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Wemainly present several equivalent characterizations of the strongmetric subregularity of theMordukhovich subdifferential for an
extended-real-valued lower semicontinuous, prox-regular, and subdifferentially continuous function acting on an Asplund space.

1. Introduction

This work is devoted to characterizations of the strong
metric subregularity of the Mordukhovich subdifferential
for an extended-real-valued prox-regular subdifferentially
continuous function 𝑓 defined on an Asplund space.

Aragón and Geoffroy [1] have established remarkable
equivalences between various metric regularity properties
(including the (strong) metric subregularity and the (strong)
metric regularity) of the subgradient mapping 𝜕𝑓 and a
local quadratic growth condition for a proper convex lower
semicontinuous function 𝑓 defined on a Hilbert space 𝑋.
Later, Drusvyatskiy and Lewis [2] proved that the charac-
terization established in [1] for the strong metric regularity
remains valid for the Mordukhovich subdifferential at 𝑥
for 0 of a lower semicontinuous (not necessarily convex)
function defined onR𝑛 when the function is subdifferentially
continuous at 𝑥 for 0. Subsequently, Mordukhovich and
Nghia [3] generalized this result to Asplund spaces without
the assumption of subdifferential continuity [3, Corollary 3.3]

Recently, Aragón and Geoffroy [4] established the equiv-
alence between the strongmetric subregularity of the subgra-
dient mapping 𝜕𝑓 for a proper lower semicontinuous (l.s.c.)
convex function 𝑓 defined on a Banach space 𝑋 and the
following quadratic growth condition:

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝑐

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ 𝑈, (1)

where 𝑈 is a neighborhood of 𝑥 and 𝑐 ∈ (0, 1/2𝜅). They
raised the question whether the bound 𝑐 ∈ (0, 1/2𝜅) can
be improved. Drusvyatskiy et al. [5] extended the above
equivalence to the case, where the function𝑓 is a proper lower
semicontinuous function defined on an Asplund space and
gave the affirmative answer to the above question via showing
that the constant 𝑐 in (1) may be chosen arbitrarily in (0, 1/𝜅).

In the present paper, motivated by the above results,
we present several characterizations of the strong metric
subregularity of the Mordukhovich subdifferential for an
extended-real-valued l.s.c. prox-regular and subdifferentially
continuous function acting on an Asplund space.

Section 2 contains necessary definitions and facts. In
Section 3 we extend the known equivalences for strong
metric subregularity of subdifferentials for convex functions
to the class of prox-regular and subdifferentially continu-
ous functions defined on the Asplund spaces (Theorem 12).
Theorem 15 is concerning the relationship between the strong
metric subregularity and contingent derivative of the Mor-
dukhovich subdifferential.

2. Preliminaries

Throughout this paper, 𝑋 and 𝑌 are Asplund spaces, that
is, Banach spaces such that every separable subspace has a
separable dual, and𝑋∗ is the dual space of𝑋. The symbol →
always denotes the convergence relative to the norm while
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the symbol 𝑤
∗

→ signifies the weak∗ convergence in the dual
space 𝑋∗. The closed ball centered at 𝑥 ∈ 𝑋 of radius 𝑟 is
denoted by B

𝑟
(𝑥) while the closed unit and dual unit balls

are denoted by B and B∗, respectively. The distance function
associated with a nonempty set Ω ∈ 𝑋 is defined by

𝑑 (𝑥;Ω) := inf
𝑦∈Ω

𝑥 − 𝑦
 , 𝑥 ∈ 𝑋. (2)

Let 𝐹 : 𝑋  𝑌 be a set-valued mapping between Banach
spaces𝑋 and 𝑌. The domain and graph are defined by

dom𝐹 := {𝑥 ∈ 𝑋 | 𝐹 (𝑥) ̸= 0} ,

gph𝐹 := {(𝑥, 𝑦) ∈ 𝑋 × 𝑌 | 𝑦 ∈ 𝐹 (𝑥)} ,
(3)

respectively. For a mapping 𝐹 : 𝑋  𝑋∗ between a Banach
space 𝑋 and its dual 𝑋∗ we define the sequential Painlevé-
Kuratowski outer limit by

Lim sup
𝑥→𝑥

𝐹 (𝑥)

:= {𝑥∗ ∈ 𝑋∗ | ∃𝑥
𝑘
→ 𝑥,

𝑥∗
𝑘

𝑤
∗

→ 𝑥∗ with 𝑥∗
𝑘
∈ 𝐹 (𝑥

𝑘
) ∀𝑘} .

(4)

Definition 1. Given a subset 𝐾 ⊂ 𝑋 and a point 𝑥 ∈ 𝐾, the
contingent cone of𝐾 at 𝑥 is defined by

𝑇
𝐾
(𝑥) = Lim sup

𝜏↓0

𝐾 − 𝑥

𝜏

= {V | ∃𝜏
𝑘
→ 0, ∃𝐾 ∋ 𝑥

𝑘
→ 𝑥, s.t.

