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This paper deals with the derivation of a simple mathematical model of cyclic learning with a period of 24 hours. Various
requirements aremet with an emphasis and approachwhich relies on simplemathematical operations, the prediction ofmeasurable
quantities, and the creation of uncomplicated processes of calibration. The presented model can be used to answer questions such
as the following. Will I be able to memorize a given set of information? How long will it take to memorize information? How long
will I remember the information that was memorized? The model is based on known memory retention functions that are in good
agreement with experimental results. By the use of these functions and by formalism of differential equations, the concurrent
processes of learning and forgetting are described mathematically. The usability of this model is limited to scenarios where logical
bonds (connections to prior learning) are not created and mnemonic devices cannot be utilized during the learning process.

1. Introduction

In both professional and personal lives, one is sometimes
confronted with situations in which a large amount of
information must be memorized and remembered at a later
date. Demonstration of acquired knowledge is required from
students at any educational level, as well as from members
of professions that involve specific intellectual skills in the
workplace.

Learning is a process that requires concentration, mental
wellbeing, focused intellectual work, and time. Before an
individual starts this process, it is a good idea to ask questions
like “Will I be able tomemorize a given set of information?How
long will it take to memorize this piece of information? After a
week, will I remember at least 50% of what I have learned?”
The answers to these questions may play a crucial role in
the selection of the right educational institution or job. This
group attempts to formulate a simple mathematical model
that could be used to provide answers to these questions.The
model should preferably be simple because if the mathemati-
cal operations are too complicated, the theory would only be

useful for mathematicians. An emphasis was placed on the
model’s ability to provide analytical predictions of measurable
quantities as well as its ability to be calibrated for a particular
user. This calibration needs to be as simple as possible. These
assumptions rule out the use of advanced mathematical
methods that require strong computer hardware, complicated
algorithms, or results in numerical format. Models with a
large amount of free parameters are also not suitable due to
their difficult nature in the process of calibration.

With these requirements in mind, this paper shows how
one can derive the formulas that allow a student to estimate
the time necessary for memorizing a certain amount of
information and the theoretical capacity of theirmemory.The
steps that lead to derivation of the formulas are outlined so
a user will be able to understand the theoretical basis of the
model and the logic behind any simplifying assumptions that
were necessary. Finally, the stepswhich enable one to calibrate
the model (i.e., determine the model’s free parameters) for a
particular student are included.

It is necessary to note that it is not the goal of this paper to
analyze the complicated mechanisms of storing and recalling
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of information from human memory. Similarly, this paper
does not try to provide a new insight into the structure of the
memory, information flow, or interactions occurring in the
memory.The aim of this paper is to propose a useful tool that
deals with thememory as a whole, by using easily measurable
quantities, and is mathematically accessible to an ordinary
educated person.

2. Results and Discussion

The model was built upon the premise of the Atkinson-
Shiffrin (AS) concept of human memory, which assumes
the existence of three memory blocks: sensory registry (SR),
short-term memory (STM), and long-term memory (LTM)
[1]. It should be noted that the Atkinson-Shiffrin scheme
of human memory has some drawbacks that were criticized
in a number of works [2–7]. Today, there are many more
advanced models of human memory [8, 9] which partly
address the issues of the Atkinson-Shiffrin model. However,
the Atkinson-Shiffrin model is undoubtedly a suitable base
for a simple mathematical model. In the presentedmodel it is
assumed that, while SR and STM are essential for storing the
information to long-term memory, they do not significantly
contribute to the total amount of memorized information.

Moreover, if the rate of assimilation of information and
the rate of forgetting in SR and STM are several orders of
magnitude greater than in LTM, it is safe to assume that SR
and STMare incapable of storing information at the timescale
of hours or years. In the following text, when referring to
the available volume of information (AVI), the information
stored in the long-termmemory is to be considered. It is pos-
sible that certain memories are inaccessible not because they
are no longer present in the memory, but because another
information processing makes them hard or impossible to
recall [10]. Such inaccessible information is not included
in AVI. The symbol ] refers to AVI throughout the text.
Furthermore, if it is said that the information is learned, it
means that the information was not only stored, but also can
be recalled.On the other hand, if it is said that the information
has been forgotten, it does not necessarily mean that the
information has been erased; it may just not be possible to
recall it.

