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The Cauchy problem for a generalized two-component Camassa-Holm system is investigated. Following the idea of fixed points
and using new sets of independent and dependent variables, the existence of the global conservative solutions for the system is
established.

1. Introduction

We consider a generalized two-component Camassa-Holm
system

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ [𝑔 (𝑢)]
𝑥

= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

− 𝜂𝜂
𝑥
,

𝑡 > 0, 𝑥 ∈ 𝑅,

𝜂
𝑡
+ (𝑢𝜂)

𝑥
= 0, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0

(𝑥) , 𝜂 (0, 𝑥) = 𝜂
0

(𝑥) , 𝑥 ∈ 𝑅,

(1)

which is a model for wave motion on shallow water; 𝑢(𝑡, 𝑥)

describes the horizontal velocity of the fluid, 𝑔(𝑢) ∈ 𝐶
∞

(𝑅),
𝑔(0) = 0, 𝜂 is horizontal deviation of the free surface
elevation from equilibrium (or depth, in the shallow-water
interpretation), and 𝜂 = (1 − 𝜕

2

𝑥
)𝜂, where 𝜂 indicates locally

averaged density.The classical Camassa-Holm equation in [1]
has the form

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 2𝑘𝑢
𝑥

+ 3𝑢𝑢
𝑥

= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

. (2)
Combining its integrability property with free surface

elevation dynamics in [2], the authors have extended the
Camassa-Holm equation to two-component Camassa-Holm
system (CH2):

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 3𝑢𝑢
𝑥

= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

− 𝜂𝜂
𝑥
,

𝜂
𝑡
+ (𝑢𝜂)

𝑥
= 0.

(3)

Moreover, the local well-posedness and blow-up solu-
tions for CH2 have been established in [3, 4]. It was shown
that the system has strong solutions which blow up in finite
time [5]. Using the localization analysis in the transport equa-
tion, Gui and Liu [6] obtained the global solutions of (3) in
the Sobolev space 𝐻

𝑠
× 𝐻
𝑠−1 with 𝑠 > 3/2. Hu [7] considered

the weakly dissipative CH2 which includes a nonlinearly
dissipative term 𝐿(𝑢), where 𝐿 is a differential operator or a
quasidifferential operator. It has been shown that CH2 system
possesses peakon solutions in 𝑢 and cornerlike solutions in 𝜂,
but singular solutions do not exist for its density variable [8].
By setting 𝜂 = (1 − 𝜕

2

𝑥
)𝜂, Holm et al. [8] derived the modified

CH2 (MCH2):

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ 3𝑢𝑢
𝑥

= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

− 𝜂𝜂
𝑥
,

𝜂
𝑡
+ (𝑢𝜂)

𝑥
= 0,

(4)

where the 𝜂 is averaged or filtered density. Then, this slight
modification of the system CH2 leads to the system MCH2.
In [9], the global conservative and dissipative solutions of (4)
have been testified.

The Cauchy problem for (2) has been studied extensively.
It has been shown that this equation has global strong
solutions [10–12]. On the other hand, it has global weak
solutions in 𝐻

1
(𝑅) [13–15]. Weak solutions for a weakly

dissipative Camassa-Holm equation have been obtained in
[16]. Moreover, the global and dissipative solutions have been
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established in [17–20]. It is worth remarking that Bressan and
Constantin [17] derived the existence of global conservative
solutions to (2). The essential point in [17] is to introduce
some independent and dependent variables.

For 𝑔(𝑢) = 𝑎𝑢
𝑚

+ 𝑘𝑢 (𝑎, 𝑘 is constant and 𝑚 is positive
integer), the generalized Camassa-Holm equation

𝑢
𝑡
− 𝑢
𝑡𝑥𝑥

+ [𝑔 (𝑢)]
𝑥

= 2𝑢
𝑥
𝑢
𝑥𝑥

+ 𝑢𝑢
𝑥𝑥𝑥

, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0

(𝑥) , 𝑥 ∈ 𝑅,

(5)

has been discussed in [21, 22], and the existence of travelling
waves solutions and peaked solitary wave solutions has
been found. Mustafa [23] and Yin [24] obtained results of
local well-posedness. The global conservative solutions and
dissipative solutions of (5) have been established in [25].
However, the conservative solutions for the problem (1) have
not been discussed yet. The aim of this paper is to establish
the existence of global conservations for the problem (1) and
prove uniqueness and continuous dependence on the initial
data.

This paper is organized as follows. The preliminary
is given in Section 2. In Section 3, we come up with an
equivalent semilinear system for the problem (1) and the
global solution of this system is constructed. In Section 4, we
prove that the semilinear system yields global conservation
solutions to the problem (1).

2. Preliminaries

2.1. The Basic Equations. Firstly, we give some notations.
We define Banach space 𝑋 with the norm ‖ ⋅ ‖

𝑋
and let

𝑝(𝑥) = (1/2)𝑒
−|𝑥|, 𝑥 ∈ 𝑅; then (1 − 𝜕

2

𝑥
)
−1

𝑓 = 𝑝 ∗ 𝑓 for all
𝑓 ∈ 𝐿

2. We set 𝜑 = 𝜂 − 𝜂
0
(𝜂
0
is a constant) and 𝜂 = 𝜑 − 𝜑

𝑥𝑥
;

then 𝜑
𝑥

= 𝜂
𝑥
, 𝑝 ∗ 𝜂 = 𝜑.

We rewrite the equivalent form of (1) as follows:

𝑢
𝑡
+ 𝑢𝑢
𝑥

= −Ψ
1𝑥

, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝜑
𝑡
+ 𝑢𝜑
𝑥

= −Ψ
2𝑥

− Ψ
3
, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝑢 (0, 𝑥) = 𝑢
0

(𝑥) , 𝜑 (0, 𝑥) = 𝜑
0

(𝑥) , 𝑥 ∈ 𝑅,

(6)

with initial data (𝑢
0
(𝑥), 𝜑
0
(𝑥)) ∈ 𝐻

1
× (𝐻
1

∩ 𝑊
1,∞

) and in
which Ψ

𝑖
(𝑖 = 1, 2, 3) are defined by

Ψ
1

= 𝑝 ∗ (𝑢
2

+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜑
2

𝑥
) ,

Ψ
2

= 𝑝 ∗ (𝑢
𝑥
𝜑
𝑥
) ,

Ψ
3

= 𝑝 ∗ (𝑢
𝑥
𝜑) ,

(7)

where 𝑝(𝑥) = (1/2)𝑒
−|𝑥|, 𝑔(𝑢) ∈ 𝐶

∞
(𝑅), and 𝑔(0) = 0. If 𝑢 is

in𝐻
1
(𝑅), due to ‖𝑢‖

𝐿
∞ ≤ ‖𝑢‖

𝐻
1 , 𝑔(𝑢) ∈ 𝐶

∞
(𝑅), and 𝑔(0) = 0,

we deduce that
󵄨
󵄨
󵄨
󵄨
𝑔 (𝑢 (𝑥))

󵄨
󵄨
󵄨
󵄨
≤ sup
|V|≤‖𝑢‖

𝐿
∞

󵄨
󵄨
󵄨
󵄨
󵄨
𝑔
󸀠
(V)

󵄨
󵄨
󵄨
󵄨
󵄨
|𝑢 (𝑥)| ≤ 𝑐 (‖𝑢‖

𝐿
∞) |𝑢 (𝑥)|

≤ 𝑐 (‖𝑢‖
𝐻
1) |𝑢 (𝑥)| .

(8)

Since 𝑢, 𝜑 ∈ 𝐻
1, Young’s inequality ensures that Ψ

1
, Ψ
2
, Ψ
3

∈

𝐻
1.

Definition 1. For a solution of the Cauchy problem (6)
on [𝑡
1
, 𝑡
2
], it means a Hölder continuous function (𝑢(𝑡, 𝑥),

𝜂(𝑡, 𝑥)) is defined on [𝑡
1
, 𝑡
2
]×𝑅with the following properties.

At each fixed 𝑡 it has (𝑢(𝑡, ⋅), 𝜑(𝑡, ⋅)) ∈ 𝐻
1

× (𝐻
1

∩ 𝑊
1,∞

).
Moreover, themaps 𝑢(𝑡, ⋅) and𝜑(𝑡, ⋅) are Lipschitz continuous
from [𝑡

1
, 𝑡
2
] to 𝐿
2, satisfying the initial condition and

𝑢
𝑡
+ 𝑢𝑢
𝑥

= −Ψ
1𝑥

, 𝑡 > 0, 𝑥 ∈ 𝑅,

𝜑
𝑡
+ 𝑢𝜑
𝑥

= −Ψ
2𝑥

− Ψ
3
, 𝑡 > 0, 𝑥 ∈ 𝑅,

(9)

where (9) is understood as equalities between functions in 𝐿
2.

For smooth solutions, we have the conservation law

𝐸 (𝑡) = ∫

𝑅

(𝑢
2

+ 𝑢
2

𝑥
+ 𝜑
2

+ 𝜑
2

𝑥
) 𝑑𝑥

= ∫

𝑅

(𝑢
2

0
+ 𝑢
2

0𝑥
+ 𝜑
2

0
+ 𝜑
2

0𝑥
) 𝑑𝑥

= 𝐸 (0) = 𝐸
0
.