𝑥
𝑘
− 𝑥

𝜏
𝑘

→ V} .

(5)

In stability analysis, the concept of metric regularity
and its variants plays an important role; for more details
and further references see, for example, [6–8]. Our study is
focused on two key notions: metric subregularity and strong
metric subregularity. They are defined as follows.

Definition 2. A mapping 𝐹 : 𝑋  𝑌 is said to be metrically
subregular at 𝑥 for 𝑦 if 𝑦 ∈ 𝐹(𝑥) and there is a positive
constant 𝜅 along with neighborhoods𝑈 of 𝑥 and 𝑉 of 𝑦 such
that

𝑑 (𝑥; 𝐹−1 (𝑦)) ≤ 𝜅𝑑 (𝑦; 𝐹 (𝑥) ∩ 𝑉) , ∀𝑥 ∈ 𝑈. (6)

Definition 3. A mapping 𝐹 : 𝑋  𝑌 is said to be strongly
(metrically) subregular at 𝑥 for 𝑦 if 𝑦 ∈ 𝐹(𝑥) and there is a
positive constant 𝜅 along with neighborhoods 𝑈 of 𝑥 and 𝑉
of 𝑦 such that

‖𝑥 − 𝑥‖ ≤ 𝜅𝑑 (𝑦; 𝐹 (𝑥) ∩ 𝑉) , ∀𝑥 ∈ 𝑈. (7)

Wenotice that the strongmetric subregularity of𝐹 at𝑥 for
𝑦 is equivalent to the metric subregularity if 𝑥 is an isolated

point of 𝐹−1(𝑦). The definition of metric subregularity can be
simplified in the following way:

𝑑 (𝑥; 𝐹−1 (𝑦)) ≤ 𝜅𝑑 (𝑦; 𝐹 (𝑥)) , ∀𝑥 ∈ 𝑈. (8)

For a possibly smaller neighborhood 𝑈 of 𝑥, see [1] for
details. Likewise, the definition of strong subregularity can be
simplified as

‖𝑥 − 𝑥‖ ≤ 𝜅𝑑 (𝑦; 𝐹 (𝑥)) , ∀𝑥 ∈ 𝑈. (9)

For an extended-real-valued function 𝑓 : 𝑋 → R :=
(−∞; +∞] we define the domain of 𝑓 to be

dom𝑓 := {𝑥 ∈ 𝑋 | 𝑓 (𝑥) < +∞} . (10)

In this paper, we assume that all the extended-real-valued
functions are proper, that is, not identically equal to +∞, and
lower semicontinuous (l.s.c.) on𝑋.

The fundamental tools for studying general nonsmooth
function are subdifferentials. The following two subdifferen-
tial notions are used in this paper.

Definition 4. Consider 𝑓 : 𝑋 → R and 𝑥 ∈ dom𝑓.

(i) 𝑝 ∈ 𝑋∗ is a proximal subgradient if there is 𝑟 ≥ 0with

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑝, 𝑥
 − 𝑥⟩ −

𝑟

2

𝑥
 − 𝑥


2

(11)

for any 𝑥 from some neighborhood of 𝑥. The proxi-
mal subdifferential 𝜕

𝑝
𝑓(𝑥) of 𝑓 at 𝑥 is the collection

of all proximal subgradients of 𝑓 at 𝑥.
(ii) The (basic, limiting, andMordukhovich) subdifferen-

tial of 𝑓 at 𝑥 is

𝜕𝑓 (𝑥) := lim sup
𝑥


𝑓

→𝑥

𝜕
𝑝
𝑓 (𝑥) , (12)

where the symbol 𝑥
𝑓

→ 𝑥 means that 𝑥 → 𝑥 with
𝑓(𝑥) → 𝑓(𝑥).

When 𝑓 is convex, 𝜕𝑓(𝑥) is the usual subgradient set of
convex analysis. When 𝑓 is smooth, 𝜕𝑓(𝑥) is the singleton
∇𝑓(𝑥).

Definition 5. Let 𝑓 : 𝑋 → R and 𝑥 ∈ dom𝑓. We say that 𝑓
is prox-regular at 𝑥 for V ∈ 𝜕𝑓(𝑥) if there exist 𝜀 > 0 and 𝑟 ≥ 0
such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨V, 𝑥 − 𝑥⟩ −
𝑟

2

𝑥
 − 𝑥


2

∀𝑥 ∈ B
𝜀
(𝑥) ,

(13)

whenever 𝑥 ∈ B
𝜀
(𝑥), |𝑓(𝑥) − 𝑓(𝑥)| < 𝜀, and V ∈ 𝜕𝑓(𝑥) with

‖V − V‖ < 𝜀. If this holds for every V ∈ 𝜕𝑓(𝑥), we say that 𝑓 is
prox-regular at 𝑥.

