Δ where 𝑓𝜎 = 𝑓 ∘ 𝜎. (9)

We will make use of the following product and quotient
rules for the derivative of the product𝑓𝑔 and the quotient𝑓/𝑔
of two differentiable functions 𝑓 and 𝑔:

(𝑓𝑔)Δ (𝑡) = 𝑓Δ (𝑡) 𝑔 (𝑡) + 𝑓 (𝜎 (𝑡)) 𝑔Δ (𝑡)

= 𝑓 (𝑡) 𝑔Δ (𝑡) + 𝑓Δ (𝑡) 𝑔 (𝜎 (𝑡)) ,
(10)

(
𝑓
𝑔
)
Δ

(𝑡) =
𝑓Δ (𝑡) 𝑔 (𝑡) − 𝑓 (𝑡) 𝑔Δ (𝑡)

𝑔 (𝑡) 𝑔 (𝜎 (𝑡))
if 𝑔𝑔𝜎 ̸= 0. (11)

For 𝑏, 𝑐 ∈ T , the Cauchy integral of 𝑓Δ is defined by

∫
𝑐

𝑏

𝑓Δ (𝑡) Δ𝑡 = 𝑓 (𝑐) − 𝑓 (𝑏) . (12)

The integration by parts formula reads

∫
𝑐

𝑏

𝑓Δ (𝑡) 𝑔 (𝑡) Δ𝑡 = 𝑓 (𝑐) 𝑔 (𝑐) − 𝑓 (𝑏) 𝑔 (𝑏)

− ∫
𝑐

𝑏

𝑓𝜎 (𝑡) 𝑔Δ (𝑡) Δ𝑡,
(13)

and the infinite integral is defined by

∫
∞

𝑏

𝑓 (𝑠) Δ𝑠 = lim
𝑡→∞

∫
𝑡

𝑏

𝑓 (𝑠) Δ𝑠. (14)

For more details, see [8, 9].

3. Several Lemmas

In this section, we present six lemmas that are needed in
Section 4.The first lemma is well known, and it can be found
in Chapter 2 of [8]. Lemma 2 isTheorem 1.93 of [8]; Lemma 3
is the simple corollary of Theorem 1.90 in [8]; Lemma 4 is
Theorem 41 in [35]; and Lemma 5 is Theorem 3 in [36].

Lemma 1. If 𝑔 ∈ R+, that is, 𝑔 : T → R is rd-continuous,
such that 1 + 𝜇(𝑡)𝑔(𝑡) > 0 for all 𝑡 ∈ [𝑡

0
,∞)T , then the

initial value problem 𝑦Δ = 𝑔(𝑡)𝑦, 𝑦(𝑡
0
) = 𝑦

0
∈ R has a

unique and positive solution on [𝑡
0
,∞)T , denoted by 𝑒

𝑔
(⋅, 𝑡
0
).

This “exponential function” satisfies the semigroup property
𝑒
𝑔
(𝑎, 𝑏)𝑒

𝑔
(𝑏, 𝑐) = 𝑒

𝑔
(𝑎, 𝑐).

Lemma 2. Assume that V : T → R is strictly increasing and
T̃ := V(T) is a time scale. Let𝑤 : T̃ → R. If VΔ(𝑡) and𝑤Δ̃(V(𝑡))
exist on T𝑘, where

T
𝑘 = {T \ (𝜌 (sup T) , sup T] , 𝑖𝑓 sup T < ∞,

T , 𝑖𝑓 sup T = ∞,
(15)

then

(𝑤 ∘ V)Δ = (𝑤Δ̃ ∘ V) VΔ. (16)

Lemma 3. If 𝑥 is differentiable, then

(𝑥𝛾)Δ = 𝛾𝑥Δ ∫
1

0

[ℎ𝑥𝜎 + (1 − ℎ) 𝑥]𝛾−1dℎ. (17)

Lemma 4. Assume that 𝑋 and 𝑌 are nonnegative real num-
bers; then

𝜆𝑋𝑌𝜆−1 − 𝑋𝜆 ≤ (𝜆 − 1) 𝑌𝜆 𝑓𝑜𝑟 𝑎𝑙𝑙 𝜆 > 1, (18)

where the equality holds if and only if𝑋 = 𝑌.

Lemma 5. Let 𝑎, 𝑏 ∈ T and 𝑎 < 𝑏. Then for positive rd-
continuous functions 𝑓, 𝑔 : [𝑎, 𝑏] → R we have

∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑠) 𝑔 (𝑠)
󵄨󵄨󵄨󵄨 Δ𝑠 ≤ (∫

𝑏

𝑎

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨
𝑝Δ𝑠)
1/𝑝

(∫
𝑏

𝑎

󵄨󵄨󵄨󵄨𝑔 (𝑠)
󵄨󵄨󵄨󵄨
𝑞Δ𝑠)
1/𝑞

,

(19)

where 𝑝 > 1 and (1/𝑝) + (1/𝑞) = 1.
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Lemma 6. Assume that (H
1
)–(H
4
) and (4) hold. Let 𝑥(𝑡) be

an eventually positive solution of (1). Then there exists 𝑡
1
∈

[𝑡
0
,∞)T such that

𝑧Δ (𝑡) > 0, (𝑎 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ (𝑡))
Δ

< 0. (20)

Proof. Suppose that 𝑥(𝑡) is an eventually positive solution of
(1).There exists 𝑡

1
∈ [𝑡
0
,∞)T such that 𝑥(𝑡) > 0 and 𝑥(𝜏(𝑡)) >

0 for 𝑡 ∈ [𝑡
1
,∞)T . From the definition of 𝑧(𝑡), we get 𝑧(𝑡) > 0

for 𝑡 ∈ [𝑡
1
,∞)T , and at the same time for 𝑡 ∈ [𝑡

1
,∞)T , from

(1), we get

(𝑎 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ (𝑡))
Δ

+ 𝑝 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
Δ(𝑡)󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ (𝑡) < 0. (21)

Hence, from Lemma 1 and (11) we obtain

[
[

𝑎󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ

𝑒
−𝑝/𝑎

(⋅, 𝑡
0
)
]
]

Δ

=
(𝑎󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ)
Δ

𝑒
−𝑝/𝑎

(⋅, 𝑡
0
) − 𝑒Δ
−𝑝/𝑎

(⋅, 𝑡
0
) 𝑎󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ

𝑒
−𝑝/𝑎

(⋅, 𝑡
0
) 𝑒𝜎
−𝑝/𝑎

(⋅, 𝑡
0
)

=
(𝑎󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ)
Δ

+ 𝑝󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ

𝑒𝜎
−𝑝/𝑎

(⋅, 𝑡
0
)

< 0

(22)

for [𝑡
1
,∞)T . So

𝑎󵄨󵄨󵄨󵄨󵄨𝑧
Δ󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ

𝑒
−𝑝/𝑎

(⋅, 𝑡
0
)

(23)

is decreasing. By Lemma 1, 𝑧Δ(𝑡) is either eventually positive
or eventually negative. Therefore, for arbitrary 𝑡 ∈ [𝑡

1
,∞)T ,

we have

𝑧Δ (𝑡) > 0. (24)

Otherwise, we assume that (24) is not satisfied; then there
exits 𝑡

2
∈ [𝑡
1
,∞)T such that 𝑧Δ(𝑡) < 0 for all 𝑡 ∈ [𝑡

2
,∞)T .