(10)

Indeed, differentiating the first equation of (6) with respect
to 𝑥 and using the identity 𝜕

2

𝑥
𝑝 ∗ 𝑓 = 𝑝 ∗ 𝑓 − 𝑓, we have

𝑢
𝑡𝑥

+ 𝑢𝑢
𝑥𝑥

+ 𝑢
2

𝑥
= 𝑓 − 𝑝 ∗ 𝑓, (11)

where 𝑓 = 𝑢
2

+ (1/2)𝑢
2

𝑥
+ 𝑔(𝑢) + (1/2)𝜑

2
− (1/2)𝜑

2

𝑥
. Using

problem (6) and the above equality, we have

∫

𝑅

(𝑢𝑢
𝑡
+ 𝑢
𝑥
𝑢
𝑡𝑥

) 𝑑𝑥

= ∫

𝑅

{−𝑢
2
𝑢
𝑥

− 𝜕
𝑥
𝑝 ∗ [𝑢

2
+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

+

1

2

𝜑
2

𝑥
] 𝑢

− 𝑢
3

𝑥
− 𝑢𝑢
𝑥
𝑢
𝑥𝑥𝑥

− 𝜕
2

𝑥
𝑝

∗ [𝑢
2

+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

+

1

2

𝜑
2

𝑥
] 𝑢
𝑥
}

=

1

2

∫

𝑅

(𝜑
2
𝑢
𝑥

− 𝜑
2

𝑥
𝑢
𝑥
) 𝑑𝑥,

(12)

where ∫
𝑅

𝑔(𝑢)𝑢
𝑥
𝑑𝑥 = 𝐺

󸀠
(𝑢)|
𝑅

= 0.
In the same way, for the second equation in (6), we have

∫

𝑅

(𝜑𝜑
𝑡
+ 𝜑
𝑥
𝜑
𝑡𝑥

) 𝑑𝑥

= ∫

𝑅

(−𝑢𝜑𝜑
𝑥

− 𝜑
𝑥
(𝑢𝜑
𝑥
)
𝑥

+ 𝑢
𝑥
𝜑
2

𝑥
− 𝑢
𝑥
𝜑
2
) 𝑑𝑥.

(13)
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Combining (12) with (13), we deduce that

𝑑

𝑑𝑡

∫

𝑅

(𝑢
2

+ 𝑢
2

𝑥
+ 𝜑
2

+ 𝜑
2

𝑥
) 𝑑𝑥

= 2 ∫

𝑅

(𝑢𝑢
𝑡
+ 𝑢
𝑥
𝑢
𝑡𝑥

+ 𝜑𝜑
𝑡
+ 𝜑
𝑥
𝜑
𝑡𝑥

) 𝑑𝑥

= 2 ∫

𝑅

[

1

2

𝜑
2
𝑢
𝑥

−

1

2

𝜑
2

𝑥
𝑢
𝑥

− 𝑢𝜑𝜑
𝑥

− 𝜑
𝑥
(𝑢𝜑
𝑥
)
𝑥

+ 𝑢
𝑥
𝜑
2

𝑥
− 𝑢
𝑥
𝜑
2
] 𝑑𝑥

= ∫

𝑅

(−𝑢𝜑
2
)
𝑥

− (𝑢𝜑
2

𝑥
)
𝑥
𝑑𝑥 = 0.

(14)

Thus, (10) holds.

2.2. A New Set of Independent and Dependent Variables. Let
(𝑢, 𝜑) ∈ 𝐻

1
× (𝐻
1

∩ 𝑊
1,∞

) be the initial data. For an energy
variable 𝜉 ∈ 𝑅, let the nondecreasing map 𝜉 󳨃→ 𝑦(𝜉) be
defined by

𝜉 = ∫

𝑦(𝜉)

0

(1 + 𝑢
2

𝑥
) 𝑑𝑥. (15)

Assuming that the solution (𝑢, 𝜂) to (6) remains Lipschitz
continuous for 𝑡 ∈ [0, 𝑇], we derive an equivalent system of
(6) by using the independent variables (𝑡, 𝜉).

Let 𝜉 󳨃→ 𝑦(𝜉) be the characteristic starting at 𝑦(𝜉) such
that

𝜕

𝜕𝑡

𝑦 (𝑡, 𝜉) = 𝑢 (𝑡, 𝑦 (𝑡, 𝜉)) , 𝑦 (0, 𝜉) = 𝑦 (𝜉) . (16)

Moreover, we write

𝑢 (𝑡, 𝜉) ≐ 𝑢 (𝑡, 𝑦 (𝑡, 𝜉)) , 𝜑 (𝑡, 𝜉) ≐ 𝜑 (𝑡, 𝑦 (𝑡, 𝜉)) ,

𝜑
𝑥

(𝑡, 𝜉) ≐ 𝜑
𝑥

(𝑡, 𝑦 (𝑡, 𝜉)) ,

Ψ
𝑖
(𝑡, 𝜉) ≐ Ψ

𝑖
(𝑡, 𝑦 (𝑡, 𝜉)) , Ψ

𝑖𝑥
(𝑡, 𝜉) ≐ Ψ

𝑖𝑥
(𝑡, 𝑦 (𝑡, 𝜉)) ,

𝑖 = 1, 2, 3.

(17)

The following further variables will be used: V = V(𝑡, 𝜉),
𝑞 = 𝑞(𝑡, 𝜉), and 𝜓 = 𝜓(𝑡, 𝜉), defined as

V ≐ 2 arctan 𝑢
𝑥
, 𝑞 ≐ (1 + 𝑢

2

𝑥
) ⋅

𝜕𝑦

𝜕𝜉

, 𝜓 ≐ 𝜑
𝑥

(𝑡, 𝜉) .

(18)

Obviously, V is defined up to multiples of 2𝜋. Notice that
(15) implies

𝑞 (0, 𝜉) = 1. (19)

For future use, we write the identities

1

1 + 𝑢
2

𝑥

= cos2 V
2

,

𝑢
𝑥

1 + 𝑢
2

𝑥

=

1

2

sin V,

𝑢
2

𝑥

1 + 𝑢
2

𝑥

= sin2 V
2

,

(20)

𝜕𝑦

𝜕𝜉

=

𝑞

1 + 𝑢
2

𝑥

= cos2 V
2

⋅ 𝑞. (21)

Using identity (21) yields

𝑦 (𝑡, 𝜉
2
) − 𝑦 (𝑡, 𝜉

1
) = ∫

𝜉
2

𝜉
1

𝜕𝑦

𝜕𝜉

𝑑𝜉 = ∫

𝜉
2

𝜉
1

cos2 V (𝑡, 𝜉)

2

𝑞 (𝑡, 𝜉) 𝑑𝜉.

(22)

Furthermore, we have

Ψ
1

(𝑡, 𝜉) =

1

2

∫

∞

−∞

𝑒
−|𝑦(𝑡,𝜉)−𝑥|

× (𝑢
2

+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜑
2

𝑥
)

× (𝑡, 𝑥) 𝑑𝑥,

Ψ
1𝑥

(𝑡, 𝜉) =

1

2

(∫

∞

𝑦(𝑡,𝜉)

− ∫

𝑦(𝑡,𝜉)

−∞

) 𝑒
−|𝑦(𝑡,𝜉)−𝑥|

× (𝑢
2

+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜑
2

𝑥
)

× (𝑡, 𝑥) 𝑑𝑥,

Ψ
2

(𝑡, 𝜉) =

1

2

∫

∞

−∞

𝑒
−|𝑦(𝑡,𝜉)−𝑥|

𝑢
𝑥

(𝑡, 𝑥) 𝜑
𝑥

(𝑡, 𝑥) 𝑑𝑥,

Ψ
2𝑥

(𝑡, 𝜉) =

1

2

(∫

∞

𝑦(𝑡,𝜉)

− ∫

𝑦(𝑡,𝜉)

−∞

) 𝑒
−|𝑦(𝑡,𝜉)−𝑥|

× 𝑢
𝑥

(𝑡, 𝑥) 𝜑
𝑥

(𝑡, 𝑥) 𝑑𝑥,

Ψ
3

(𝑡, 𝜉) =

1

2

∫

∞

−∞

𝑒
−|𝑦(𝑡,𝜉)−𝑥|

𝑢
𝑥

(𝑡, 𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑥,

Ψ
3𝑥

(𝑡, 𝜉) =

1

2

(∫

∞

𝑦(𝑡,𝜉)

− ∫

𝑦(𝑡,𝜉)

−∞

) 𝑒
−|𝑦(𝑡,𝜉)−𝑥|

𝑢
𝑥

(𝑡, 𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑥.