2.1. Forgetting. While it is possible to willingly stop the
learning process, it is not an option with the process of
forgetting. Since forgetting occurs all the time, it is difficult
to directly observe the process of learning. On the other
hand, observation of the forgetting process alone is relatively
simple. Ebbinghaus was among the first who started to
observe forgetting process, and in his seminal work he found,
besides other things, that the process of forgetting is relatively
fast at the start and gradually slows down over time [11].

A study on a large set of experimental data found that
long-term memory retention can be described by several
mathematical functions that are in a good correlation with
experimental data [12]. Considering the properties of the
functions and the analysis carried out in [12–15], the following

functions were chosen for the description of the forgetting
process:
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that define the shapes of the curves, and their values can be
determined from experimental data.

Furthermore, at least for the purposes of the presented
model, it is interesting to knowwhether or not the distributive
property of forgetting functions (1)–(3) is satisfied. In such
a case, the equation ](](]
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∈ 𝑅+. If functions (1)–(3) do

not obey this logical condition, forgetting process depends
on the observation and the model can run into problems
with calibration. For example, if the memory of the same
person was tested twice in such a manner that the second test
followed just after the first, then one would expect that after
the second test the amount of forgotten informationwould be
the same as if a single test (taking the same time as test 1 + test
2) was performed. This does not hold true if the distributive
property is not satisfied.

In the next sections, the differential forms of formulas (1)–
(3) are derived.

2.1.1. Exponential Model of Forgetting. Time derivative of
function (1) is 𝑑]/𝑑𝑡 = −𝜆]

0
𝑒−𝜆𝑡. If (1) is taken into account

and basic algebraic operations are performed, the exponential
law of forgetting in differential form is obtained as follows:
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It can be seen that function (1) is decreasing on the whole
domain if the logical condition ] > 𝜔 is satisfied. The
limit of this function at the upper boundary of the domain
approaches 𝜔. Hence the range of the function is the interval
𝐻(]) = (𝜔, ]

0
⟩. Equation (4) further implies that 𝜆 (in units

s−1) determines the curve steepness.
It is important to note that function (1) does not obey the
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In this case, the distributive property failure is caused by
the presence of permastore asymptotic term 𝜔. Although
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Bahrick’s permastore [16] is established and well-accepted
phenomenon which comes into play mainly on a long-term
time scale, for the purposes of the presented short-term
model the permastore asymptotic term should be considered
to be zero. Further argumentation supporting this decision
can be found in Section 2.2.2.

2.1.2. Power-Law Model of Forgetting. Time derivative of
function (2) leads to 𝑑]/𝑑𝑡 = −]

0
𝛼𝛽/(1 + 𝛼𝑡)𝛽+1. If (2)

is taken into account and basic algebraic operations are
performed, the power law of forgetting in differential form
can be obtained as follows:
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The function ] is decreasing on the whole domain and
the limit of this function at the upper boundary of the
domain approaches zero. Hence the range of the function
is the interval 𝐻(]) = (0, ]

0
⟩. Equation (6) further implies

that coefficients 𝛼 and 𝛽 determine the curve steepness.
Coefficient 𝛽 is dimensionless; the dimension of 𝛼 is s−1.

Note that function (2) does not obey the distributive
property because
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On the other hand, good arguments in favor of the power
law model of forgetting exist. These arguments are supported
by experiments as well as by theoretical works [14, 17–19]. In
general, this model is widely used in the available literature;
therefore, the model of learning with power-like type of
forgetting is also derived in this paper (see Section 2.2.3).

2.1.3. Combined Power-Exponential Model of Forgetting. This
model is described by function (3). Because this function is
a combination of functions (1) and (2), all the benefits of the
mentioned functions are to be expected. In the special case of
𝛼 = 0or𝛽 = 0, (3) is reduced to (1); in case of𝜆 = 0 (3) leads to
(2).Themodel is based on the assumption that the decay rate
of a memory trace is slowed down by the interference with
other memory traces and by its fragility. Detailed derivation
of formula (3) can be found in [15].

Time derivative of function (3) is 𝑑]/𝑑𝑡 =
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into account, after basic algebraic operations the combined
power-exponential law of forgetting in differential form
becomes
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The function ] is decreasing on the whole domain and the
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In spite of this fact, the combined power-exponential reten-
tion function has the potential to be one of the most accurate
models when compared to experimental data. Taking this fact
into account, the model of learning with combined power-
exponential type of forgetting is also derived in this paper (see
Section 2.2.4).