Because (23) is decreasing, from Lemma 1 we have

𝑎 (𝑡) 󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡)󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ (𝑡)
𝑒
−𝑝/𝑎

(𝑡, 𝑡
0
)

≤
𝑎 (𝑡
2
) 󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡
2
)󵄨󵄨󵄨󵄨󵄨
𝛾−2

𝑧Δ (𝑡
2
)

𝑒
−𝑝/𝑎

(𝑡
2
, 𝑡
0
)

= − 𝑀𝛾−1

𝑒
−𝑝/𝑎

(𝑡
2
, 𝑡
0
)

(25)

for 𝑡 ∈ [𝑡
2
,∞)T , where𝑀 = 𝑎(𝑡

2
)1/(𝛾−1)|𝑧Δ(𝑡

2
)| > 0. By (25)

and Lemma 1, we get

− (𝑧Δ (𝑡))
𝛾−1

≥ 𝑀
𝛾−1

𝑎 (𝑡)
𝑒
−𝑝/𝑎

(𝑡, 𝑡
2
) , 𝑡 ∈ [𝑡

2
,∞)

T
; (26)

that is,

𝑧Δ (𝑡) ≤ −𝑀[ 1
𝑎 (𝑡)

𝑒
−𝑝/𝑎

(𝑡, 𝑡
2
)]
1/(𝛾−1)

, 𝑡 ∈ [𝑡
2
,∞)

T
. (27)

After integrating the two sides of inequality (27) from 𝑡
2
to

𝑡 ∈ [𝑡
2
,∞)T , we have

𝑧 (𝑡) ≤ 𝑧 (𝑡2) − 𝑀∫
𝑡

𝑡2

[ 1
𝑎 (𝑠)

𝑒
−𝑝/𝑎

(𝑠, 𝑡
2
)]
1/(𝛾−1)

Δ𝑠,

𝑡 ∈ [𝑡
2
,∞)

T
.

(28)

Next, we find the limits of the two sides of (28) when 𝑡 →
∞. From (4), we get lim

𝑡→∞
𝑧(𝑡) = −∞. Therefore, 𝑧(𝑡) is

eventually negative, which is contradictory to 𝑧(𝑡) > 0. So
the inequality (24) holds.

From (24) and (21), it is obvious that the second inequality
of (20) holds. This completes the proof.

4. Main Results

Firstly, the two famous results of Philos [24] about oscillation
of second-order linear differential equations are extended to
(1) when condition (4) is satisfied.

Theorem 7. Assume that (H
1
)–(H
4
) and (4) hold. Let 𝐻 :

𝐷T ≡ {(𝑡, 𝑠) : 𝑡 ≥ 𝑠 ≥ 𝑡
0
, 𝑡, 𝑠 ∈ [𝑡

0
,∞)T } → R be rd-

continuous function, such that

𝐻(𝑡, 𝑡) = 0, 𝑡 ≥ 𝑡
0
;

𝐻 (𝑡, 𝑠) > 0, 𝑡 > 𝑠 ≥ 𝑡
0
, 𝑡, 𝑠 ∈ [𝑡

0
,∞)

T
,

(29)

and 𝐻 has a nonpositive continuous Δ-partial derivative
𝐻Δ 𝑠(𝑡, 𝑠) with respect to the second variable and satisfies (31).
Let ℎ : 𝐷T → R be a rd-continuous function and satisfies

−𝐻Δ 𝑠 (𝑡, 𝑠) = ℎ (𝑡, 𝑠) (𝐻(𝑡, 𝑠))(𝛾−1)/𝛾, (𝑡, 𝑠) ∈ 𝐷T , (30)

0 < inf
𝑠≥𝑇0

[lim inf
𝑡→∞

𝐻(𝑡, 𝑠)
𝐻 (𝑡, 𝑇

0
)
] ≤ ∞, 𝑇

0
∈ [𝑡
0
,∞)

T
. (31)

If there exist a positive and differentiable function 𝛿 : T → R

such that 𝛿Δ(𝑡) ≥ 0 for 𝑡 ∈ [𝑡
0
,∞)T and a real rd-continuous

function Ψ : [𝑡
0
,∞)T → R such that

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠 < ∞,

(32)

∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))1/(𝛾−1)

(
Ψ
+ (𝜎 (𝑠))
𝛿 (𝜎 (𝑠))

)
𝛾/(𝛾−1)

Δ𝑠 = ∞, (33)

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)] Δ𝑠

≥ Ψ (𝑇) ,
(34)

where 𝐺(𝑡, 𝑠) = (𝛿Δ(𝑠) − (𝑝(𝑠)/𝑎(𝑠))𝛿(𝑠))(𝐻(𝑡, 𝑠))1/𝛾 −
𝛿(𝑠)ℎ(𝑡, 𝑠), 𝐺

+
(𝑡, 𝑠) = max{0, 𝐺(𝑡, 𝑠)}, Ψ

+
(𝑡) = max{0, Ψ(𝑡)},

and 𝑇 ∈ [𝑇
0
,∞)T , then (1) is oscillatory on [𝑡

0
,∞)T .
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Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T . Without loss of generality wemay assume that there

exists 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0 and 𝑥[𝜏(𝑡)] > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . By the definition of 𝑧(𝑡), it follows

𝑥 (𝑡) = 𝑧 (𝑡) − 𝑟 (𝑡) 𝑥 (𝜏 (𝑡))

≥ 𝑧 (𝑡) − 𝑟 (𝑡) 𝑧 (𝜏 (𝑡))

≥ (1 − 𝑟 (𝑡)) 𝑧 (𝑡) , 𝑡 ∈ [𝑡
1
,∞)

T
.