(23)

In the above formulae, we use the change of variables 𝑥 =

𝑦(𝑡, 𝜉
󸀠
), the validity of which will be checked in Section 4, and

write the convolution as an integral over the variable 𝜉
󸀠. Using
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identities (20)–(22), we obtain expressions for Ψ
𝑖
and Ψ

𝑖𝑥
in

terms of the new variable 𝜉, namely,

Ψ
1

(𝜉) =

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

× [[𝑢
2

(𝜉
󸀠
) + 𝑔 (𝑢 (𝜉

󸀠
))] cos2

V (𝜉
󸀠
)

2

+

1

2

sin2
V (𝜉
󸀠
)

2

+

1

2

𝜑
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

−

1

2

𝜓
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

] 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(24)

Ψ
1𝑥

(𝜉) =

1

2

(∫

∞

𝜉

− ∫

𝜉

−∞

) exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

× [[𝑢
2

(𝜉
󸀠
) + 𝑔 (𝑢 (𝜉

󸀠
))] cos2

V (𝜉
󸀠
)

2

+

1

2

sin2
V (𝜉
󸀠
)

2

+

1

2

𝜑
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

−

1

2

𝜓
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

] 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(25)

Ψ
2

(𝜉) =

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

×

1

2

𝜓 (𝜉
󸀠
) sin V (𝜉

󸀠
) 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(26)

Ψ
2𝑥

(𝜉) =

1

2

(∫

∞

𝜉

− ∫

𝜉

−∞

) exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

⋅

1

2

𝜓 (𝜉
󸀠
) sin V (𝜉

󸀠
) 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(27)

Ψ
3

(𝜉) =

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

×

1

2

𝜑 (𝜉
󸀠
) sin V (𝜉

󸀠
) 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(28)

Ψ
3𝑥

(𝜉) =

1

2

(∫

∞

𝜉

− ∫

𝜉

−∞

) exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

⋅

1

2

𝜑 (𝜉
󸀠
) sin V (𝜉

󸀠
) 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
.

(29)

From (6) and (16), the evolution equations for 𝑢 and 𝜂 in the
new variables (𝑡, 𝜉) take the form

𝜕

𝜕𝑡

𝑢 (𝑡, 𝜉) = 𝑢
𝑡
+ 𝑢𝑢
𝑥

= −Ψ
1𝑥

(𝑡, 𝜉) ,

𝜕

𝜕𝑡

𝜑 (𝑡, 𝜉) = 𝜑
𝑡
+ 𝑢𝜑
𝑥

= −Ψ
2𝑥

(𝑡, 𝜉) − Ψ
3

(𝑡, 𝜉) ,

(30)

where Ψ
𝑖
and Ψ

𝑖𝑥
(𝑖 = 1, 2, 3) are given in (24)–(29).

Next, to derive an evolution equation for the variable 𝑞,
we observe from (16) that

∫

𝜉
2

𝜉
1

𝑞 (𝑡, 𝜉) 𝑑𝜉 = ∫

𝑦(𝑡,𝜉
2
)

𝑦(𝑡,𝜉
1
)

(1 + 𝑢
2

𝑥
(𝑡, 𝑥)) 𝑑𝑥 (31)

holds. We have the equality

𝑑

𝑑𝑡

∫

𝜉
2

𝜉
1

𝑞 (𝑡, 𝜉) 𝑑𝜉 = ∫

𝑦(𝑡,𝜉
2
)

𝑦(𝑡,𝜉1)

{(1 + 𝑢
2

𝑥
)
𝑡
+ [𝑢 (1 + 𝑢

2

𝑥
)]
𝑥
} 𝑑𝑥

= ∫

𝑦(𝑡,𝜉
2
)

𝑦(𝑡,𝜉
1
)

[2𝑢
𝑥
𝑢
𝑥𝑡

+ 𝑢
𝑥

+ (𝑢𝑢
2

𝑥
)
𝑥
] 𝑑𝑥

= ∫

𝑦(𝑡,𝜉
2
)

𝑦(𝑡,𝜉1)

[2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜑
2

𝑥

−2Ψ
1

+ 1] 𝑢
𝑥
𝑑𝑥.

(32)

Therefore, it has
𝜕

𝜕𝑡

𝑞 (𝑡, 𝜉) = (𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2

− Ψ
1

+

1

2

) sin V ⋅ 𝑞.

(33)

Applying (6), (9), and (16)–(18) yields

𝜕

𝜕𝑡

V (𝑡, 𝜉) = (2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜓
2

− 2Ψ
1
) cos2 V

2

− sin2 V
2

,

𝜕

𝜕𝑡

𝜓 (𝑡, 𝜉) = −Ψ
2

− Ψ
3𝑥

.

(34)

3. Global Solutions of the Semilinear System

Let initial data (𝑢, 𝜑) ∈ 𝐻
1

× (𝐻
1

∩ 𝑊
1,∞

) be given. From
Section 2, we rewrite the corresponding Cauchy problem (6)
for the variables (𝑢, 𝜑, 𝜓, V, 𝑞) in the form

𝜕𝑢

𝜕𝑡

= −Ψ
1𝑥

,

𝜕𝜑

𝜕𝑡

= −Ψ
2𝑥

− Ψ
3
,

𝜕𝜓

𝜕𝑡

= −Ψ
2

− Ψ
3𝑥

,

𝜕V
𝜕𝑡

= (2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜓
2

− 2Ψ
1
) cos2 V

2

− sin2 V
2

,

𝜕𝑞

𝜕𝑡

= (𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2

− Ψ
1

+

1

2

) sin V ⋅ 𝑞,

(35)
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with initial data

𝑢 (0, 𝜉) = 𝑢 (𝑦 (𝜉)) ,

𝜑 (0, 𝜉) = 𝜑 (𝑦 (𝜉)) ,

𝜓 (0, 𝜉) = 𝜑
𝑥

(𝑦 (𝜉)) ,

V (0, 𝜉) = 2 arctan 𝑢
𝑥

(𝑦 (𝜉)) ,

𝑞 (0, 𝜉) = 1.

(36)

We regard (35) as an ordinary differential equation in the
Banach space:

𝑋 ≐ 𝐻
1

× 𝐻
1

× (𝐿
2

∩ 𝐿
∞

) × (𝐿
2

∩ 𝐿
∞

) × 𝐿
∞

, (37)

with the norm
󵄩
󵄩
󵄩
󵄩
(𝑢, 𝜑, 𝜓, V, 𝑞)

󵄩
󵄩
󵄩
󵄩𝑋

≐ ‖𝑢‖
𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2

+
󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞ + ‖V‖

𝐿
2 + ‖V‖

𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝐿
∞ .

(38)

Then the solution of the Cauchy problem means a fixed
point of the integral transformation:

𝑇 (𝑢, 𝜑, 𝜓, V, 𝑞) = (𝑢̃, 𝜑, 𝜓̃, Ṽ, 𝑞) , (39)

where

𝑢̃ (𝑡, 𝜉) = 𝑢 (𝑦 (𝜉)) − ∫

𝑡

0

Ψ
1𝑥

𝑑𝑡,

𝜑 (𝑡, 𝜉) = 𝜑 (𝑦 (𝜉)) − ∫

𝑡

0

(Ψ
2𝑥

+ Ψ
3
) 𝑑𝑡,

𝜓̃ (𝑡, 𝜉) = 𝜑
𝑥

(𝑦 (𝜉)) − ∫

𝑡

0

(Ψ
2

+ Ψ
3𝑥

) 𝑑𝑡,

Ṽ (𝑡, 𝜉) = 2 arctan 𝑢
𝑥

(𝑦 (𝜉))

+ ∫

𝑡

0

[ (2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜓
2

− 2Ψ
1
)

× cos2 V
2

− sin2 V
2

] 𝑑𝑡,

𝑞 (𝑡, 𝜉) = 1 + ∫

𝑡

0

(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2

−Ψ
1

+

1

2

) sin V ⋅ 𝑞 𝑑𝑡.

(40)

Proving the local Lipschitz continuity of the right-hand
side of (35), the local existence of solution follows from
the standard theorem for ordinary differential equations in
Banach spaces. Then, we show the conservation of energy
property expressed by (10). Moreover, we prove that this local
solution can be extended globally in time.

Theorem 2. If (𝑢, 𝜑) ∈ 𝐻
1

× (𝐻
1

∩ 𝑊
1,∞

), then the Cauchy
problem (35)-(36) has a unique solution for all 𝑡 ≥ 0 in the
sense of Definition 1.

Proof.