Definition 6. A function 𝑓 : 𝑋 → R is subdifferentially
continuous at𝑥 ∈ dom 𝑓 for V ∈ 𝜕𝑓(𝑥) if for every 𝜀 > 0 there
exists 𝛿 > 0 such that |𝑓(𝑥) − 𝑓(𝑥)| < 𝜀 whenever 𝑥 ∈ B

𝛿
(𝑥)

and ‖V − V‖ < 𝛿 with some V ∈ 𝜕𝑓(𝑥). If this occurs for all
V ∈ 𝜕𝑓(𝑥), we say that 𝑓 is subdifferentially continuous at 𝑥.
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The concepts of prox-regularity and subdifferential con-
tinuity were introduced in [9] and were further studied
in [10, 11]. It was shown in those works that the class of
functions with these properties is quite large. It includes C2
functions, l.s.c. proper convex functions, andmany functions
that typically might be encountered in finite-dimensional
optimization.

The well-known Ekeland’s variational principle [12] plays
an important role in this paper.

Theorem 7 (Ekeland’s variational principle). Let (𝑋, 𝑑) be a
complete metric space and 𝑓 : 𝑋 → (−∞, +∞] a proper
lower semicontinuous function bounded from below. Suppose
that, for some 𝑢 ∈ 𝑋 and some 𝜀 > 0,

𝑓 (𝑢) ≤ inf
𝑥∈𝑋

𝑓 (𝑥) + 𝜀. (14)

Then, for every 𝜆 > 0 there exists some point V ∈ 𝑋 such that

𝑑 (V, 𝑢) ≤ 𝜆,

𝑓 (V) +
𝜀

𝜆
𝑑 (V, 𝑢) ≤ 𝑓 (𝑢) ,

𝑓 (𝑥) > 𝑓 (V) −
𝜀

𝜆
𝑑 (V, 𝑥) , ∀𝑥 ̸= V.

(15)

3. Characterizing Strong Subregularity
Properties of the Subdifferential

In this section, we will give characterizations of the strong
metric subregularity of the Mordukhovich subdifferential of
extended-real-valued prox-regular subdifferentially continu-
ous functions. Namely, we provide some equivalent condi-
tions to the strong metric subregularity of subdifferentials
of such functions including quadratic growth properties and
locally strongly monotone of subdifferentials.

The following theorem is implied in [5, Corollary 3.3]; we
present a slightly different proof.

Theorem 8. Let 𝑓 : 𝑋 → R and (𝑥, 𝑥∗) ∈ gph 𝜕𝑓. Suppose
that the subdifferential 𝜕𝑓 is strongly metrically subregular at
(𝑥, 𝑥∗) with modulus 𝜅 > 0. Then, the following assertions are
equivalent:

(i) there are real numbers 𝛼 ∈ (0, 𝜅−1) and 𝛿 > 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝛿
(𝑥) ,

(16)

(ii) for any real number 𝛼 ∈ (0, 𝜅−1), there is a real number
𝜂 > 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝜂
(𝑥) .

(17)

Proof. Implication (ii) ⇒ (i) holds trivially.
Next, we focus on (i) ⇒ (ii). Since the subdifferential 𝜕𝑓 is

strongly metrically subregular at (𝑥, 𝑥∗) with modulus 𝜅 > 0,
there is some positive constant 𝑎 such that

‖𝑥 − 𝑥‖ ≤ 𝜅𝑑 (𝑥∗; 𝜕𝑓 (𝑥)) ∀𝑥 ∈ intB
𝑎
(𝑥) . (18)

Let 𝜃 = min{𝑎, 𝛿}.
We start by showing that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

1 + 𝛼𝜅

4𝜅
‖𝑥 − 𝑥‖

2 (19)

for all 𝑥 ∈ B
𝜆𝜃
(𝑥), where 𝜆 ∈ (1/2, 2/3). Suppose that (19) is

not true and there is some 𝑧 ∈ B
𝜆𝜃
(𝑥) such that

𝑓 (𝑧) < 𝑓 (𝑥) + ⟨𝑥
∗, 𝑧 − 𝑥⟩ +

1 + 𝛼𝜅

4𝜅
‖𝑧 − 𝑥‖

2. (20)

This together with (16) implies that 𝑧 ̸= 𝑥 and

inf
𝑥∈B
𝜃
(𝑥)

{𝑓 (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝛼

2
‖𝑥 − 𝑥‖

2}

≥ 𝑓 (𝑥)

> 𝑓 (𝑧) − ⟨𝑥
∗, 𝑧 − 𝑥⟩ −

1 + 𝛼𝜅

4𝜅
‖𝑧 − 𝑥‖

2

= 𝑓 (𝑧) − ⟨𝑥
∗, 𝑧 − 𝑥⟩ −

𝛼

2
‖𝑧 − 𝑥‖

2 −
1 − 𝛼𝜅

4𝜅
‖𝑧 − 𝑥‖

2.