(35)

Since it satisfies lim
𝑡→∞

𝜏(𝑡) = ∞, there exists 𝑇
0
∈ [𝑡
0
,∞)T

such that 𝜏(𝑡) ≥ 𝑡
1
for all 𝑡 ∈ [𝑇

0
,∞)T . Then if it satisfies

𝑡 ∈ [𝑇
0
,∞)T , we have

𝑥 (𝜏 (𝑡)) ≥ (1 − 𝑟 (𝜏 (𝑡))) 𝑧 (𝜏 (𝑡)) . (36)

By Lemma 6 and (H
3
), we obtain that

1
𝑧 ∘ 𝜏

≥ 1
𝑧 ∘ 𝜏𝜎

, 𝑎(𝑧Δ)
𝛾−1

≥ 𝑎𝜎(𝑧Δ𝜎)
𝛾−1

(37)

on [𝑇
0
,∞)T (where (𝑧Δ)𝜎 is short hand for 𝑧Δ𝜎), and

𝑧Δ ∘ 𝜏 ≥
(𝑎𝜎)1/(𝛾−1)

(𝑎 ∘ 𝜏)1/(𝛾−1)
𝑧Δ𝜎 (38)

holds. Moreover, using Lemmas 3 and 6, it follows that

[(𝑧 ∘ 𝜏)𝛾−1]
Δ

= (𝛾 − 1) (𝑧 ∘ 𝜏)Δ

× ∫
1

0

[ℎ (𝑧 ∘ 𝜏𝜎) + (1 − ℎ) (𝑧 ∘ 𝜏)]𝛾−2dℎ

≥ (𝛾 − 1) (𝑧 ∘ 𝜏)Δ

× ∫
1

0

[ℎ(𝑧 ∘ 𝜏) + (1 − ℎ) (𝑧 ∘ 𝜏)]𝛾−2dℎ

= (𝛾 − 1) (𝑧 ∘ 𝜏)𝛾−2(𝑧 ∘ 𝜏)Δ.

(39)

In Lemma 2, let V = 𝜏, 𝑤 = 𝑧, and T is unbounded above by
(H
1
), so T𝑘 = T , and T̃ = V(T) = 𝜏(T) = T by (H

3
); using

Lemma 2, we get

(𝑧 ∘ 𝜏)Δ = (𝑧Δ ∘ 𝜏) 𝜏Δ. (40)

Thus

[(𝑧 ∘ 𝜏)𝛾−1]
Δ

≥ (𝛾 − 1) (𝑧 ∘ 𝜏)𝛾−2 (𝑧Δ ∘ 𝜏) 𝜏Δ. (41)

By the above inequality and the first inequality in (37), we
obtain that

[(𝑧 ∘ 𝜏)𝛾−1]
Δ

(𝑧 ∘ 𝜏)𝛾−1
≥
(𝛾 − 1) (𝑧Δ ∘ 𝜏) 𝜏Δ

𝑧 ∘ 𝜏𝜎
(42)

holds on [𝑇
0
,∞)T . Now we define the function𝑊 by

𝑊 = 𝛿
𝑎(𝑧Δ)

𝛾−1

(𝑧 ∘ 𝜏)𝛾−1
. (43)

Then we have𝑊 > 0 on [𝑇
0
,∞)T , and

𝑊Δ (10)= 𝛿
(𝑧 ∘ 𝜏)𝛾−1

[𝑎(𝑧Δ)
𝛾−1

]
Δ

+ 𝑎𝜎(𝑧Δ𝜎)
𝛾−1 (𝑧 ∘ 𝜏)𝛾−1𝛿Δ − 𝛿[(𝑧 ∘ 𝜏)𝛾−1]

Δ

(𝑧 ∘ 𝜏)𝛾−1(𝑧 ∘ 𝜏𝜎)𝛾−1

(1)(H4)
≤ −

𝐿𝑞𝛿(𝑥 ∘ 𝜏)𝛾−1

(𝑧 ∘ 𝜏)𝛾−1
−

𝑝𝛿
(𝑧 ∘ 𝜏)𝛾−1

(𝑧Δ)
𝛾−1

+ 𝑎𝜎(𝑧Δ𝜎)
𝛾−1 (𝑧 ∘ 𝜏)𝛾−1𝛿Δ − 𝛿[(𝑧 ∘ 𝜏)𝛾−1]

Δ

(𝑧 ∘ 𝜏)𝛾−1(𝑧 ∘ 𝜏𝜎)𝛾−1

(36)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 −
𝑝𝛿

(𝑧 ∘ 𝜏)𝛾−1
(𝑧Δ)
𝛾−1

+ 𝑎𝜎(𝑧Δ𝜎)
𝛾−1 (𝑧 ∘ 𝜏)𝛾−1𝛿Δ − 𝛿[(𝑧 ∘ 𝜏)𝛾−1]

Δ

(𝑧 ∘ 𝜏)𝛾−1(𝑧 ∘ 𝜏𝜎)𝛾−1

(43)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 −
𝑝
𝑎
𝑊 + 𝛿

Δ

𝛿𝜎
𝑊𝜎

−
𝛿𝑎𝜎(𝑧Δ𝜎)

𝛾−1

[(𝑧 ∘ 𝜏)𝛾−1]
Δ

(𝑧 ∘ 𝜏)𝛾−1(𝑧 ∘ 𝜏𝜎)𝛾−1

(37)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 −
𝑝𝛿
𝑎𝛿𝜎

𝑊𝜎 + 𝛿
Δ

𝛿𝜎
𝑊𝜎

−
𝛿𝑎𝜎(𝑧Δ𝜎)

𝛾−1

[(𝑧 ∘ 𝜏)𝛾−1]
Δ

(𝑧 ∘ 𝜏)𝛾−1(𝑧 ∘ 𝜏𝜎)𝛾−1

(42)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 + (𝛿Δ −
𝑝
𝑎
𝛿) 𝑊

𝜎

𝛿𝜎

−
(𝛾 − 1) 𝛿𝑎𝜎(𝑧Δ𝜎)

𝛾−1

(𝑧Δ ∘ 𝜏) 𝜏Δ

(𝑧 ∘ 𝜏𝜎)𝛾

(38)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 + (𝛿Δ −
𝑝
𝑎
𝛿) 𝑊

𝜎

𝛿𝜎

−
(𝛾 − 1) 𝛿𝜏Δ(𝑎𝜎)𝛾/(𝛾−1)(𝑧Δ𝜎)

𝛾

(𝑎 ∘ 𝜏)1/(𝛾−1)(𝑧 ∘ 𝜏𝜎)𝛾

(43)

≤ −𝐿𝑞𝛿(1 − 𝑟 ∘ 𝜏)𝛾−1 + (𝛿Δ −
𝑝
𝑎
𝛿) 𝑊

𝜎

𝛿𝜎

−
(𝛾 − 1) 𝛿𝜏Δ

(𝑎 ∘ 𝜏)1/(𝛾−1)(𝛿𝜎)𝛾/(𝛾−1)
(𝑊𝜎)𝛾/(𝛾−1);