Step 1 (local solution). In order to establish the local existence
of solution, it suffices to show that the operator determined by
the right-hand side of (35) mapping (𝑢, 𝜑, 𝜓, V, 𝑞) to

( − Ψ
1𝑥

, −Ψ
2𝑥

− Ψ
3
, −Ψ
2

− Ψ
3𝑥

,

(2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜓
2

− 2Ψ
1
)

× cos2 V
2

− sin2 V
2

,

(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2

− Ψ
1

+

1

2

) sin V ⋅ 𝑞)

(41)

is Lipschitz continuous on every bounded domain Ω ⊂ 𝑋 in
the form of

Ω = { (𝑢, 𝜑, 𝜓, V, 𝑞) : ‖𝑢‖
𝐻
1 ≤ 𝛼,

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐻
1 ≤ 𝛽,

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2 ≤ 𝑚,

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝛾,

‖V‖
𝐿
2 ≤ 𝑛, ‖V‖

𝐿
∞ ≤

3𝜋

2

, 𝑞 (𝑥) ∈ [𝑞
−
, 𝑞
+
]} ,

(42)

for any constants 𝛼, 𝛽, 𝑚, 𝑛, 𝛾, 𝑞
−
, 𝑞
+

> 0.
Applying Sobolev’s inequality ‖𝑢‖

𝐿
∞ ≤ ‖𝑢‖

𝐻
1 , ‖𝜑‖

𝐿
∞ ≤

‖𝜑‖
𝐻
1 , we know that the maps

𝑢
2
, 𝑔 (𝑢) , 𝑔 (𝑢) cos V, 𝑢

2cos2 V
2

, 𝜑
2
, 𝜑
2cos2 V

2

,

sin V, sin2 V
2

, sin V ⋅ 𝑞, 𝜑
2
, 𝜑
2cos2 V

2

(43)

are all Lipschitz continuous fromΩ 󳨃→ 𝐿
2
∩𝐿
∞. Now, we only

need to prove the Lipschitz continuity of the maps

(𝑢, 𝜑, 𝜓, V, 𝑞) 󳨃󳨀→ Ψ
𝑖
, (𝑢, 𝜑, 𝜓, V, 𝑞) 󳨃󳨀→ Ψ

𝑖𝑥
, 𝑖 = 1, 2, 3,

(44)

defined in (24)–(29) from Ω to 𝐻
1. This will also imply the

Lipschitz continuity of these maps from Ω to 𝐿
2

∩ 𝐿
∞. To get

this goal, we first observe that, as long as |V| ≤ 3𝜋/2, it holds
that

sin2 V
2

≤

V2

4

≤

9𝜋
2

8

sin2 V
2

,

measure{𝜉 ∈ 𝑅;

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

V (𝜉)

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≥

𝜋

4

}

≤ measure{𝜉 ∈ 𝑅; sin2 V (𝜉)

2

≥

1

18

}

≤ 18 ∫

{𝜉∈𝑅;sin2(V(𝜉)/2)≥1/18}
sin2 V (𝜉)

2

𝑑𝜉

≤

9

2

𝑛
2
.

(45)
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Therefore, for any 𝜉
1

< 𝜉
2
, it holds that

∫

𝜉
2

𝜉
1

cos2 V (𝜉)

2

𝑞 (𝜉
󸀠
) 𝑑𝜉 ≥ ∫

{𝜉∈[𝜉
1
,𝜉
2
]:|V(𝜉)/2|≤𝜋/4}

𝑞
−

2

𝑑𝜉

≥ 𝑞
−

(

𝜉
1

− 𝜉
2

2

−

9

4

𝑛
2
) .

(46)

Introducing the exponentially decaying function

ϝ (𝜁) ≐ min{1, exp(

9

4

𝑛
2
𝑞
−

−

󵄨
󵄨
󵄨
󵄨
𝜁
󵄨
󵄨
󵄨
󵄨

2

𝑞
−
)} , (47)

we show that

󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1 = (∫

|𝜁|≤(9/2)𝑛
2

+ ∫

|𝜁|≥(9/2)𝑛
2

) ϝ (𝜁) 𝑑𝜁 = 9𝑛
2

+

4

𝑞
−

.

(48)

Next, we begin to show Ψ
𝑖
, Ψ
𝑖𝑥

∈ 𝐻
1, 𝑖 = 1, 2, 3. We only

give the estimates for Ψ
1
, since the estimates for others are

similar. It follows from definition (24) that

󵄨
󵄨
󵄨
󵄨
Ψ
1

(𝜉)
󵄨
󵄨
󵄨
󵄨
≤

𝑞
+

2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ϝ ∗ ((𝑢
2

+ 𝑔 (𝑢)) cos2 V
2

+

1

2

sin2 V
2

+

1

2

𝜑
2cos2 V

2

−

1

2

𝜓
2cos2 V

2

) (𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(49)

Using standard properties of convolutions, we obtain

󵄩
󵄩
󵄩
󵄩
Ψ
1

(𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2 ≤

𝑞
+

2

󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1

⋅ (

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
2

+ 𝑔 (𝑢)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

+

1

8

󵄩
󵄩
󵄩
󵄩
󵄩
V2

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

+

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
2󵄩󵄩
󵄩
󵄩
󵄩𝐿
2

+

1

2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜓
2󵄩󵄩
󵄩
󵄩
󵄩𝐿
2
)

≤

𝑞
+

2

󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1 (𝐶‖𝑢‖

𝐿
∞‖𝑢‖
𝐿
2 +

1

8

‖V‖
𝐿
∞‖V‖
𝐿
2

+

1

2

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
2 +

1

2

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2)

< ∞,

(50)

where we have used 𝐻
1

⊂ 𝐿
∞ and (8). Differentiating (24),

we get

𝜕
𝜉
Ψ
1

(𝜉) =

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

⋅ cos2 V (𝜉)

2

𝑞 (𝜉) sign (𝜉
󸀠
− 𝜉)

⋅ [[𝑢
2

(𝜉
󸀠
) + 𝑔 (𝑢 (𝜉

󸀠
))] cos2

V (𝜉
󸀠
)

2

+

1

2

sin2
V (𝜉
󸀠
)

2

+

1

2

𝜑
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

−

1

2

𝜓
2

(𝜉
󸀠
) cos2

V (𝜉
󸀠
)

2

]

⋅ 𝑞 (𝜉
󸀠
) 𝑑𝜉
󸀠
,

(51)

thus
󵄨
󵄨
󵄨
󵄨
󵄨
𝜕
𝜉
Ψ
1

(𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤

1

2

(𝑞
+
)

2
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

cos2 V
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ϝ ∗ ([𝑢
2

+ 𝑔 (𝑢)] cos2 V
2

+

1

2

sin2 V
2

+

1

2

𝜑
2cos2 V

2

−

1

2

𝜓
2cos2 V

2

)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤

1

2

(𝑞
+
)

2

⋅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

ϝ ∗ [(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2
)

× cos2 V
2

+

1

2

sin2 V
2

]

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

.

(52)

Therefore, we have
󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝜉
Ψ
1

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤

1

2

(𝑞
+
)

2󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1

⋅ (𝐶‖𝑢‖
𝐿
∞‖𝑢‖
𝐿
2 +

1

8

‖V‖
𝐿
∞‖V‖
𝐿
2

+

1

2

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
2

+

1

2

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2)

< ∞,

(53)

and Ψ
1

∈ 𝐻
1
(𝑅).

To establish the Lipschitz continuity of (44), it suffices to
show that their partial derivatives

𝜕Ψ
𝑖

𝜕𝑢

,

𝜕Ψ
𝑖

𝜕𝜑

,

𝜕Ψ
𝑖

𝜕𝜓

,

𝜕Ψ
𝑖

𝜕V
,

𝜕Ψ
𝑖

𝜕𝑞

,

𝜕Ψ
𝑖𝑥

𝜕𝑢

,

𝜕Ψ
𝑖𝑥

𝜕𝜑

,

𝜕Ψ
𝑖𝑥

𝜕𝜓

,

𝜕Ψ
𝑖𝑥

𝜕V
,

𝜕Ψ
𝑖𝑥

𝜕𝑞

, 𝑖 = 1, 2, 3

(54)
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are uniformly bounded as (𝑢, 𝜑, 𝜓, V, 𝑞) ranges inside the
domain Ω. We observe that these derivatives are bounded
operators from the appropriate space into 𝐻

1. For sake of
illustration, wewill work out the detailed estimate for 𝜕Ψ

1
/𝜕𝑢.

All other derivatives can be estimated by the same way.
For a given point (𝑢, 𝜑, 𝜓, V, 𝑞) ∈ Ω, the partial derivative

(𝜕Ψ
1
/𝜕𝑢) : 𝐻

1
→ 𝐿
2 is the linear operator defined by

[

𝜕Ψ
1

(𝑢, 𝜑, 𝜓, V, 𝑞)

𝜕𝑢

⋅ 𝑢̃] (𝜉)

=

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

⋅ [2𝑢 (𝜉
󸀠
) + 𝑔
󸀠
(𝑢 (𝜉
󸀠
))] cos2

V (𝜉
󸀠
)

2

𝑞 (𝜉
󸀠
)

⋅ 𝑢̃ (𝜉
󸀠
) 𝑑𝜉
󸀠
.

(55)

Thus,
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕Ψ
1

𝜕𝑢

⋅ 𝑢̃

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

≤

𝑞
+

2

󵄩
󵄩
󵄩
󵄩
󵄩
ϝ ∗ [2𝑢 + 𝑔

󸀠
(𝑢)]

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
2

⋅ ‖𝑢̃‖
𝐿
∞ . (56)

By use of ‖𝑢̃‖
𝐿
∞ ≤ ‖𝑢̃‖

𝐻
1 and |𝑔

󸀠
(𝑢)| ≤ 𝐶(‖𝑢‖

𝐻
1)|𝑢(𝑥)|,

the above operator norm satisfies
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕Ψ
1

𝜕𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶𝑞
+󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1‖𝑢‖
𝐿
2 < ∞. (57)

From (51), (𝜕(𝜕
𝜉
Ψ
1
)/𝜕𝑢) : 𝐻

1
→ 𝐿
2 is the linear operator

defined by

[

𝜕 (𝜕
𝜉
Ψ
1
) (𝑢, 𝜑, 𝜓, V, 𝑞)

𝜕𝑢

⋅ 𝑢̃] (𝜉)

=

1

2

∫

∞

−∞

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

cos2 V (𝑠)

2

𝑞 (𝑠) 𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

}

⋅ cos2 V (𝜉)

2

𝑞 (𝜉) sign (𝜉
󸀠
− 𝜉)

⋅ [2𝑢 (𝜉
󸀠
) + 𝑔
󸀠
(𝑢 (𝜉
󸀠
))]

⋅ cos2
V (𝜉
󸀠
)

2

𝑞 (𝜉
󸀠
) ⋅ 𝑢̃ (𝜉

󸀠
) 𝑑𝜉
󸀠
,

(58)

whose norm is bounded by

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

𝜕 (𝜕
𝜉
Ψ
1
)

𝜕𝑢

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

≤ 𝐶(𝑞
+
)

2󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1‖𝑢‖
𝐿
2 < ∞. (59)

Combining (57) and (59) yields the boundedness of
𝜕Ψ
1
/𝜕𝑢 as a linear operator from 𝐻

1 to 𝐻
1. The bounds on

the other partial derivatives in (54) are obtained by a similar
way.