(21)

Hence, there is some 𝜀 > 0 slightly smaller than

1 − 𝛼𝜅

4𝜅
‖𝑧 − 𝑥‖

2 (22)

such that

inf
𝑥∈B
𝜃
(𝑥)

{𝑓 (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝛼

2
‖𝑥 − 𝑥‖

2} + 𝜀

> 𝑓 (𝑧) − ⟨𝑥
∗, 𝑧 − 𝑥⟩ −

𝛼

2
‖𝑧 − 𝑥‖

2.

(23)

Since 𝑓 is l.s.c. on B
𝜃
, by Ekeland’s variational principle

(Theorem 7), there exists some 𝑢 ∈ B
𝜃
(𝑥) such that

‖𝑢 − 𝑧‖ ≤
1

2
‖𝑧 − 𝑥‖ (24)

and for all 𝑥 ∈ B
𝜃
(𝑥)

𝑓 (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝛼

2
‖𝑥 − 𝑥‖

2 +
2𝜀

‖𝑧 − 𝑥‖
‖𝑥 − 𝑢‖

≥ 𝑓 (𝑢) − ⟨𝑥
∗, 𝑢 − 𝑥⟩ −

𝛼

2
‖𝑢 − 𝑥‖

2.

(25)

This implies that 𝑢minimizes the function

𝑓 (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝛼

2
‖𝑥 − 𝑥‖

2 +
2𝜀

‖𝑧 − 𝑥‖
‖𝑥 − 𝑢‖ (26)
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over B
𝜃
(𝑥) and

‖𝑢 − 𝑥‖ ≤
3

2
‖𝑧 − 𝑥‖ < 𝜃. (27)

Then, Fermat’s stationary rule along with the subdifferential
sum rule ([8, Theorem 3.6]) implies the inclusions

0 ∈ 𝜕(𝑓 (⋅) − ⟨𝑥
∗, ⋅ − 𝑥⟩ −

𝛼

2
‖⋅ − 𝑥‖

2 +
2𝜀

‖𝑧 − 𝑥‖
‖⋅ − 𝑢‖) (𝑢)

⊂ 𝜕𝑓 (𝑢) − 𝑥
∗ + [𝛼 ‖𝑢 − 𝑥‖ +

2𝜀

‖𝑧 − 𝑥‖
]B∗.

(28)

Therefore,

𝑑 (𝑥∗; 𝜕𝑓 (𝑢)) ≤ 𝛼 ‖𝑢 − 𝑥‖ +
2𝜀

‖𝑧 − 𝑥‖

< 𝛼 ‖𝑢 − 𝑥‖ +
1 − 𝛼𝜅

2𝜅
‖𝑧 − 𝑥‖ .

(29)

Additionally, since

‖𝑧 − 𝑥‖ ≤ ‖𝑢 − 𝑧‖ + ‖𝑢 − 𝑥‖

≤
1

2
‖𝑧 − 𝑥‖ + ‖𝑢 − 𝑥‖ ,

(30)

one has

‖𝑧 − 𝑥‖ ≤ 2 ‖𝑢 − 𝑥‖ , (31)

and thus

𝑑 (𝑥∗; 𝜕𝑓 (𝑢)) < 𝛼 ‖𝑢 − 𝑥‖ +
1 − 𝛼𝜅

𝜅
‖𝑢 − 𝑥‖

=
1

𝜅
‖𝑢 − 𝑥‖ .

(32)

This strict inequality contradicts (18), since 𝑢 ∈ int B
𝑎
(𝑥) by

(27).
By induction we may then construct from (19) a strictly

positive sequence {𝛼
𝑘
} satisfying

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼
𝑘

2
‖𝑥 − 𝑥‖

2

∀𝑥 ∈ B
𝜃(𝜆)
𝑘 (𝑥)

(33)

with 𝛼
𝑘
:= (1 + 𝛼

𝑘−1
𝜅)/2𝜅 ∈ (0, 𝜅−1) for 𝑘 ∈ N and 𝛼

0
:= 𝛼.

Consequently it gives

𝛼
𝑘
= 𝜅−1 (1 −

1

2𝑘
) +

𝛼

2𝑘
→ 𝜅−1 as 𝑘 → +∞, (34)

which completes the proof.

Corollary 9. Let 𝑓 : 𝑋 → R and (𝑥, 𝑥∗) ∈ gph 𝜕𝑓. Suppose
that the subdifferential 𝜕𝑓 is strongly metrically subregular at
(𝑥, 𝑥∗) with modulus 𝜅 > 0. Then, the following assertions are
equivalent:

(i) there are real numbers 𝑟 ∈ (0, 𝜅−1) and 𝛿 > 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝛿
(𝑥) ,

(35)

(ii) for any real number 𝛼 ∈ (0, 𝜅−1), there is a real number
𝜂 > 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝜂
(𝑥) .