(44)

then we obtain

𝑊Δ (𝑡) ≤ −𝐿𝑞 (𝑡) 𝛿 (𝑡) (1 − 𝑟 (𝜏 (𝑡)))𝛾−1

+ 𝛿 (𝑡)
𝛿 (𝜎 (𝑡))

𝑊 (𝜎 (𝑡))

−
(𝛾 − 1) 𝛿 (𝑡) 𝜏Δ (𝑡)

(𝑎 (𝜏 (𝑡)))𝜆−1(𝛿 (𝜎 (𝑡)))𝜆
(𝑊 (𝜎 (𝑡)))𝜆

(45)
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on [𝑇
0
,∞)T , where 𝜆 = 𝛾/(𝛾 − 1), 𝛿(𝑡) = 𝛿Δ(𝑡) −

(𝑝(𝑡)/𝑎(𝑡))𝛿(𝑡). Thus, for every 𝑡, 𝑇 ∈ [𝑇
0
,∞)T with 𝑡 ≥ 𝑇 ≥

𝑇
0
, by (13), we get

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≤ 𝐻 (𝑡, 𝑇)𝑊 (𝑇)

− ∫
𝑡

𝑇

(−𝐻Δ 𝑠 (𝑡, 𝑠))𝑊 (𝜎 (𝑠)) Δ𝑠

+ ∫
𝑡

𝑇

𝐻(𝑡, 𝑠) 𝛿 (𝑠)
𝛿 (𝜎 (𝑠))

𝑊 (𝜎 (𝑠)) Δ𝑠

− ∫
𝑡

𝑇

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠

(30)= 𝐻 (𝑡, 𝑇)𝑊 (𝑇)

+ ∫
𝑡

𝑇

𝛿 (𝑠)𝐻 (𝑡, 𝑠) − 𝛿 (𝜎 (𝑠)) ℎ (𝑡, 𝑠)𝐻1/𝜆 (𝑡, 𝑠)
𝛿 (𝜎 (𝑠))

𝑊 (𝜎 (𝑠)) Δ𝑠

− ∫
𝑡

𝑇

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠

≤ 𝐻 (𝑡, 𝑇)𝑊 (𝑇)

+ ∫
𝑡

𝑇

𝛿 (𝑠)𝐻(𝜆−1)/𝜆 (𝑡, 𝑠) − 𝛿 (𝑠) ℎ (𝑡, 𝑠)
𝛿 (𝜎 (𝑠))

× 𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠)) Δ𝑠

− ∫
𝑡

𝑇

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠

≤ 𝐻 (𝑡, 𝑇)𝑊 (𝑇)

+ ∫
𝑡

𝑇

𝐺
+ (𝑡, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠)) Δ𝑠

− ∫
𝑡

𝑇

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠,

(46)

where 𝐺(𝑡, 𝑠) = 𝛿(𝑠)𝐻(𝜆−1)/𝜆(𝑡, 𝑠) − 𝛿(𝑠)ℎ(𝑡, 𝑠) =
(𝛿Δ(𝑠) − (𝑝(𝑠)/𝑎(𝑠))𝛿(𝑠))(𝐻(𝑡, 𝑠))1/𝛾 − 𝛿(𝑠)ℎ(𝑡, 𝑠), 𝐺

+
(𝑡, 𝑠) =

max{0, 𝐺(𝑡, 𝑠)}. So using Lemma 4, let

𝑋 = [𝐻(𝑡, 𝑠)
(𝛾 − 1)𝛿(𝑠)𝜏Δ(𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
]
1/𝜆

𝑊(𝜎 (𝑠)) , (47)

𝑌 = [
[

𝐺
+
(𝑡, 𝑠)

𝜆𝛿 (𝜎 (𝑠))
(

(𝛾 − 1)𝛿(𝑠)𝜏Δ(𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

)
−1/𝜆

]
]

1/(𝜆−1)

.

(48)

Using the inequality (18), we have

𝐺
+ (𝑡, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠)) − 𝐻 (𝑡, 𝑠)

×
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆

≤ 𝐶(
𝐺
+
(𝑡, 𝑠)

𝛿(𝜎(𝑠))
)
𝜆/(𝜆−1)

( 𝛿(𝑠)𝜏Δ(𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

)
−1/(𝜆−1)

,

(49)

where 𝐶 = (𝜆 − 1)𝜆−𝜆/(𝜆−1)(𝛾 − 1)−1/(𝜆−1) = 1/𝛾𝛾. Thus

𝐺
+ (𝑡, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠))

− 𝐻 (𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆
(𝑊 (𝜎 (𝑠)))𝜆

≤ 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) .

(50)

From (46) and (50), we obtain

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠 ≤ 𝐻 (𝑡, 𝑇)𝑊 (𝑇) ;

(51)

that is,

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠 ≤ 𝑊 (𝑇) .

(52)

From condition (34), we have

Ψ (𝑇) ≤ 𝑊 (𝑇) , 𝑇 ∈ [𝑇
0
,∞)

T
, (53)

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≥ Ψ (𝑇) .
(54)
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By (46), we have

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≤ 𝑊 (𝑇) + 1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐺
+ (𝑡, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠)) Δ𝑠

− 1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

× (𝑊 (𝜎 (𝑠)))𝜆Δ𝑠,
(55)

and from the above inequality, let 𝑇 = 𝑇
0
, and denote that

𝐴 (𝑡) = 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

𝐺
+ (𝑡, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑡, 𝑠)𝑊 (𝜎 (𝑠)) Δ𝑠,

𝐵 (𝑡) = 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

𝐻(𝑡, 𝑠)
(𝛾 − 1) 𝛿 (𝑠) 𝜏Δ (𝑠)

(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

× (𝑊 (𝜎 (𝑠)))𝜆Δ𝑠;
(56)

meanwhile noting (54), we obtain

lim inf
𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)]

≤ 𝑊 (𝑇
0
) − lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)

× ∫
𝑡

𝑇0

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≤ 𝑊(𝑇
0
) − Ψ (𝑇

0
) < ∞.