The local existence of a solution to the Cauchy problem
(35)-(36) on some small time interval [0, 𝑇] with 𝑇 > 0

now follows from the standard theory of ordinary differential
equations in Banach space. Thus, we have showed that
the right-hand side of (35) is Lipschitz continuity on a
neighbourhood of the initial data in the space 𝑋.

Step 2 (extension to a global solution). To ensure that the local
solution of (35) constructed above can be extended to a global
solution defined for all 𝑡 ≥ 0, it suffices to show that the
quantity

‖𝑢‖
𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2 +

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞ + ‖V‖

𝐿
2 + ‖V‖

𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝐿
∞

(60)

remains uniformly bounded on any bounded time interval.
The a priori bounds on (60) will actually follow from the
conservation of the total energy (10). In the following, we
rederive this energy conservation property in terms of the
new variables (𝑢, 𝜑, 𝜓, V, 𝑞) and 𝜉.

As long as the local solution of (35) is defined, we claim
that

𝑢
𝜉

=

𝑞

2

sin V, (61)

𝜑
𝜉

= 𝜓cos2 V
2

𝑞, (62)

𝑑

𝑑𝑡

∫

𝑅

(𝑢
2cos2 V

2

+ sin2 V
2

+ 𝜑
2cos2 V

2

+ 𝜓
2cos2 V

2

) ⋅ 𝑞 𝑑𝜉 = 0.

(63)

Using (35) and (25) yields

𝑢
𝜉𝑡

= [(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2
) cos2 V

2

+

1

2

sin2 V
2

]

⋅ 𝑞 − cos2 V
2

𝑞 ⋅ Ψ
1
.

(64)

From (35), we get

(

𝑞

2

sin V)
𝑡

=

𝑞
𝑡

2

sin V +

𝑞

2

cos V ⋅ V
𝑡

=

sin V
2

(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2

−Ψ
1

+

1

2

) sin V ⋅ 𝑞

+

𝑞

2

cos V (2𝑢
2

+ 2𝑔 (𝑢) + 𝜑
2

− 𝜓
2

− 2Ψ
1
) cos2 V

2

− sin2 V
2

= [(𝑢
2

+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜓
2
) cos2 V

2

+

1

2

sin2 V
2

] ⋅ 𝑞 − cos2 V
2

𝑞 ⋅ Ψ
1
.

(65)

Thus, we have

𝑢
𝜉𝑡

= (

𝑞

2

sin V)
𝑡

. (66)
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Moreover, at the initial time 𝑡 = 0, using (20) and (36), we
get

𝜕𝑢

𝜕𝜉

=

𝑢
𝑥

1 + 𝑢
2

𝑥

=

sin V
2

, 𝑞 ≡ 1. (67)

Therefore, we obtain that (61) remains valid for all times
𝑡 ≥ 0 as long as the solution is defined.The (62) holds true by
the same way.

To prove (63), we proceed as follows. From (35), we
deduce that

𝑑

𝑑𝑡

∫

𝑅

(𝑢
2cos2 V

2

+ sin2 V
2

+ 𝜑
2cos2 V

2

+ 𝜓
2cos2 V

2

) ⋅ 𝑞 𝑑𝜉

= ∫

𝑅

(

3

2

𝑢
2

+ 𝑔 (𝑢) + 𝜑
2

− Ψ
1
) sin V ⋅ 𝑞 𝑑𝜉

− 2 ∫

𝑅

[𝑢Ψ
1𝑥

+ 𝜑 (Ψ
2𝑥

+ Ψ
3
) + 𝜓 (Ψ

2
+ Ψ
3𝑥

)]

× cos2 V
2

⋅ 𝑞 𝑑𝜉.

(68)

On the other hand, from (24)–(29), we have

Ψ
𝑖𝜉

= Ψ
𝑖𝑥
cos2 V

2

⋅ 𝑞, 𝑖 = 1, 2, 3. (69)

Applying (61)-(62) and (68)-(69), we have
𝑑

𝑑𝑡

∫

𝑅

(𝑢
2cos2 V

2

+ sin2 V
2

+ 𝜑
2cos2 V

2

+ 𝜓
2cos2 V

2

) ⋅ 𝑞 𝑑𝜉

= ∫

𝑅

(3𝑢
2

+ 2𝑔 (𝑢) + 2𝜑
2

− 2Ψ
1
) 𝑢
𝜉
𝑑𝜉

− 2 ∫

𝑅

(𝑢Ψ
1𝜉

+ 𝜑Ψ
2𝜉

+ 𝜑Ψ
3
cos2 V

2

⋅ 𝑞

+𝜑
𝜉
Ψ
2

+ 𝜑
𝜉
Ψ
3𝜉

) 𝑑𝜉

= 2 ∫

𝑅

[𝜑
2
𝑢
𝜉

− 𝜑Ψ
3
cos2 V

2

⋅ 𝑞

+ 𝜑 (Ψ
3
cos2 V

2

⋅ 𝑞 − 𝜑 sin V ⋅

V
2

)]

= 0,

(70)

which implies (63).
We can now rewrite the total energy (10) in terms of the

new variables. According to (70), we have that the energy
remains constant in time,

𝐸 (𝑡) = ∫

𝑅

(𝑢
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

+ sin2 V (𝑡, 𝜉)

2

+ 𝜑
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

+ 𝜓
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

) ⋅ 𝑞 (𝑡, 𝜉) 𝑑𝜉

= 𝐸 (0) = 𝐸
0
,

(71)

along any solution of (35)-(36).

From (61) and (71), we have

sup
𝜉∈𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢
2

(𝑡, 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 2 ∫

𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝑢𝑢
𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉

≤ 2 ∫

𝑅

|𝑢|

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

sin V
2

cos V
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞 𝑑𝜉 ≤ 𝐸
0
,

(72)

sup
𝜉∈𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑
2

(𝑡, 𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
≤ 2 ∫

𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
𝜑𝜑
𝜉

󵄨
󵄨
󵄨
󵄨
󵄨
𝑑𝜉 ≤ 2 ∫

𝑅

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝜑𝜓cos2 V
2

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑞 𝑑𝜉 ≤ 𝐸
0
.

(73)

Applying (8) and (72), we get |𝑔(𝑢)| ≤ 𝐶𝐸
0
. Moreover, it

holds that

󵄩
󵄩
󵄩
󵄩
Ψ
1

󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

󵄩
󵄩
󵄩
󵄩
Ψ
1𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞

≤

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

1

2

𝑒
|𝜉|

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

⋅

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩

[(𝑢
2

+ 𝑔 (𝑢) + 𝜑
2

+ 𝜓
2
) cos2 V

2

+ sin2 V
2

] ⋅ 𝑞

󵄩
󵄩
󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1

≤ 𝐶𝐸
0
.

(74)

Notice that

𝜑 (𝜉
󸀠
) sin V (𝜉

󸀠
) ≤ 𝜑(𝜉)

2cos2
V (𝜉
󸀠
)

2

+ sin2
V (𝜉
󸀠
)

2

,

𝜓 (𝜉
󸀠
) sin V (𝜉

󸀠
) ≤ 𝜓(𝜉)

2cos2
V (𝜉
󸀠
)

2

+ sin2
V (𝜉
󸀠
)

2

.

(75)

Similar calculations yield

󵄩
󵄩
󵄩
󵄩
Ψ
2

󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

󵄩
󵄩
󵄩
󵄩
Ψ
2𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝐶𝐸

0
,

󵄩
󵄩
󵄩
󵄩
Ψ
3

󵄩
󵄩
󵄩
󵄩𝐿
∞ ,

󵄩
󵄩
󵄩
󵄩
Ψ
3𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝐶𝐸

0
.

(76)

Noting (35) and (76), we deduce that, as long as the
solution is defined,

󵄨
󵄨
󵄨
󵄨
𝜓
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐸
0
,

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝐸

0
𝑡 +

󵄩
󵄩
󵄩
󵄩
𝜑
𝑥

󵄩
󵄩
󵄩
󵄩𝐿
∞ .