(36)

Proof. By [5, Corollary 3.3] and Theorem 8, we have that the
equivalence (i) ⇔ (ii) holds.

The following theorem provides a characterization of
strong metric subregularity of the subdifferential for a prox-
regular and subdifferentially continuous function.

Theorem 10. Given 𝑓 : 𝑋 → R and a pair (𝑥, 𝑥∗) ∈
gph 𝜕𝑓, let 𝑓 be prox-regular at 𝑥 for 𝑥∗ with 𝑟 > 0 and
subdifferentially continuous at 𝑥 for 𝑥∗. Then, 𝜕𝑓 is strongly
metrically subregular at (𝑥, 𝑥∗) with modulus 𝜅 satisfying
𝜅−1 > 𝑟 if and only if for any real number 𝛼 ∈ (0, 𝜅−1), there is
a real number 𝜂 > 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝜂
(𝑥) .

(37)
Proof. Suppose that 𝜕𝑓 is strongly metrically subregular at
(𝑥, 𝑥∗) with modulus 𝜅 satisfying 𝜅−1 > 𝑟. Since 𝑓 is prox-
regular at𝑥 for𝑥∗ with 𝑟 > 0 and subdifferentially continuous
at 𝑥 for 𝑥∗, by Definitions 5 and 6, there exists a real number
𝜀
1
> 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝜀
1

(𝑥) .

(38)
Hence, by Corollary 9, we have that inequality (37) holds.

To justify the converse implication, assume that (37) holds
for some 𝜅−1 > 𝛼 > 𝑟 and 𝜂 > 0. Since 𝑓 is prox-regular at 𝑥
for 𝑥∗ with 𝑟 ∈ (0, 𝜅−1) and subdifferentially continuous at 𝑥
for 𝑥∗, there is a constant 𝜀 ∈ (0, 𝜂) such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2

𝑥
 − 𝑥


2

(39)

for all 𝑥, 𝑥 ∈ B
𝜀
(𝑥), 𝑥∗ ∈ 𝜕𝑓(𝑥) ∩ B

𝜀
(𝑥∗). Fix any point 𝑥 ∈

B
𝜀
(𝑥); if 𝑑(𝑥∗; 𝜕𝑓(𝑥)) ≥ 𝜀, it clearly follows that ‖𝑥 − 𝑥‖ ≤

𝑑(𝑥∗; 𝜕𝑓(𝑥)). Hence, we may suppose that 𝑑(𝑥∗; 𝜕𝑓(𝑥)) < 𝜀;
it follows from (37) and (39) that

𝑥
∗ − 𝑥∗

 ‖𝑥 − 𝑥‖

≥ ⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩ = ⟨𝑥∗, 𝑥 − 𝑥⟩ − ⟨𝑥∗, 𝑥 − 𝑥⟩

≥ 𝑓 (𝑥) − 𝑓 (𝑥) −
𝑟

2
‖𝑥 − 𝑥‖

2 − ⟨𝑥∗, 𝑥 − 𝑥⟩

= 𝑓 (𝑥) − 𝑓 (𝑥) − ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2
‖𝑥 − 𝑥‖

2

≥
𝛼 − 𝑟

2
‖𝑥 − 𝑥‖

2,

(40)
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which implies that
𝑥
∗ − 𝑥∗



≥
𝛼 − 𝑟

2
‖𝑥 − 𝑥‖ whenever 𝑥∗ ∈ 𝜕𝑓 (𝑥) ∩ B

𝜀
(𝑥∗) .

(41)

By 𝑑(𝑥∗; 𝜕𝑓(𝑥)) < 𝜀, the latter implies that 𝑑(𝑥∗; 𝜕𝑓(𝑥)) ≥
((𝛼 − 𝑟)/2)‖𝑥 − 𝑥‖, which justifies the strong metric subreg-
ularity of 𝜕𝑓 at (𝑥, 𝑥∗) and thus completes the proof of the
theorem.

Definition 11 ([4, Definition 3.4]). Let𝑇 : 𝑋  𝑋∗.The point
(𝑥, 𝑥∗) ∈ gph𝑇 is locally strongly monotonically related to
gph𝑇 if there exist neighborhoods𝑈of𝑥 and𝑉of𝑥∗ together
with a constant 𝑐 > 0 such that

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩

≥ 𝑐‖𝑥 − 𝑥‖
2, ∀ (𝑥, 𝑥∗) ∈ gph𝑇 ∩ (𝑈 × 𝑉) .

(42)

Now we are going to characterize the strong metric
subregularity of the Mordukhovich subdifferential for an
extended-real-valued l.s.c. prox-regular and subdifferentially
continuous function acting on an Asplund space. Let us note
that the equivalences of statements (i)–(iv) have been already
established in [4,Theorem3.6] in the convex setting.We show
the equivalences of statements (i)–(iv) in nonconvex case, and
we prove that they are also equivalent to statement (v).