2.2. Learning

2.2.1. Idealized Model of Learning. Learning is a process that
occurs concurrently with forgetting. While learning is the
result of our decision, we are unable to control the process of
forgetting. Before a realistic model of learning is synthesized,
it will be necessary to describe an idealized case in which
forgetting, figuratively speaking, is turned off. One must
assume that “pure” learning can be described by the following
equation:

𝑑]
𝑑𝑡

= 𝑢. (10)

In the following text the symbol 𝑢 is reserved for the rate of
learning. Its dimension is s−1. In reality, the rate of learning
is affected by many factors, including but not limited to
fatigue, amount of sleep, and mental wellbeing. However, in
order to obtain analytical solutions of differential equations,
throughout this study it is assumed that the rate of learning
is constant in time. This is also one of the model’s free
parameters that can be determined experimentally for a
particular user. In such a case (10) is a separable first order
ordinary differential equation. Assuming that at the start of
learning, 𝑡 = 0, the memory contains ](0) = ]

0
information,

by integration of (10) one can arrive at the solution

] = ]
0
+ 𝑢𝑡. (11)

In the initial phase of learning, if one ignores forgetting
and considers learning to be ideal, the time necessary for
memorizing the volume of information ] becomes

𝑡 =
] − ]
0

𝑢
. (12)
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2.2.2. Model of Learning with Exponential Type of Forgetting.
For the sake of simplicity, this model will be later referred to
as the exponential model of learning. The basic idea of the
model is that the process of learning consists of two con-
current processes, ideal learning and forgetting. Hence the
overall increase of theAVI in time𝑑𝑡 is the difference between
acquired volume and forgotten volume of information. In the
case of exponential forgetting, this concept can be formulated
mathematically in the following form:

𝑑]
𝑑𝑡

= 𝑢 − 𝜆 (] − 𝜔) . (13)

This differential equation is separable and for the initial
condition ](0) = ]

0
the solution is
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Function (14) has some interesting features and impli-
cations. In time 𝑡 = 0 it is equal to the initial AVI. If the
condition 1 < (𝑢/𝜆 + 𝜔)/]

0
is met for 𝜆, 𝑢, ]

0
∈ 𝑅+, the

function is increasing over the whole domain. In the limit
case 𝑡 → ∞ it approaches the value ]

∞
= 𝑢/𝜆 + 𝜔,

]
∞
∈ 𝑅+; therefore, function (14) is bounded. Evidently, the

exponential model supports the hypothesis that an individual
is incapable of learning an unlimited amount of information.
If one learned over an infinite amount of time, this individual
would have approached their upper AVI limit ]

∞
. In the

following text this number will be referred to as the capacity
of a student.

It should be mentioned at this point that according to
solution (14) the amount of learned information increases
up to 𝜔 even if the rate of learning is zero (i.e., the student
does not learn at all). Clearly, this result is far from reality
and another reason why the asymptotic term 𝜔 should be
disregarded in presented model.

It will now be shown that solution (14)meets the distribu-
tive property ](](]
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Furthermore, the amount of time needed for acquiring
the volume of information ] can be derived from (14) as
follows:

𝑡 =
1

𝜆
ln

]
0
− 𝑢/𝜆 − 𝜔

] − 𝑢/𝜆 − 𝜔
. (16)

The idea that an individual is capable of receiving new
information continuously is utopian. After a specific amount
of time (let us call it 𝜏) it is necessary to interrupt the
learning process since the rate of learning cannot be consid-
ered constant, and assimilation of information becomes less
effective. At this point it is advisable to allow one’s memory
to regenerate. Some studies even suggest that relaxation and
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Figure 1: Periodic alternation of learning and forgetting. Vertical
axis represents the number of memorized words of a foreign
language; horizontal axis represents time.

sleep are vital for the consolidation of memory traces of
declarative type [20]. An attempt to mathematically describe
the process of learning interrupted with periodic breaks is
needed. It must be assumed that during the time 𝜏 the student
is able to learn at a constant rate 𝑢. During this phase, learning
and forgetting occur concurrently as described in (13). After
this phase, the student needs to relax for the period 𝑇 − 𝜏
to be able to study effectively again. At this point the student
is merely forgetting, and (1) is valid. Symbol 𝑇, introduced
previously, refers to the period of human circadian rhythm
and is equal to 24 h. The alternation between learning and
forgetting phases is depicted in Figure 1.