(57)

Now we assert that

∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠 < ∞ (58)

holds. Suppose to the contrary that

∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠 = ∞. (59)

By (31), there exists a constant 𝜀 > 0 such that

inf
𝑠≥𝑇0

[lim inf
𝑡→∞

𝐻(𝑡, 𝑠)
𝐻 (𝑡, 𝑇

0
)
] > 𝜀 > 0. (60)

From (59), there exists a 𝑇 ∈ [𝑇
0
,∞)T for arbitrary real

number𝑀 > 0 such that

∫
𝑡

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠 ≥ 𝑀
(𝛾 − 1) 𝜀

,

(61)

for 𝑡 ∈ [𝑇,∞)T . By (13), we have

𝐵 (𝑡) = 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

{ (𝛾 − 1)𝐻 (𝑡, 𝑠)

× (∫
𝑠

𝑇0

𝛿 (𝑢) 𝜏Δ (𝑢)
(𝑎 (𝜏 (𝑢)))𝜆−1(𝛿 (𝜎 (𝑢)))𝜆

× (𝑊 (𝜎 (𝑢)))𝜆Δ𝑢)
Δ 𝑠

}Δ𝑠

= 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

{[− (𝛾 − 1)𝐻Δ 𝑠 (𝑡, 𝑠)]

× ∫
𝜎(𝑠)

𝑇0

𝛿 (𝑢) 𝜏Δ (𝑢)
(𝑎 (𝜏 (𝑢)))𝜆−1(𝛿 (𝜎 (𝑢)))𝜆

×(𝑊 (𝜎 (𝑢)))𝜆Δ𝑢}Δ𝑠

≥ 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇

{[− (𝛾 − 1)𝐻Δ 𝑠 (𝑡, 𝑠)]

× ∫
𝑠

𝑇0

𝛿 (𝑢) 𝜏Δ (𝑢)
(𝑎 (𝜏 (𝑢)))𝜆−1(𝛿 (𝜎 (𝑢)))𝜆

× (𝑊 (𝜎 (𝑢)))𝜆Δ𝑢}Δ𝑠

≥ 1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇

[− (𝛾 − 1)𝐻Δ 𝑠 (𝑡, 𝑠)] 𝑀
(𝛾 − 1) 𝜀

Δ𝑠

= 𝑀
𝜀
𝐻 (𝑡, 𝑇)
𝐻 (𝑡, 𝑇

0
)
.

(62)

From (60), there exists 𝑡
2
∈ [𝑇,∞)T such that 𝐻(𝑡, 𝑇)/

𝐻(𝑡, 𝑇
0
) ≥ 𝜀 for 𝑡 ∈ [𝑡

2
,∞)T , so 𝐵(𝑡) ≥ 𝑀. Since 𝑀 is

arbitrary, we have

lim
𝑡→∞

𝐵 (𝑡) = ∞. (63)

Selecting a sequence {𝑇
𝑛
}∞
𝑛=1

: 𝑇
𝑛

∈ [𝑇
0
,∞)T with

lim
𝑛→∞

𝑇
𝑛
= ∞ satisfying

lim
𝑛→∞

[𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
)] = lim inf

𝑡→∞
[𝐵 (𝑡) − 𝐴 (𝑡)] < ∞, (64)

then there exists a constant𝑀
0
> 0 such that

𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
) ≤ 𝑀

0 (65)

for sufficiently large positive integer 𝑛. From (63), we can
easily see

lim
𝑛→∞

𝐵 (𝑇
𝑛
) = ∞, (66)

and (65) implies that

lim
𝑛→∞

𝐴 (𝑇
𝑛
) = ∞. (67)
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From (65) and (66), we have

𝐴 (𝑇
𝑛
)

𝐵 (𝑇
𝑛
)
− 1 ≥ − 𝑀

0

𝐵 (𝑇
𝑛
)
> − 𝑀0

2𝑀
0

= −1
2
; (68)

that is,

𝐴 (𝑇
𝑛
)

𝐵 (𝑇
𝑛
)
> 1
2

(69)

for sufficiently large positive integer 𝑛, which together with
(67) implies

lim
𝑛→∞

[𝐴(𝑇
𝑛
)]𝛾

[𝐵 (𝑇
𝑛
)]𝛾−1

= lim
𝑛→∞

[𝐴(𝑇𝑛)
𝐵(𝑇
𝑛
)
]
𝛾−1

𝐴 (𝑇
𝑛
) = ∞. (70)

On the other hand, by Lemma 5, we obtain

𝐴 (𝑇
𝑛
) = 1

𝐻 (𝑇
𝑛
, 𝑇
0
)
∫
𝑇𝑛

𝑇0

𝐺
+
(𝑇
𝑛
, 𝑠)

𝛿 (𝜎 (𝑠))
𝐻1/𝜆 (𝑇

𝑛
, 𝑠)𝑊 (𝜎 (𝑠)) Δ𝑠

= ∫
𝑇𝑛

𝑇0

{
{
{
[
(𝛾 − 1)𝐻 (𝑇

𝑛
, 𝑠) 𝛿 (𝑠) 𝜏Δ (𝑠)

𝐻 (𝑇
𝑛
, 𝑇
0
)

]
(𝛾−1)/𝛾

× 𝑊(𝜎 (𝑠))
[𝑎 (𝜏 (𝑠))]1/𝛾𝛿 (𝜎 (𝑠))

}
}
}

×
{
{
{

[𝑎 (𝜏 (𝑠))]1/𝛾𝐺+ (𝑇𝑛, 𝑠)
𝐻 (𝑇
𝑛
, 𝑇
0
)

𝐻(𝛾−1)/𝛾 (𝑇
𝑛
, 𝑠)

× [
(𝛾 − 1)𝐻 (𝑇

𝑛
, 𝑠) 𝛿 (𝑠) 𝜏Δ (𝑠)

𝐻 (𝑇
𝑛
, 𝑇
0
)

]
(1−𝛾)/𝛾}

}
}
Δ𝑠

≤ {∫
𝑇𝑛

𝑇0

(𝛾 − 1)𝐻 (𝑇
𝑛
, 𝑠) 𝛿 (𝑠) 𝜏Δ (𝑠)

𝐻 (𝑇
𝑛
, 𝑇
0
)

× [ 𝑊 (𝜎 (𝑠))
(𝑎 (𝜏 (𝑠)))1/𝛾𝛿 (𝜎 (𝑠))

]
𝛾/(𝛾−1)

Δ𝑠}
(𝛾−1)/𝛾

× {∫
𝑇𝑛

𝑇0

𝑎 (𝜏 (𝑠)) 𝐺𝛾+ (𝑇𝑛, 𝑠)
𝐻𝛾 (𝑇

𝑛
, 𝑇
0
)

𝐻𝛾−1 (𝑇
𝑛
, 𝑠)

× [
(𝛾 − 1)𝐻 (𝑇

𝑛
, 𝑠) 𝛿 (𝑠) 𝜏Δ (𝑠)

𝐻 (𝑇
𝑛
, 𝑇
0
)

]
1−𝛾

Δ𝑠}
1/𝛾

= [𝐵 (𝑇
𝑛
)](𝛾−1)/𝛾

× {
(𝛾 − 1)1−𝛾

𝐻(𝑇
𝑛
, 𝑇
0
)
∫
𝑇𝑛

𝑇0

𝑎 (𝜏 (𝑠)) 𝐺𝛾
+
(𝑇
𝑛
, 𝑠)

× [𝛿 (𝑠) 𝜏Δ (𝑠)]
1−𝛾

Δ𝑠}
1/𝛾

.