Theorem 12 (strong metric subregularity of the subdifferen-
tial). Let 𝑓 : 𝑋 → R and (𝑥, 𝑥∗) ∈ gph 𝜕𝑓. If 𝑓 is prox-
regular at 𝑥 for 𝑥∗ with 𝑟 > 0 and subdifferentially continuous
at 𝑥 for 𝑥∗, then the following statements are equivalent:

(i) the subdifferential 𝜕𝑓 is strongly metrically subregular
at (𝑥, 𝑥∗) with modulus 𝜅 satisfying 𝜅−1 > 𝑟,

(ii) for any real number 𝛼 ∈ (0, 𝜅−1), there is an 𝜂 > 0 such
that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
‖𝑥 − 𝑥‖

2

∀𝑥 ∈ B
𝜂
(𝑥) ,

(43)

(iii) there exist neighborhoods𝑈 of 𝑥 and𝑉 of 𝑥∗ and 𝑐 > 0
such that

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩ ≥ 𝑐‖𝑥 − 𝑥‖
2,

∀𝑥 ∈ 𝑈, 𝑥∗ ∈ 𝜕𝑓 (𝑥) ∩ 𝑉,
(44)

(iv) the point (𝑥, 𝑥∗) is locally strongly monotonically
related to gph 𝜕𝑓,

(v) for any𝛼 ∈ (0, 𝜅−1), there is a neighborhood𝑈 of𝑥 such
that, for all 𝑥 ∈ 𝑈 and 𝜆 ∈ (0, 1),

𝑓 ((1 − 𝜆) 𝑥 + 𝜆𝑥)

≤ (1 − 𝜆) 𝑓 (𝑥) + 𝜆𝑓 (𝑥) −
𝛼

2
𝜆 (1 − 𝜆) ‖𝑥 − 𝑥‖

2.
(45)

Proof. The equivalence (i) ⇔ (ii) has been already proved in
Theorem 10.

To show the implication (ii) ⇒ (iii) suppose that (ii)holds
for some 𝜅−1 > 𝛼 > 𝑟 and 𝜂 > 0. Since 𝑓 is prox-regular at 𝑥
for 𝑥∗ with 𝑟 ∈ (0, 𝜅−1) and subdifferentially continuous at 𝑥
for 𝑥∗, there is an 𝜀 ∈ (0, 𝛿) such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2

𝑥
 − 𝑥


2

(46)

for all 𝑥, 𝑥 ∈ B
𝜀
(𝑥), 𝑥∗ ∈ 𝜕𝑓(𝑥) ∩ B

𝜀
(𝑥∗).

By letting 𝑥 equal 𝑥, we obtain

⟨𝑥∗, 𝑥 − 𝑥⟩ +
𝑟

2
‖𝑥 − 𝑥‖

2 ≥ 𝑓 (𝑥) − 𝑓 (𝑥)

∀𝑥 ∈ B
𝜀
(𝑥) , 𝑥∗ ∈ 𝜕𝑓 (𝑥) ∩ B

𝜀
(𝑥∗) .

(47)

It follows from (43) that

𝑓 (𝑥) − 𝑓 (𝑥) ≥ ⟨𝑥∗, 𝑥 − 𝑥⟩ +
𝛼

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝜀
(𝑥) .

(48)

Thus,

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩ = ⟨𝑥∗, 𝑥 − 𝑥⟩ − ⟨𝑥∗, 𝑥 − 𝑥⟩

≥
𝛼 − 𝑟

2
‖𝑥 − 𝑥‖

2,
(49)

and (iii) holds with 𝑐 = (𝛼 − 𝑟)/2.
The implication (iii) ⇒ (iv) is straightforward.
To show the implication (iv) ⇒ (i) let us assume that (iv)

holds.There are some neighborhoods𝑈 of 𝑥 and𝑉 of 𝑥∗ and
a positive 𝑐 such that

⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩

≥ 𝑐‖𝑥 − 𝑥‖
2, ∀ (𝑥, 𝑥∗) ∈ gph 𝜕𝑓 ∩ (𝑈 × 𝑉) .

(50)

Pick any 𝑥 ∈ 𝑈\{𝑥}; if 𝜕𝑓(𝑥)∩𝑉 = 0we are done. Otherwise,
for any 𝑥∗ ∈ 𝜕𝑓(𝑥) ∩ 𝑉, we have

‖𝑥 − 𝑥‖
2 ≤

1

𝑐
⟨𝑥∗ − 𝑥∗, 𝑥 − 𝑥⟩ ≤

1

𝑐

𝑥
∗ − 𝑥∗

 ‖𝑥 − 𝑥‖ , (51)

which implies that

‖𝑥 − 𝑥‖ ≤
1

𝑐
𝑑 (𝑥∗; 𝜕𝑓 (𝑥) ∩ 𝑉) ; (52)

that is, the subdifferential 𝜕𝑓 is stronglymetrically subregular
at (𝑥, 𝑥∗).