It is evident that the AVI remaining in memory after the
first closed cycle of learning and forgetting will be

]
1
= [(]

0
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𝑢
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Consequently, after 𝑛 closed cycles, the AVI will be
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Learning is progressive only until the AVI is increasing
with the number of cycles; that is, ]
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> ]
𝑛
or [(]

𝑛
− 𝑢/𝜆 −

𝜔)𝑒−𝜆𝜏 + 𝑢/𝜆 + 𝜔]𝑒−𝜆(𝑇−𝜏) + 𝜔 > ]
𝑛
. After a series of algebraic

operations one will find that in the limit case 𝑛 → ∞ the
progression ]

𝑛
is approaching the value

]̃
∞
= lim
𝑛→∞

]
𝑛
=
(𝑢/𝜆 + 𝜔) (𝑒𝜆𝜏 − 1) + 𝜔𝑒𝜆𝑇

𝑒𝜆𝑇 − 1
, (19)

which will be referred to as the real capacity of a student.
It will now be shown that the presence of the asymptotic

term 𝜔 leads to further illogical implications. For example,
assume a scenario in which the student decides not to study
at all. In other words, the period 𝜏 during which the student
is supposed to be assimilating information is equal to zero.
Logically, one would expect that after an arbitrary amount of
time the student will still know nothing. However, (19) states
that the amount of his or her knowledge will be growing until
it reaches the boundary 𝜔(𝑒𝜆𝑇/(𝑒𝜆𝑇 − 1)) ≥ 0. This logical
discrepancy can only be removed if 𝜔 = 0. In the remainder
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of the text, the equations that do not contain the asymptotic
term 𝜔 will therefore be used.

It can be shown by means of mathematical analysis that
the longer the student is able to assimilate information at a
constant rate 𝑢, the greater their real capacity is.The following
holds true:

𝜕]̃
∞

𝜕𝜏
= 𝑢

𝑒𝜆𝜏

𝑒𝜆𝑇 − 1
≥ 0, ∀𝜏 ∈ ⟨0, 𝑇⟩ . (20)

If the student knows his or her capacity ]̃
∞
, before

the beginning of the study they can calculate if it is fea-
sible to memorize a desired amount of information. If the
answer is positive, then according to recurrent relation
(18) they can calculate how many closed cycles (in other
words, how many days) will be needed to achieve their
goal.

Coefficient ]̃
∞
could also be a tool to compare one student

to another or to determine the student’s ability to complete
their study at a given college or university. ]̃

∞
could also be a

reference point in a selection process for jobs requiring good
memory and so forth.

2.2.3. Model of Learning with Power-Like Type of Forgetting.
Thismodel will be later referred to as the power-lawmodel of
learning. Once again, the increase of the AVI in time 𝑑𝑡 is the
difference between acquired and forgotten information. The
member responsible for forgetting is represented by the right
side of (2) as follows:

𝑑]
𝑑𝑡

= 𝑢 −
𝛼𝛽

1 + 𝛼𝑡
]. (21)

Formula (21) is a first order linear differential equation
which can be solved by method of variation of the constant.
Assuming a reasonable initial condition ](0) = ]

0
, one will

obtain the solution in the following form:
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0
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(1 + 𝛼𝑡)𝛽
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It can be easily verified that the solution of (22) does not
satisfy the distributive property.

At the beginning (in time 𝑡 = 0) the volume of informa-
tion is ]

0
. If the parameters were unrestricted (𝛼, 𝛽, 𝑢, ]

0
∈

𝑅+), function (21) might not necessarily be monotonous and
it might have a local minimum, the existence of which is
not justifiable. To rule out this possibility, one will require
the time derivate to be nonnegative on the entire domain;
that is, 𝑑]/𝑑𝑡 ≥ 0 for 𝑡 ∈ 𝑅+. It can be easily shown
that this condition will be satisfied if ]