(77)

Thus, we have

󵄨
󵄨
󵄨
󵄨
𝑞
𝑡

󵄨
󵄨
󵄨
󵄨
≤ 𝐶𝐸
0

󵄩
󵄩
󵄩
󵄩
𝑞
󵄩
󵄩
󵄩
󵄩𝐿
∞ , 𝐶 ≥ 0. (78)

Since 𝑞(0, 𝜉) = 1, using Gronwall’s inequality, it holds that

𝑒
−𝐶𝐸
0
𝑡

≤
󵄩
󵄩
󵄩
󵄩
𝑞 (𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ≤ 𝑒
𝐶𝐸
0
𝑡
. (79)

From (35), it derives that

‖V (𝑡)‖
𝐿
∞ ≤ 𝑒
𝑀𝑡

, 𝑀 = 𝑀 (𝐸
0
,
󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝑊
1,∞) . (80)
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Moreover, (35) implies
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(∫

𝑅

𝑢
2

(𝑡, 𝜉) 𝑑𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2‖𝑢 (𝑡)‖
𝐿
∞

󵄩
󵄩
󵄩
󵄩
Ψ
1𝑥

(𝑡)
󵄩
󵄩
󵄩
󵄩𝐿
1 ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(∫

𝑅

𝑢
2

𝜉
(𝑡, 𝜉) 𝑑𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝑢
𝜉
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝜉
Ψ
1𝑥

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1
,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(∫

𝑅

𝜑
2

(𝑡, 𝜉) 𝑑𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2
󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡)

󵄩
󵄩
󵄩
󵄩𝐿
∞ (

󵄩
󵄩
󵄩
󵄩
Ψ
2𝑥

(𝑡)
󵄩
󵄩
󵄩
󵄩𝐿
1 +

󵄩
󵄩
󵄩
󵄩
Ψ
3

󵄩
󵄩
󵄩
󵄩𝐿
∞) ,

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

𝑑

𝑑𝑡

(∫

𝑅

𝜑
2

𝜉
(𝑡, 𝜉) 𝑑𝜉)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 2

󵄩
󵄩
󵄩
󵄩
󵄩
𝜑
𝜉
(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

(

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝜉
Ψ
2𝑥

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1

+

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝜉
Ψ
3

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
∞

) .

(81)

From (61)–(63) and (72)–(73), we get uniform bounds
of 𝑢, 𝑢

𝜉
, 𝜑, 𝜑

𝜉
on bounded time interval, respectively. The

estimates on ‖𝑢‖
𝐻
1 and ‖𝜑‖

𝐻
1 will follow from bounds on

the 𝐿
1-norms of Ψ

𝑖𝑥
(𝑡) and 𝜕

𝜉
Ψ
𝑖𝑥

(𝑡), 𝑖 = 1, 2, 3. To get this
goal, letting 𝑟 be the right-hand side of (79), we have 𝑟

−1
≤

‖𝑞(𝑡)‖
𝐿
∞ ≤ 𝑟. Indeed, from (8) and (35), we have

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

[(𝑔 (𝑢) + 𝑢
2
) cos2 V

2

+

1

2

sin2 V
2

] 𝑞 (𝑡)

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

≤ 𝐶𝐸
0
. (82)

It follows from (51) that

󵄩
󵄩
󵄩
󵄩
󵄩
𝜕
𝜉
Ψ
1

(𝑡)

󵄩
󵄩
󵄩
󵄩
󵄩𝐿
1

≤

𝐶

2

𝐸
0

∫

𝑅

exp{−

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

∫

𝜉
󸀠

𝜉

𝑟
−1cos2 V

2

𝑑𝑠

󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨
󵄨

} 𝑑𝜉

≤ 𝐶𝐸
0

󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1 ,

(83)

where

ϝ (𝜁) ≐ min{1, exp(9𝐸
0
𝑟
−1

− 𝑟
−1

󵄨
󵄨
󵄨
󵄨
𝜁
󵄨
󵄨
󵄨
󵄨

2

)} . (84)

We deduce
󵄩
󵄩
󵄩
󵄩
ϝ

󵄩
󵄩
󵄩
󵄩𝐿
1 ≤ 36𝐸

0
+ 4𝑟. (85)

The estimate for ‖𝜕
𝜉
Ψ
1𝑥

‖
𝐿
1
is similar. Note that 𝜑 sin V ≤

𝜑
2cos2(V/2) + sin2(V/2), 𝜓 sin V ≤ 𝜓

2cos2(V/2) + sin2(V/2);
similar calculations show that the 𝐿

1-norms of Ψ
2𝑥
, 𝜕
𝜉
Ψ
2𝑥
,

Ψ
3𝑥
, 𝜕
𝜉
Ψ
3𝑥

are uniformly bounded. This proves the bound-
edness of ‖𝑢‖

𝐻
1 and ‖𝜑‖

𝐻
1 for 𝑡 in bounded interval.

Finally, the equations in (35) imply that

𝑑

𝑑𝑡

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩

2

𝐿
2 ≤

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞ (

󵄩
󵄩
󵄩
󵄩
Ψ
2

󵄩
󵄩
󵄩
󵄩𝐿
1 +

󵄩
󵄩
󵄩
󵄩
Ψ
3𝑥

󵄩
󵄩
󵄩
󵄩𝐿
1) . (86)

Combining the bounds ‖Ψ
2
‖
𝐿
1 , ‖Ψ
3𝑥

‖
𝐿
1 with (77), we have

that ‖𝜓‖
𝐿
∞ is uniformly bounded for 𝑡 in bounded interval.

Thus,
𝑑

𝑑𝑡

‖V‖2
𝐿
2 ≤ 𝐶 (‖𝑢‖

𝐿
∞‖𝑢‖
𝐿
2 +

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜑

󵄩
󵄩
󵄩
󵄩𝐿
2

+
󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
∞

󵄩
󵄩
󵄩
󵄩
𝜓

󵄩
󵄩
󵄩
󵄩𝐿
2 + ‖V‖

𝐿
∞‖𝑢‖
𝐿
2) .

(87)

By the previous bounds, it is clear that ‖V‖
𝐿
2 remains

bounded on bounded time interval. This shows that the
solution of (35) can be extended globally in time.

For future use, we record here a property of the solution.
Namely, consider the set of times

R ≐ {𝑡 ≥ 0 : measure {𝜉 ∈ 𝑅 : V (𝑡, 𝜉) = −𝜋} > 0} . (88)

Then, we claim

measure (R) = 0. (89)

Its validity will be proved in the next section.

4. Solutions to the Original Equation

Wenow show that the global solution of the system (35) yields
a global conservative solution to system (6) in the original
variables (𝑡, 𝑥).

Let us start with a global solution (𝑢, 𝜑, 𝜓, V, 𝑞) to (35).
Define

𝑦 (𝑡, 𝜉) ≐ 𝑦 (𝜉) + ∫

𝑡

0

𝑢 (𝜏, 𝜉) 𝑑𝜏. (90)

For each fixed 𝜉, the function 𝑡 󳨃→ 𝑦(𝑡, 𝜉) provides a
solution to the Cauchy problem:

𝜕

𝜕𝑡

𝑦 (𝑡, 𝜉) = 𝑢 (𝑡, 𝜉) , 𝑦 (0, 𝜉) = 𝑦 (𝜉) . (91)

We claim that a solution of (6) can be obtained by setting

𝑢 (𝑡, 𝑥) ≐ 𝑢 (𝑡, 𝜉) ; 𝜑 (𝑡, 𝑥) ≐ 𝜑 (𝑡, 𝜉) , if 𝑦 (𝑡, 𝜉) = 𝑥.

(92)

Theorem3. Let (𝑢, 𝜑, 𝜓, V, 𝑞) provide a global solution to (35)-
(36). Then the pair of functions (𝑢(𝑡, 𝑥), 𝜑(𝑡, 𝑥)) defined by
(90)–(92) provide the global solution to the problem (6)-(7).

The solution (𝑢, 𝜑) constructed in this way has the following
properties. The energy is almost always conserved; namely,

‖𝑢 (𝑡)‖
𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡)

󵄩
󵄩
󵄩
󵄩𝐻
1 = ‖𝑢 (𝑡)‖

𝐻
1 +

󵄩
󵄩
󵄩
󵄩
𝜑 (𝑡)

󵄩
󵄩
󵄩
󵄩𝐻
1 , 𝑎.𝑒. 𝑡 ≥ 0.

(93)

Furthermore, consider the sequence of initial data (𝑢
𝑛
, 𝜑
𝑛
),

such that
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

− 𝑢
󵄩
󵄩
󵄩
󵄩𝐻
1 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

− 𝜑
󵄩
󵄩
󵄩
󵄩𝑊
1,∞ 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

− 𝜑
󵄩
󵄩
󵄩
󵄩𝐻
1 󳨀→ 0.

(94)

Then the corresponding solutions (𝑢
𝑛
(𝑡, 𝑥), 𝜑

𝑛
(𝑡, 𝑥)) con-

verge to (𝑢(𝑡, 𝑥), 𝜑(𝑡, 𝑥)) uniformly for (𝑡, 𝑥) in any bounded
sets.