Finally, we prove the equivalence (ii) ⇔ (v). Suppose that
(v) holds. Let 𝑥 ∈ 𝑈, 𝜆 ∈ (0, 1), and 𝛼 ∈ (0, 𝜅−1). From (45)
we get

(1 − 𝜆) 𝑓 (𝑥)

≥ 𝑓 ((1 − 𝜆) 𝑥 + 𝜆𝑥) − 𝜆𝑓 (𝑥) +
𝛼

2
𝜆 (1 − 𝜆) ‖𝑥 − 𝑥‖

2;

(53)
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that is,

𝑓 (𝑥) ≥
1

1 − 𝜆
𝑓 ((1 − 𝜆) 𝑥 + 𝜆𝑥)

−
𝜆

1 − 𝜆
𝑓 (𝑥) +

𝛼

2
𝜆‖𝑥 − 𝑥‖

2.

(54)

Moreover, by (46),

𝑓 ((1 − 𝜆) 𝑥 + 𝜆𝑥)

≥ 𝑓 (𝑥) + (1 − 𝜆) ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟

2
(1 − 𝜆)

2

‖𝑥 − 𝑥‖
2,

(55)

which together with inequality (54) gives

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼

2
𝜆‖𝑥 − 𝑥‖

2

−
𝑟

2
(1 − 𝜆) ‖𝑥 − 𝑥‖

2.

(56)

Letting 𝜆 ↑ 1 in this inequality, we obtain (43).
Suppose now that (ii) holds. Let 𝑥 ∈ int B

𝜂
(𝑥) and 𝜆 ∈

(0, 1). Then, (56) holds. This together with (55) implies (45)
which completes the proof.

Let us note that, by Fermat’s stationary rule, if a point 𝑥 is
a local minimizer of the function 𝑓, then we have 0 ∈ 𝜕𝑓(𝑥).
By Theorem 12, 𝜕𝑓 is strongly metrically subregular at 𝑥 for
0 with modulus 𝜅 > 0 if and only if 𝑓 satisfies the following
quadratic growth condition:

𝑓 (𝑥) ≥ inf 𝑓 + 𝑐‖𝑥 − 𝑥‖
2 ∀𝑥 ∈ B

𝛿
(𝑥) , (57)

where 𝑐 is a positive number.
The following result on the strong subregularity of the

subdifferential of the sum of two functions is a straightfor-
ward consequence of Theorem 12.

Corollary 13. Let 𝑓, 𝑔 : 𝑋 → R, (𝑥, 𝑥∗) ∈ gph 𝜕𝑓, and
(𝑥, 𝑦∗) ∈ gph 𝜕𝑔. Assume that 𝑓 is prox-regular at 𝑥 for 𝑥∗
with the constant 𝑟

1
and subdifferentially continuous at 𝑥 for

𝑥∗. Assume that 𝑔 is prox-regular at 𝑥 for 𝑦∗ with the constant
𝑟
2
and subdifferentially continuous at 𝑥 for 𝑦∗. If 𝜕𝑓 is strongly

metrically subregular at (𝑥, 𝑥∗) with modulus 𝜅
1
, 𝜅−1
1

> 𝑟
1
and

𝜕𝑔 is strongly metrically subregular at (𝑥, 𝑦∗)with modulus 𝜅
2
,

𝜅−1
2

> 𝑟
2
, then 𝜕(𝑓 + 𝑔) is strongly metrically subregular at 𝑥

for 𝑥∗ + 𝑦∗.

Proof. ByTheorem 12, the strongmetrical subregularity of 𝜕𝑓
at (𝑥, 𝑥∗) with modulus 𝜅

1
yields, for any 𝜅−1

1
> 𝛼
1
> 𝑟
1
, the

existence of a real number 𝛿
1
> 0 such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ +

𝛼
1

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝛿
1

(𝑥) .

(58)

The strong metrical subregularity of 𝜕𝑔 at (𝑥, 𝑦∗) with
modulus 𝜅

2
implies that, for any 𝜅−1

2
> 𝛼
2
> 𝑟
2
, the existence

of a real number 𝛿
2
> 0 such that

𝑔 (𝑥) ≥ 𝑔 (𝑥) + ⟨𝑦
∗, 𝑥 − 𝑥⟩ +

𝛼
2

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝛿
2

(𝑥) .

(59)

It follows from (58) and (59) that

(𝑓 + 𝑔) (𝑥) ≥ (𝑓 + 𝑔) (𝑥) + ⟨𝑥
∗ + 𝑦∗, 𝑥 − 𝑥⟩

+
𝛼
1
+ 𝛼
2

2
‖𝑥 − 𝑥‖

2 ∀𝑥 ∈ B
𝛿
(𝑥) ,

(60)

where 𝛿 = min{𝛿
1
, 𝛿
2
}.