0
𝛼𝛽/𝑢 < 1. An even

stronger condition is the inequality ]
0
𝛼(𝛽 + 1)/𝑢 < 1, which

rules out the existence of local extremes on the domain of
real numbers. When the aforementioned conditions are met,
function (22) is nondecreasing. In the limit case 𝑡 → ∞
the AVI diverges to infinity, which seemingly supports the
idea of limitless capacity of human memory. However, it is
unrealistic to assume that a student will learn without breaks,
so it is necessary to examine the case of cyclic periods of
learning and relaxation. The meaning of symbols 𝜏 and 𝑇 is
the same as in the case of exponential model. After the 𝑛th
cycle, the AVI will be

]
𝑛
=
𝑢 (1 + 𝛼𝜏) / [𝛼 (𝛽 + 1)] + (]𝑛−1 − 𝑢/ [𝛼 (𝛽 + 1)]) /(1 + 𝛼𝜏)
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. (23)

The progression of numbers {]
𝑛
}∞
𝑛=1

is increasing and
bounded. In the limit case 𝑡 → ∞ we will obtain

]̃
∞
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]
𝑛
=

𝑢

𝛼 (𝛽 + 1)

(1 + 𝛼𝜏)𝛽+1 − 1

(1 + 𝛼𝜏)𝛽[1 + 𝛼 (𝑇 − 𝜏)]𝛽 − 1
.

(24)

Therefore, the real capacity of the memory is bounded even
in the power-law model.

2.2.4. Model of Learning with Combined Power-Exponential
Type of Forgetting. This model will be later referred to as the
combined model of learning. To obtain the increase of the
volume of information in time one can write

𝑑]
𝑑𝑡

= 𝑢 − (𝜆 +
𝛼𝛽

1 + 𝛼𝑡
) ]. (25)

Equation (25) is a first order linear differential equation
which can be solved by method of variation of the constant,

assuming a reasonable initial condition ](0) = ]
0
. The

solution of (25) leads to an integral, the value of which
is impossible to find unless we introduce a restriction that
𝛽 ∈ 𝑁

0
. In such a case, after a series of recurrent per

partes integrations, we will obtain the solution of (25) in the
following form:

] (]
0
, 𝛽, 𝑡) = []

0
−
𝑢

𝜆

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
(
𝛼

𝜆
)
𝑖

]
𝑒−𝜆𝑡

(1 + 𝛼𝑡)𝛽

+
𝑢

𝜆

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
[

𝛼

𝜆 (1 + 𝛼𝑡)
]
𝑖

.

(26)

If 𝛽 is a noninteger number, the approximate solution of (25)
can be obtained by linear interpolation method. Let𝑚 ≤ 𝛽 ≤
𝑚 + 1, 𝑚 ∈ 𝑁

0
, 𝛽 ∈ (𝑚,𝑚 + 1), and let us further assume

that ](]
0
, 𝑚, 𝑡) and ](]

0
, 𝑚 + 1, 𝑡) are the solutions of (25) for

a whole-number parameter 𝛽. The solution for 𝛽 belonging
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to the real numbers, specifically to the interval (𝑚,𝑚 + 1),
𝑚 ∈ 𝑁

0
, can be approximated by the function

] (]
0
, 𝛽, 𝑡) = (𝑚 + 1 − 𝛽) ] (]

0
, 𝑚, 𝑡)

+ (𝛽 − 𝑚) ] (]
0
, 𝑚 + 1, 𝑡) .

(27)

It can be easily verified that the solution of (25) is again not
compliant with the distributive property.

Finally, one can derive the formulas describing cyclic
alternation of learning and forgetting. After the first phase
of learning that takes time 𝜏 and after the following phase of
memory regeneration that takes time 𝑇 − 𝜏, the volume of
information stored in the memory will be

]
1
= {[]

0
− ]
∞

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
(
𝛼

𝜆
)
𝑖

]
𝑒−𝜆𝜏

(1 + 𝛼𝜏)𝛽

+ ]
∞

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
[

𝛼

𝜆 (1 + 𝛼𝜏)
]
𝑖

}

×
𝑒−𝜆(𝑇−𝜏)

[1 + 𝛼 (𝑇 − 𝜏)]𝛽
.

(28)

Analogically, after the 𝑛th cycle the volume of information
stored in the memory will be

]
𝑛
= {[]

𝑛−1
− ]
∞

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
(
𝛼

𝜆
)
𝑖

]
𝑒−𝜆𝜏

(1 + 𝛼𝜏)𝛽

+ ]
∞

𝛽

∑
𝑖=0

(−1)𝑖
𝛽!