Proof. Using the uniform bound |𝑢(𝑡, 𝜉)| ≤ 𝐸
1/2

0
in (72) and

combining with (90), we have the estimate

𝑦 (𝜉) − 𝐸
1/2

0
𝑡 ≤ 𝑦 (𝑡, 𝜉) ≤ 𝑦 (𝜉) + 𝐸

1/2

0
𝑡, 𝑡 ≥ 0. (95)

Applying the definition of 𝜉 in (15), we obtain

lim
𝜉→±∞

𝑦 (𝑡, 𝜉) = ±∞. (96)
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Therefore, the image of the continuous map (𝑡, 𝜉) 󳨃→

(𝑡, 𝑦(𝑡, 𝜉)) is the half-plane 𝑅
+

× 𝑅. Now we claim

𝑦
𝜉

= 𝑞 cos2 V
2

, (97)

for all 𝑡 ≥ 0 and a.e. 𝜉 ∈ 𝑅. Indeed, from (35) and (61) we have

𝜕

𝜕𝑡

(𝑞 cos2 V
2

) (𝑡, 𝜉) = −𝑞V
𝑡
cos V

2

sin V
2

+ 𝑞
𝑡
cos2 V

2

= 𝑢
𝜉
(𝑡, 𝜉) .

(98)

On the other hand, (90) implies

𝜕

𝜕𝑡

𝑦
𝜉
(𝑡, 𝜉) = 𝑢

𝜉
(𝑡, 𝜉) . (99)

Since the function 𝑥 󳨃→ 2 arctan 𝑢
𝑥
(𝑥) is measurable,

identity (97) holds true for almost every 𝜉 ∈ 𝑅 at 𝑡 = 0. By the
above calculation it remains true for all 𝑡 ≥ 0.

Next, we prove the set R that defined in (88) has
measure zero. Indeed, if V(𝑡

0
, 𝜉) = −𝜋, then 𝑦

𝜉
(𝑡
0
, 𝜉) =

cos2(V(𝑡
0
, 𝜉)/2)𝑞(𝑡

0
, 𝜉) = 0. Using (61), we get

𝜕

𝜕𝑡

𝑦
𝜉
(𝑡
0
, 𝜉) = 𝑢

𝜉
(𝑡
0
, 𝜉) =

𝑞

2

sin V (𝑡
0
, 𝜉) = 0. (100)

By (64), we have

𝜕
2

𝜕𝑡
2
𝑦
𝜉
(𝑡
0
, 𝜉) = 𝑢

𝜉𝑡
(𝑡
0
, 𝜉) =

1

2

𝑞 (𝑡
0
, 𝜉) > 0, (101)

which implies that 𝑡 satisfying 𝑦
𝜉
(𝑡, 𝜉) = 0 is isolated. Thus, 𝑡

satisfying V(𝑡, 𝜉) = −𝜋 is also isolated. Since V ∈ 𝐿
2, it infers

measure (R) = 0. (102)

From (97), we get𝑦(𝑡, 𝜉) is nondeceasing.Moreover, if 𝜉 <

𝜉
󸀠 and 𝑦(𝑡, 𝜉) = 𝑦(𝑡, 𝜉

󸀠
), then

∫

𝜉
󸀠

𝜉

𝑦
𝜉
(𝑡, 𝑠) 𝑑𝑠 = ∫

𝜉
󸀠

𝜉

𝑞 (𝑡, 𝑠) cos2 V (𝑡, 𝑠)

2

𝑑𝑠 = 0. (103)

Hence, cos(V/2) ≡ 0 throughout the interval of integra-
tion. Therefore, from (61)-(62), we have

𝑢 (𝑡, 𝜉
󸀠
) − 𝑢 (𝑡, 𝜉) = ∫

𝜉
󸀠

𝜉

𝑞 (𝑡, 𝑠)

2

sin V (𝑡, 𝑠) 𝑑𝑠 = 0,

𝜑 (𝑡, 𝜉
󸀠
) − 𝜑 (𝑡, 𝜉) = ∫

𝜉
󸀠

𝜉

𝜓 (𝑡, 𝑠) 𝑞 (𝑡, 𝑠) cos2 V (𝑡, 𝑠)

2

𝑑𝑠 = 0,

(104)

which proves that the map (𝑢(𝑡, 𝑥), 𝜑(𝑡, 𝑥)) in (92) is well
defined for all 𝑡 ≥ 0 and 𝑥 ∈ 𝑅.

If 𝑥 = 𝑦(𝑡, 𝜉) holds, using the fact 𝜑
𝜉

= 𝜓𝑞 cos2(V/2), we
have 𝜑

𝑥
(𝑡, 𝑥) = 𝜓(𝑡, 𝜉). This implies 𝜑

𝑥
∈ 𝐿
∞. For every fixed

𝑡, we have

∫

𝑅

(𝑢
2

(𝑡, 𝑥) + 𝑢
2

𝑥
(𝑡, 𝑥) + 𝜑

2
(𝑡, 𝑥) + 𝜑

2

𝑥
(𝑡, 𝑥)) 𝑑𝑥

= ∫

{cos V>−1}
(𝑢
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

+ sin2 V (𝑡, 𝜉)

2

+ 𝜑
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

+ 𝜓
2

(𝑡, 𝜉) cos2 V (𝑡, 𝜉)

2

) ⋅ 𝑞 (𝑡, 𝜉) 𝑑𝜉

≤ 𝐸
0
.

(105)

Since the measure ofR is zero, the equality holds true for
almost all 𝑡.

By Sobolev’s inequality, this implies the uniform Hölder
continuity with the exponent 1/2 of 𝑢 and 𝜑 as functions of 𝑥.
By (35) and the bounds ‖Ψ

1𝑥
‖
𝐿
∞ ≤ 𝐸

0
/2, ‖Ψ

2𝑥
‖
𝐿
∞ ≤ 𝐸

0
/2, and

‖Ψ
3
‖
𝐿
∞ ≤ 𝐸

0
/2, we get that (𝑢(𝑡, 𝑦(𝑡)), 𝜑(𝑡, 𝑦(𝑡))) is Hölder

continuous with the exponent 1/2. Indeed
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑦) − 𝑢 (𝑠, 𝑥)

󵄨
󵄨
󵄨
󵄨
≤

󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑦) − 𝑢 (𝑡, 𝑥)

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑥) − 𝑢 (𝑡, 𝑦 (𝑡, 𝜉))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝑡, 𝑦 (𝑡, 𝜉)) − 𝑢 (𝑠, 𝑦 (𝑠, 𝜉))

󵄨
󵄨
󵄨
󵄨

≤ 𝐸
1/2

0

󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨

1/2

+ 𝐸
1/2

0

󵄨
󵄨
󵄨
󵄨
𝑦 (𝑡, 𝜉) − 𝑦 (𝑠, 𝜉)

󵄨
󵄨
󵄨
󵄨

+ ∫

𝑡

𝑠

󵄨
󵄨
󵄨
󵄨
Ψ
1𝑥

(𝜏, 𝜉)
󵄨
󵄨
󵄨
󵄨
𝑑𝜏

≤ 𝐶 (
󵄨
󵄨
󵄨
󵄨
𝑦 − 𝑥

󵄨
󵄨
󵄨
󵄨

1/2

+ |𝑡 − 𝑠|
1/2

+ |𝑡 − 𝑠|) ,

(106)

wherewe choose 𝜉 ∈ 𝑅 such that the characteristic 𝑡 󳨃→ 𝑦(𝑡, 𝜉)

passes through the point (𝑠, 𝑥). Notice that 𝑢(𝑡, 𝑥) ≤ 𝐸
1/2

0
.

This implies that 𝑢(𝑡, 𝑥) is uniform Hölder continuous with
the exponent 1/2. The same computation shows that 𝜑(𝑡, 𝑥)

is uniform Hölder continuous with the exponent 1/2.
We now prove the Lipschitz continuity of (𝑢(𝑡, 𝑥), 𝜑(𝑡, 𝑥))

with values in 𝐿
2. Consider any interval [𝜏, 𝜏 + ℎ]. For a given

point 𝑥, we choose 𝜉 such that the characteristic 𝑡 󳨃→ 𝑦(𝑡, 𝜉)

passes through the point (𝜏, 𝑥). By (35) and (72), it follows
that

|𝑢 (𝜏 + ℎ, 𝑥) − 𝑢 (𝜏, 𝑥)|

≤
󵄨
󵄨
󵄨
󵄨
𝑢 (𝜏 + ℎ, 𝑥) − 𝑢 (𝜏 + ℎ, 𝑦 (𝜏 + ℎ, 𝜉))

󵄨
󵄨
󵄨
󵄨

+
󵄨
󵄨
󵄨
󵄨
𝑢 (𝜏 + ℎ, 𝑦 (𝜏 + ℎ, 𝜉)) − 𝑢 (𝜏, 𝑥)

󵄨
󵄨
󵄨
󵄨

≤ sup
|𝑦−𝑥|≤𝐸

1/2

0
ℎ

󵄨
󵄨
󵄨
󵄨
𝑢 (𝜏 + ℎ, 𝑦) − 𝑢 (𝜏 + ℎ, 𝑥)

󵄨
󵄨
󵄨
󵄨

+ ∫

𝜏+ℎ

𝜏

󵄨
󵄨
󵄨
󵄨
Ψ
1𝑥

(𝑡, 𝜉)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡.