Since 𝑓 is prox-regular at 𝑥 for 𝑥∗ with 𝑟
1
∈ (0, 𝜅−1

1
) and

subdifferentially continuous at 𝑥 for 𝑥∗ and 𝑔 is prox-regular
at 𝑥 for 𝑦∗ with 𝑟

2
∈ (0, 𝜅−1

2
) and subdifferentially continuous

at 𝑥 for 𝑦∗, there is a constant 𝜀 ∈ (0, 𝛿) such that

𝑓 (𝑥) ≥ 𝑓 (𝑥) + ⟨𝑥
∗, 𝑥 − 𝑥⟩ −

𝑟
1

2
‖𝑥 − 𝑥‖

2, (61)

𝑔 (𝑥) ≥ 𝑔 (𝑥) + ⟨𝑦
∗, 𝑥 − 𝑥⟩ −

𝑟
2

2
‖𝑥 − 𝑥‖

2 (62)

for all 𝑥 ∈ B
𝜀
(𝑥), 𝑥∗ ∈ 𝜕𝑓(𝑥)∩B

𝜀
(𝑥∗), 𝑦∗ ∈ 𝜕𝑔(𝑥)∩B

𝜀
(𝑦∗).

It follows from (61) and (62) that

(𝑓 + 𝑔) (𝑥)

≥ (𝑓 + 𝑔) (𝑥) + ⟨𝑥
∗ + 𝑦∗, 𝑥 − 𝑥⟩ −

𝑟
1
+ 𝑟
2

2
‖𝑥 − 𝑥‖

2

(63)

for all 𝑥 ∈ B
𝜀
(𝑥), 𝑥∗ ∈ 𝜕𝑓(𝑥)∩B

𝜀
(𝑥∗), 𝑦∗ ∈ 𝜕𝑔(𝑥)∩B

𝜀
(𝑦∗).

Inequality (60) together with (63) gives

⟨(𝑥∗ + 𝑦∗) − (𝑥∗ + 𝑦∗) , 𝑥 − 𝑥⟩

≥
(𝛼
1
− 𝑟
1
) + (𝛼

2
− 𝑟
2
)

2
‖𝑥 − 𝑥‖

2

(64)

for all 𝑥 ∈ B
𝜀
(𝑥), 𝑥∗ ∈ 𝜕𝑓(𝑥)∩B

𝜀
(𝑥∗), 𝑦∗ ∈ 𝜕𝑔(𝑥)∩B

𝜀
(𝑦∗).

ApplyingTheorem 12 again, 𝜕(𝑓+𝑔) is stronglymetrically
subregular at 𝑥 for 𝑥∗ + 𝑦∗, which completes the proof.

Next we investigate relationships between the strong
metric subregularity and contingent derivative which is a
graphical concept of derivative for set-valued maps and was
introduced by Aubin in [13].

Definition 14. Let 𝐹 : 𝑋  𝑌 and (𝑥, 𝑦) ∈ gph𝑇. The
contingent derivative 𝐷𝐹(𝑥 | 𝑦) of 𝐹 at (𝑥, 𝑦) is a set-valued
mapping defined as

𝐷𝐹 (𝑥 | 𝑦) (𝑤) := {𝑧 ∈ 𝑌 | (𝑤, 𝑧) ∈ 𝑇gph𝐹 (𝑥 | 𝑦)} . (65)

Note that 𝐷𝜕𝑓(𝑥 | ∇𝑓(𝑥))(𝑤) = {∇2𝑓(𝑥)𝑤} when 𝑓 is twice
(Fréchet) differentiable (see, e.g., [14, Proposition 5.1.2]). For
more details on the contingent derivative, one can refer to the
comprehensive monograph [14] by Aubin and Frankowska.

Theorem 15. Given 𝑓 : 𝑋 → R and a pair (𝑥, 𝑥∗) ∈ gph 𝜕𝑓,
let 𝑓 be prox-regular at 𝑥 for 𝑥∗ with 𝑟 and subdifferentially
continuous at 𝑥 for 𝑥∗. Consider the following two statements:

(i) the subdifferential 𝜕𝑓 is strongly metrically subregular
at (𝑥, 𝑥∗) with modulus 𝜅 satisfying 𝜅−1 > 𝑟,
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(ii) there is a constant 𝑐 > 0 such that 𝐷𝜕𝑓(𝑥 | 𝑥∗) is
positive-definite with modulus 𝑐 in the sense that

⟨𝑧∗, 𝑤⟩ ≥ 𝑐‖𝑤‖
2, ∀𝑤 ∈ 𝑋, 𝑧∗ ∈ 𝐷𝜕𝑓 (𝑥 | 𝑥∗) . (66)

Then, implication (i) ⇒ (ii) holds. Furthermore, the converse
implication (ii) ⇒ (i) also holds if in addition dim𝑋 < ∞.

Proof. The proof is similar to [4, Corollary 3.7].
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