(71)

The above inequality shows that

[𝐴(𝑇
𝑛
)]𝛾

[𝐵(𝑇
𝑛
)]𝛾−1

≤
(𝛾 − 1)1−𝛾

𝐻(𝑇
𝑛
, 𝑇
0
)
∫
𝑇𝑛

𝑇0

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑇
𝑛
, 𝑠) Δ𝑠.

(72)

Hence, (70) implies

lim
𝑛→∞

1
𝐻 (𝑇
𝑛
, 𝑇
0
)
∫
𝑇𝑛

𝑇0

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑇
𝑛
, 𝑠) Δ𝑠 = ∞,

(73)

which contradicts (32). Therefore (58) holds. Noting Ψ(𝑇) ≤
𝑊(𝑇) for 𝑇 ∈ [𝑇

0
,∞)T , by using (58), we obtain

∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

(Ψ
+ (𝜎 (𝑠)))

𝜆Δ𝑠

≤ ∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))𝜆−1(𝛿 (𝜎 (𝑠)))𝜆

(𝑊 (𝜎 (𝑠)))𝜆Δ𝑠 < ∞,

(74)

which is contradicting with (33). This completes the proof.

Remark 8. From Theorem 7, we can obtain different con-
ditions for oscillation of all solutions of (1) with different
choices of 𝛿(𝑡) and 𝐻(𝑡, 𝑠). For example, 𝐻(𝑡, 𝑠) = (𝑡 − 𝑠)𝑚
or𝐻(𝑡, 𝑠) = (ln((𝑡 + 1)/(𝑠 + 1)))𝑚.

Theorem 9. Assume that (H
1
)–(H
4
), (4), (30)-(31), and (33)

hold, where𝐻, ℎ, 𝛿, and Ψ are defined in Theorem 7. Assume
that

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

< ∞,

(75)

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠

≥ Ψ (𝑇)
(76)

holds, where 𝑇 ∈ [𝑇
0
,∞)T , 𝐺(𝑡, 𝑠) = (𝛿Δ(𝑠) −

(𝑝(𝑠)/𝑎(𝑠))𝛿(𝑠))(𝐻(𝑡, 𝑠))1/𝛾 − 𝛿(𝑠)ℎ(𝑡, 𝑠), 𝐺
+
(𝑡, 𝑠) =

max{0, 𝐺(𝑡, 𝑠)}. Then (1) is oscillatory on [𝑡
0
,∞)T .

Proof. Assume that (1) has a nonoscillatory solution 𝑥(𝑡) on
[𝑡
0
,∞)T . Without loss of generality wemay assume that there

exists 𝑡
1
∈ [𝑡
0
,∞)T , such that 𝑥(𝑡) > 0 and 𝑥[𝜏(𝑡)] > 0 for all

𝑡 ∈ [𝑡
1
,∞)T . So 𝑧(𝑡) > 0 and there exists 𝑇

0
∈ [𝑡
1
,∞)T such

that

𝑥 (𝜏 (𝑡)) ≥ (1 − 𝑟 (𝜏 (𝑡))) 𝑧 (𝜏 (𝑡)) (77)
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for 𝑡 ∈ [𝑇
0
,∞)T . Define the function𝑊 by

𝑊 = 𝛿
𝑎(𝑧Δ)

𝛾−1

(𝑧 ∘ 𝜏)𝛾−1
, 𝑡 ∈ [𝑇

0
,∞)

T
. (78)

We proceed as in the proof of Theorem 7 to obtain (46) and
(50), so that

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠 ≤ 𝑊 (𝑇) .

(79)

Hence, (76) implies

Ψ (𝑇) ≤ 𝑊 (𝑇) , 𝑇 ∈ [𝑇
0
,∞)

T
, (80)

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≥ Ψ (𝑇) ;
(81)

then we have

Ψ (𝑇) ≤ lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

× ∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠

≤ lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

× ∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

− lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠.

(82)

From the above inequality and (75), we have

lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠 < ∞. (83)

Therefore, there exists a sequence {𝑇
𝑛
}∞
𝑛=1

: 𝑇
𝑛
∈ [𝑇
0
,∞)T

with lim
𝑛→∞

𝑇
𝑛
= ∞ such that

lim
𝑛→∞

1
𝐻 (𝑇
𝑛
, 𝑇)

∫
𝑇𝑛

𝑇

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠 < ∞. (84)

Definitions of 𝐴(𝑡) and 𝐵(𝑡) are as in Theorem 7; from (46),
and noting (81), we have

lim sup
𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)]

≤ 𝑊 (𝑇
0
) − lim inf
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)

× ∫
𝑡

𝑇0

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

≤ 𝑊(𝑇
0
) − Ψ (𝑇

0
) < ∞.

(85)

For the above sequence {𝑇
𝑛
}∞
𝑛=1

,

lim
𝑛→∞

[𝐵 (𝑇
𝑛
) − 𝐴 (𝑇

𝑛
)] ≤ lim sup

𝑡→∞

[𝐵 (𝑡) − 𝐴 (𝑡)] < ∞.

(86)

We obtain (58) by using reductio ad absurdum. The rest of
the proof is similar to that ofTheorem 7 and hence is omitted.
This completes the proof.

If (4) is not satisfied, that is, if condition (5) holds, we can
obtain the following results.

Theorem 10. Assume that (H
1
)–(H
4
), (5), and (30)–(34) hold,

where𝐻, ℎ, 𝛿, and Ψ are defined in Theorem 7. Assume that

∫
∞

𝑡0

( 1
𝑎 (𝑡)

∫
𝑡

𝑡0

𝑒
−𝑝/𝑎 (𝑡, 𝜎 (𝑠)) 𝑞 (𝑠)

× (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠)
1/(𝛾−1)

Δ𝑡 = ∞

(87)

holds. Then every solution 𝑥(𝑡) of (1) is either oscillatory or
converges to zero on [𝑡

0
,∞)T .

Proof. As the proof of Theorem 7, assume that (1) has a
nonoscillatory solution 𝑥(𝑡) on [𝑡

0
,∞)T . Without loss of

generality wemay assume that there exists 𝑡
1
∈ [𝑡
0
,∞)T , such

that 𝑥(𝑡) > 0 and 𝑥[𝜏(𝑡)] > 0 for all 𝑡 ∈ [𝑡
1
,∞)T . So 𝑧(𝑡) > 0

and there exists 𝑡
2
∈ [𝑡
1
,∞)T such that

𝑥 (𝜏 (𝑡)) ≥ (1 − 𝑟 (𝜏 (𝑡))) 𝑧 (𝜏 (𝑡)) (88)

for 𝑡 ∈ [𝑡
2
,∞)T . In the proof of Lemma 6, we find that 𝑧Δ(𝑡)

is either eventually positive or eventually negative. Thus, we
will distinguish the following two cases:

(I) 𝑧Δ(𝑡) > 0 for 𝑡 ∈ [𝑡
2
,∞)T ;

(II) 𝑧Δ(𝑡) < 0 for 𝑡 ∈ [𝑡
2
,∞)T .