(107)
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Integrating over the whole real line, in view of the
boundedness of Ψ

1𝑥
, (8), (79), and (105), we obtain

∫

𝑅

|𝑢 (𝜏 + ℎ, 𝑥) − 𝑢 (𝜏, 𝑥)|
2
𝑑𝑥

≤ 2 ∫

𝑅

(∫

𝑥+𝐸
1/2

ℎ

𝑥−𝐸
1/2
ℎ

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥

(𝜏 + ℎ, 𝑦)
󵄨
󵄨
󵄨
󵄨
𝑑𝑦)

2

𝑑𝑥

+ 2 ∫

𝑅

(∫

𝜏+ℎ

𝜏

󵄨
󵄨
󵄨
󵄨
Ψ
1𝑥

(𝑡, 𝜉)
󵄨
󵄨
󵄨
󵄨
𝑑𝑡)

2

𝑞 (𝜏, 𝜉) cos2 V (𝜏, 𝜉)

2

𝑑𝜉

≤ 2 ∫

𝑅

(2𝐸
1/2

0
ℎ ∫

𝑥+𝐸
1/2

0
ℎ

𝑥−𝐸
1/2

0
ℎ

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥

(𝜏 + ℎ, 𝑦)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑦) 𝑑𝑥

+ 2 ∫

𝑅

(ℎ ∫

𝜏+ℎ

𝜏

󵄨
󵄨
󵄨
󵄨
Ψ
1𝑥

(𝑡, 𝜉)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡)
󵄩
󵄩
󵄩
󵄩
𝑞 (𝜏, 𝜉)

󵄩
󵄩
󵄩
󵄩𝐿
∞𝑑𝜉

= 4𝐸
1/2

0
ℎ ∫

𝑅

∫

𝑦+𝐸
1/2

0
ℎ

𝑦−𝐸
1/2

0
ℎ

󵄨
󵄨
󵄨
󵄨
𝑢
𝑥

(𝜏 + ℎ, 𝑦)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑥 𝑑𝑦

+ 2ℎ
󵄩
󵄩
󵄩
󵄩
𝑞 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ∫

𝑅

∫

𝜏+ℎ

𝜏

󵄨
󵄨
󵄨
󵄨
Ψ
1𝑥

(𝑡, 𝜉)
󵄨
󵄨
󵄨
󵄨

2

𝑑𝑡 𝑑𝜉

≤ 8𝐸
0
ℎ
2 󵄩

󵄩
󵄩
󵄩
𝑢
𝑥

(𝜏 + ℎ)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2 + 2ℎ

󵄩
󵄩
󵄩
󵄩
𝑞 (𝜏)

󵄩
󵄩
󵄩
󵄩𝐿
∞ ∫

𝜏+ℎ

𝜏

󵄩
󵄩
󵄩
󵄩
Ψ
1𝑥

(𝑡)
󵄩
󵄩
󵄩
󵄩

2

𝐿
2𝑑𝑡

≤ 𝐶ℎ
2
,

(108)

where constant 𝐶 depends only on 𝑇. This clearly implies the
Lipschitz continuity of the map 𝑡 󳨃→ 𝑢(𝑡) in terms of the 𝑥

variable. Similar calculation shows the Lipschitz continuity
of 𝜑(𝑡, 𝑥) as a map 𝑡 󳨃→ 𝐿

2.
Since 𝐿

2 is a reflexive space, the left-hand side of (6) is
well defined for almost all 𝑡 ∈ 𝑅. Note that we have proved
that the right-hand side of (6) also lies in 𝐿

2 for almost all
𝑡 ∈ 𝑅. To establish the equality between these two sides, we
observe that

𝑑

𝑑𝑡

𝑢 (𝑡, 𝜉) = −Ψ
1𝑥

(𝑡, 𝜉) ,

𝑑

𝑑𝑡

𝜑 (𝑡, 𝜉) = −Ψ
2𝑥

(𝑡, 𝜉) − Ψ
3

(𝑡, 𝜉) .

(109)

On the other hand, recalling (88), for every 𝑡 ∉ R the
map 𝜉 󳨃→ 𝑥(𝑡, 𝜉) is one-to-one. Then, the change of variable
formulae (24)–(29) yields

Ψ
1𝑥

(𝑡, 𝜉) = Ψ
1𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

(∫

∞

𝑦(𝑡,𝜉)

− ∫

𝑦(𝑡,𝜉)

−∞

) 𝑒
−|𝑦(𝑡,𝜉)−𝑥|

× (𝑢
2

+

1

2

𝑢
2

𝑥
+ 𝑔 (𝑢) +

1

2

𝜑
2

−

1

2

𝜑
2

𝑥
) (𝑡, 𝑥) 𝑑𝑥,

Ψ
2𝑥

(𝑡, 𝜉) = Ψ
2𝑥

(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

(∫

∞

𝑦(𝑡,𝜉)

−∫

𝑦(𝑡,𝜉)

−∞

)𝑒
−|𝑦(𝑡,𝜉)−𝑥|

𝑢
𝑥
(𝑡, 𝑥) 𝜑

𝑥
(𝑡, 𝑥)𝑑𝑥,

Ψ
3

(𝑡, 𝜉) = Ψ
3

(𝑡, 𝑦 (𝑡, 𝜉))

=

1

2

∫

∞

−∞

𝑒
−|𝑦(𝑡,𝜉)−𝑥|

𝑢
𝑥

(𝑡, 𝑥) 𝜑 (𝑡, 𝑥) 𝑑𝑥.

(110)
Hence, identity (6) is valid for almost all 𝑡 ≥ 0.

This implies that (𝑢, 𝜑) is a global solution of the general-
ized two-component Camassa-Holm system in the sense of
Definition 1.

From (71) and (105), we obtain identity (93) for almost all
𝑡 ≥ 0.

Finally, let (𝑢
𝑛
, 𝜑
𝑛
) be a sequence of initial data converging

to (𝑢, 𝜑) in 𝐻
1

× (𝐻
1

∩ 𝑊
1,∞

). In this case, from (35) and the
boundedness of 𝑢, 𝜑, 𝜓, we can infer ‖𝑞

𝑛
(𝑡, 𝜉) − 𝑞(𝑡, 𝜉)‖

𝐿
2 <

∞. Recalling (15) and (36) at time 𝑡 = 0, we have
sup
𝜉∈𝑅

󵄨
󵄨
󵄨
󵄨
𝑦
𝑛

(0, 𝜉) − 𝑦 (0, 𝜉)
󵄨
󵄨
󵄨
󵄨
󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

(0, 𝜉) − 𝑢 (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐻
1 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

(0, 𝜉) − 𝜑 (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐻
1 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝜓
𝑛

(0, 𝜉) − 𝜓 (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞ 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝜓
𝑛

(0, 𝜉) − 𝜓 (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
V
𝑛

(0, 𝜉) − V (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2 󳨀→ 0,

󵄩
󵄩
󵄩
󵄩
𝑞
𝑛

(0, 𝜉) − 𝑞 (0, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2 󳨀→ 0.

(111)

Now from (35) and the bounds of 𝑢, 𝜑, 𝜓, V, 𝑞, we obtain
𝑑

𝑑𝑡

(
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

(𝑡, 𝜉) − 𝑢 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

(𝑡, 𝜉) − 𝜑 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞

+
󵄩
󵄩
󵄩
󵄩
𝜓
𝑛

(𝑡, 𝜉) − 𝜓 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞

+
󵄩
󵄩
󵄩
󵄩
V
𝑛

(𝑡, 𝜉) − V (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2

+
󵄩
󵄩
󵄩
󵄩
𝑞
𝑛

(𝑡, 𝜉) − 𝑞 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2)

≤ 𝐶 (
󵄩
󵄩
󵄩
󵄩
𝑢
𝑛

(𝑡, 𝜉) − 𝑢 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞ +

󵄩
󵄩
󵄩
󵄩
𝜑
𝑛

(𝑡, 𝜉) − 𝜑 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞

+
󵄩
󵄩
󵄩
󵄩
𝜓
𝑛

(𝑡, 𝜉) − 𝜓 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
∞

+
󵄩
󵄩
󵄩
󵄩
V
𝑛

(𝑡, 𝜉) − V (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2 +

󵄩
󵄩
󵄩
󵄩
𝑞
𝑛

(𝑡, 𝜉) − 𝑞 (𝑡, 𝜉)
󵄩
󵄩
󵄩
󵄩𝐿
2) .

(112)

Thus, Gronwall’s inequality implies that 𝑢
𝑛
(𝑡, 𝜉) →

𝑢(𝑡, 𝜉), 𝜑
𝑛
(𝑡, 𝜉) → 𝜑(𝑡, 𝜉), uniformly for (𝑡, 𝜉) in bounded

sets. Returning to the original coordinates, it yields that
𝑦
𝑛

(𝑡, 𝜉) 󳨀→ 𝑦 (𝑡, 𝜉) ,

𝑢
𝑛

(𝑡, 𝜉) 󳨀→ 𝑢 (𝑡, 𝜉) ,

𝜑
𝑛

(𝑡, 𝜉) 󳨀→ 𝜑 (𝑡, 𝜉) ,

(113)

uniformly on bounded sets since all functions 𝑢, 𝑢
𝑛
, 𝜑, 𝜑
𝑛
are

uniformly Hölder continuous.
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