Case (I). When 𝑧Δ(𝑡) is an eventually positive and the proof is
similar to that of the proof of Theorem 7, we can obtain that
(1) is oscillatory.

Case (II). When 𝑧Δ(𝑡) is an eventually negative, 𝑧(𝑡) is
decreasing and lim

𝑡→∞
𝑧(𝑡) =: 𝑏 ≥ 0 exists. Therefore, there

exists 𝑇
0
∈ [𝑡
2
,∞)T such that

𝑧 (𝜏 (𝑡)) > 𝑧 (𝑡) > 𝑧 (𝜎 (𝑡)) ≥ 𝑏 ≥ 0 (89)
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for 𝑡 ∈ [𝑇
0
,∞)T . Define the function 𝑢(𝑡) =

𝑎(𝑡)|𝑧Δ(𝑡)|𝛾−2𝑧Δ(𝑡) = −𝑎(𝑡)|𝑧Δ(𝑡)|𝛾−1. Equations (1) and
(89) yield

𝑢Δ (𝑡) = −
𝑝 (𝑡)
𝑎 (𝑡)

𝑢 (𝑡) − 𝑞 (𝑡) 𝑓 [(𝑥 (𝜏 (𝑡)))𝛾−1]

≤ −
𝑝 (𝑡)
𝑎 (𝑡)

𝑢 (𝑡) − 𝐿𝑏𝛾−1𝑞 (𝑡) (1 − 𝑟 (𝜏 (𝑡)))𝛾−1,

𝑡 ∈ [𝑇
0
,∞)

T
.

(90)

The inequality (90) is the assumed inequality of [8, Theorem
6.1] (see also [37, Lemma 1]). All assumptions of [8, Theorem
6.1], for example, −𝑝/𝑎 ∈R+, are satisfied as well. Hence the
conclusion of [8, Theorem 6.1] holds; that is,

𝑢 (𝑡) ≤ 𝑢 (𝑇0) 𝑒−𝑝/𝑎 (𝑡, 𝑇0) − 𝐿𝑏
𝛾−1

× ∫
𝑡

𝑇0

𝑒
−𝑝/𝑎 (𝑡, 𝜎 (𝑠)) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))

𝛾−1Δ𝑠

< −𝐿𝑏𝛾−1 ∫
𝑡

𝑇0

𝑒
−𝑝/𝑎 (𝑡, 𝜎 (𝑠)) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))

𝛾−1Δ𝑠

(91)

for all 𝑡 ∈ [𝑇
0
,∞)T , and thus

∫
𝑙

𝑇0

𝑧Δ (𝑡) Δ𝑡

< −𝑏𝐿1/(𝛾−1) ∫
𝑙

𝑇0

( 1
𝑎 (𝑡)

∫
𝑡

𝑇0

𝑒
−𝑝/𝑎 (𝑡, 𝜎 (𝑠)) 𝑞 (𝑠)

× (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠)
1/(𝛾−1)

Δ𝑡

(92)

for all 𝑙 ∈ [𝑇
0
,∞)T . Assuming 𝑏 > 0 and using (87) in (92),

we can get lim
𝑙→∞

𝑧(𝑙) = −∞, and this is a contradiction
to the fact that 𝑧(𝑡) > 0 for 𝑡 ∈ [𝑡

1
,∞)T . Thus 𝑏 = 0; that

is, lim
𝑡→∞

𝑧(𝑡) = 0. Then, it follows from (1 − 𝑟(𝑡))𝑧(𝑡) ≤
𝑥(𝑡) ≤ 𝑧(𝑡) that lim

𝑡→∞
𝑥(𝑡) = 0 holds. This completes the

proof.

Using the same method as in the proofs of Theorems 9
and 10, we can easily obtain the following results.

Theorem 11. Assume that (H
1
)–(H
3
), (5), (30)-(31), (33), (75)-

(76), and (87) hold, where 𝐻, ℎ, 𝛿, and Ψ are defined in
Theorem 9. Then every solution 𝑥(𝑡) of (1) is either oscillatory
or converges to zero on [𝑡

0
,∞)T .

Remark 12. The theorems in this paper are new even for the
cases of T = R and T = Z.

Example 13. Consider a second-order half-linear delay 2-
difference equation with damping

[ 1
𝑡2
󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑧

Δ (𝑡)]
Δ

+ 1
𝑡4
󵄨󵄨󵄨󵄨󵄨𝑧
Δ (𝑡)󵄨󵄨󵄨󵄨󵄨 𝑧

Δ (𝑡) + 1
𝑡3
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 ( 𝑡

2
)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑥 ( 𝑡

2
)

= 0, 𝑡 ∈ 2Z, 𝑡 ≥ 𝑡
0
:= 2,

(93)

where 𝑧(𝑡) = 𝑥(𝑡) + (1/2)𝑥(𝑡/2). Here, we have

𝑎 (𝑡) = 1
𝑡2
, 𝑟 (𝑡) = 1

2
, 𝑝 (𝑡) = 1

𝑡4
,

𝑞 (𝑡) = 1
𝑡3
, 𝑓 (𝑢) = 𝑢, 𝜏 (𝑡) = 𝑡

2
, 𝛾 = 3.

(94)

Then T = 2Z is unbounded above, 𝜎(𝑡) = 2𝑡, and 𝜇(𝑡) =
𝑡. Conditions (H

1
) and (H

3
) are clearly satisfied, (H

4
) holds

with 𝐿 = 1, and (H
2
) is satisfied as

1 − 𝜇 (𝑡)
𝑝 (𝑡)
𝑎 (𝑡)

= 1 − 𝑡 ⋅ 1/𝑡
4

1/𝑡2
= 1 − 1

𝑡
> 0

∀𝑡 ≥ 2.
(95)

Next, by [37, Lemma 2] and (H
2
), we obtain

𝑒
−𝑝/𝑎 (𝑡, 2) ≥ 1 − ∫

𝑡

2

𝑝 (𝑠)
𝑎 (𝑠)

Δ𝑠 = 1 − ∫
𝑡

2

𝑠−2Δ𝑠 = 2
𝑡

∀𝑡 ≥ 2,
(96)

so

∫
𝑡

2

[ 1
𝑎 (𝑠)

𝑒
−𝑝/𝑎 (𝑠, 2)]

1/(𝛾−1)

Δ𝑠

≥ ∫
𝑡

2

[𝑠2 ⋅ 2
𝑠
]
1/2

Δ𝑠

= ∫
𝑡

2

√2𝑠1/2Δ𝑠 󳨀→ ∞ as 𝑡 󳨀→ ∞.

(97)

Hence (4) is satisfied. Now let𝐻(𝑡, 𝑠) = (𝑡 − 𝑠)2; then

𝐻Δ 𝑠 (𝑡, 𝑠) = (𝑡 − 2𝑠)
2 − (𝑡 − 𝑠)2

𝑠

= (2𝑡 − 3𝑠) ⋅ (−𝑠)
𝑠

= − (2𝑡 − 3𝑠) < 0,

∀𝑡 > 𝑠 ≥ 𝑡
0
:= 2.

(98)

Since

−𝐻Δ 𝑠 (𝑡, 𝑠) = 2𝑡 − 3𝑠 = 2𝑡 − 3𝑠
(𝑡 − 𝑠)4/3

[(𝑡 − 𝑠)2]
2/3

= 2𝑡 − 3𝑠
(𝑡 − 𝑠)4/3

[𝐻 (𝑡, 𝑠)](𝛾−1)/𝛾,
(99)
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let ℎ(𝑡, 𝑠) = (2𝑡 − 3𝑠)/(𝑡 − 𝑠)4/3; then condition (30) holds. We
have

0 < inf
𝑠≥𝑇0

[lim inf
𝑡→∞

𝐻(𝑡, 𝑠)
𝐻 (𝑡, 𝑇

0
)
] = inf
𝑠≥𝑇0

[lim inf
𝑡→∞

(𝑡 − 𝑠)2

(𝑡 − 𝑇
0
)2
] = 1

< ∞, ∀𝑇
0
∈ [𝑡
0
,∞)

T
,

(100)

so condition (31) holds. Let 𝛿(𝑡) = 𝑡 as 𝑡 ≥ 2; then 𝛿Δ(𝑡) = 1
for all 𝑡 ∈ [𝑡

0
,∞)T , and

𝐺 (𝑡, 𝑠) = (𝛿Δ (𝑠) −
𝑝 (𝑠)
𝑎 (𝑠)

𝛿 (𝑠)) (𝐻 (𝑡, 𝑠))1/𝛾 − 𝛿 (𝑠) ℎ (𝑡, 𝑠)

= (1 − 1
𝑠
)𝐻1/3 (𝑡, 𝑠) − 𝑠 (2𝑡 − 3𝑠)

𝐻2/3 (𝑡, 𝑠)

= 𝐻1/3 (𝑡, 𝑠) − 𝐻
1/3 (𝑡, 𝑠)
𝑠

− 𝑠 (2𝑡 − 3𝑠)
𝐻2/3 (𝑡, 𝑠)

< 𝐻1/3 (𝑡, 𝑠) ,

(101)

for all 𝑡 > 𝑠 ≥ 2. Hence

∫
𝑡

𝑇0

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠

< ∫
𝑡

𝑇0

(𝑠/2)−2

(𝑠 ⋅ (1/2))2
(𝐻1/3 (𝑡, 𝑠))

3

Δ𝑠

= 16∫
𝑡

𝑇0

(𝑡 − 𝑠)2

𝑠4
Δ𝑠

= 16 [− 8
7𝑡
+ 8
3𝑡
− 2
𝑡
]

− 16 [− 8𝑡
2

7𝑇3
0

+ 8𝑡
3𝑇2
0

− 2
𝑇
0

] .

(102)

We get

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇

0
)
∫
𝑡

𝑇0

𝑎 (𝜏 (𝑠))
(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠

≤ lim sup
𝑡→∞

((16 [− 8
7𝑡
+ 8
3𝑡
− 2
𝑡
] − 16 [− 8𝑡

2

7𝑇3
0

+ 8𝑡
3𝑇2
0

− 2
𝑇
0

])

× (𝑡 − 𝑇
0
)−2)

= 128
7

1
𝑇3
0

< ∞;

(103)

thus condition (32) holds. Let Ψ(𝑡) = 1/4𝑡; then

∫
∞

𝑇0

𝛿 (𝑠) 𝜏Δ (𝑠)
(𝑎 (𝜏 (𝑠)))1/(𝛾−1)

(
Ψ
+ (𝜎 (𝑠))
𝛿 (𝜎 (𝑠))

)
𝛾/(𝛾−1)

Δ𝑠

= ∫
∞

𝑇0

𝑠 ⋅ (1/2)

((𝑠/2)−2)
1/2
(1/8𝑠
2𝑠

)
3/2

Δ𝑠

= ∫
∞

𝑇0

𝑠2

4
( 1
16𝑠2

)
3/2

Δ𝑠

= 1
256

∫
∞

𝑇0

1
𝑠
Δ𝑠 = 1

256
ln 𝑠
ln 2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∞

𝑇0

= ∞;

(104)

that is, condition (33) holds. Since

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

= 1
4
∫
𝑡

𝑇

(𝑡 − 𝑠)2 ⋅ 𝑠
𝑠3

Δ𝑠

= 1
4
∫
𝑡

𝑇

(𝑡
2

𝑠2
− 2𝑡
𝑠
+ 1)Δ𝑠

= 1
4
[−2𝑡
2

𝑠
− 2𝑡 ln 𝑠

ln 2
+ 𝑠]
𝑡

𝑇

= 1
4
[−2𝑡 − 2𝑡 ln 𝑡

ln 2
+ 𝑡]

− 1
4
[−2𝑡
2

𝑇
− 2𝑡 ln𝑇

ln 2
+ 𝑇] ,

(105)

then

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1Δ𝑠

= 1
2𝑇
.

(106)

Moreover, (103) implies

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠) Δ𝑠 ≤ 128

63
1
𝑇3
.

(107)

Thus, when 𝑇 is enough large, we have

lim sup
𝑡→∞

1
𝐻 (𝑡, 𝑇)

∫
𝑡

𝑇

[𝐿𝐻 (𝑡, 𝑠) 𝛿 (𝑠) 𝑞 (𝑠) (1 − 𝑟 (𝜏 (𝑠)))𝛾−1

− 𝑎 (𝜏 (𝑠))
𝛾𝛾(𝛿 (𝑠) 𝜏Δ (𝑠))𝛾−1

𝐺𝛾
+
(𝑡, 𝑠)]Δ𝑠

≥ 1
2𝑇

− 128
63

1
𝑇3

≥ 1
4𝑇

= Ψ (𝑇) ,
(108)
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so (34) is satisfied. By Theorem 7, (93) is oscillatory on
[𝑡
0
,∞)T . Similarly, conditions (75) and (76) are satisfied as

well. ByTheorem 9, we can also obtain that (93) is oscillatory.
But the other known results cannot be applied in (93).
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