(𝛽 − 𝑖)!
[

𝛼

𝜆 (1 + 𝛼𝜏)
]
𝑖

}

×
𝑒−𝜆(𝑇−𝜏)

[1 + 𝛼 (𝑇 − 𝜏)]𝛽
.

(29)

If one investigates the limit case 𝑡 → ∞, after numerous
algebraic operations, one will obtain the real capacity of the
memory as follows:

]̃
∞
=

𝑢

𝜆
((𝑒𝜆𝜏

∑𝛽
𝑖=0
(−1)𝑖 (𝛽!/ (𝛽 − 𝑖)!) (𝛼/𝜆)𝑖(1 + 𝛼𝜏)𝛽−𝑖

∑ (−1)𝑖 (𝛽!/ (𝛽 − 𝑖)!) (𝛼/𝜆)𝑖
− 1)

×(𝑒𝜆𝑇
[1 + 𝛼 (𝑇 − 𝜏)]𝛽(1 + 𝛼𝜏)𝛽

∑𝛽
𝑖=0
(−1)𝑖 (𝛽!/ (𝛽 − 𝑖)!) (𝛼/𝜆)𝑖

− 1)

−1

) .

(30)

Note that formula (30) is valid only for the whole-number
parameter 𝛽. Transition to the real 𝛽 can be done by linear
interpolation; see (27).

2.2.5. Usability of the Models. The presented models are
expected to describe the assimilation of information satisfac-
torily, under the assumption that retention functions (1)–(3)
give a true picture about forgetting process. The models are
limited to scenarios where logical bonds are not created dur-
ing the process of learning and mnemonic devices or other

memory aids and associations cannot be utilized. In the case
of memorizing meaningful logical material, the models are
limited to situations when the subject is pressed for time or
working under pressure. This essentially prevents them from
realizing the logical bonds (connections to prior knowledge)
between memorized information. Some examples in which
these models are ineffective are scientific disciplines such
as mathematics, physics, or informatics. Some examples of
suitable candidates are the study of foreign languages, history,
law, chosen parts of medicine, pharmacology, chemistry,
biology, botanic, and so forth.

2.3. Calibration of the Models for a Particular Student. In
order to make the formulas derived earlier usable in practice,
the student must first find the constants defining their ability
to learn and remember the memorized information. Regard-
less of the chosen theoretical model, it is necessary to know
the rate of learning𝑢. In the case of the exponentialmodel one
must further know the constant 𝜆, in the power-law model
the constants 𝛼 and 𝛽, and in combined exponential-power
model all of the mentioned constants. In the case of periodic
alternation of learning and forgetting one needs to know the
parameter 𝜏 as well.

First, it is necessary to describe an experiment in which
one observes the process of forgetting, which is in the
exponential model represented by function (1). Due to the
aforementioned reasons, the permastore term 𝜔 will be
considered to be zero in the remainder of the text.

The student will memorize an initial volume of infor-
mation ]

0
. After that, he or she will wait for at least 30

seconds.The student will then be tested to verify the accuracy
of what they really remembered. The 30-second minimum
delay between memorizing and evaluation will ensure that
the recalled information is not retrieved from the short-term
or sensory memory. For the next 60minutes the student does
not learn and avoids conscious or unconscious recalling or
repeating of the memorized information. After this time, he
or she is to be examined in order to find out how much of
the initially remembered information he or she is still able to
recall.

This process is repeated at least two more times. Each
time a new set of information is memorized and the interval
between memorizing and examining is prolonged for an
appropriate time step (e.g., one hour). This will lead to at
least four ordered pairs {[0, ]

0
]; [𝑡
1
, ]
1
]; [𝑡
2
, ]
2
]; [𝑡
3
, ]
3
]}. The

constant 𝜆 can be determined by the least squares method in
order to minimize the deviation of experimental data from
function (1).

From an experimental point of view, the calibration
procedure for the power-law and the combined models is
the same. When one considers that these models contain
more free parameters, it is advisable to increase the number
of ordered pairs and use one of the methods of nonlinear
regression.

It is now necessary to determine the rate of learning 𝑢.
It is important to note that forgetting cannot be suppressed
by will power. Any experiment dealing with learning must
include the premise that learning and forgetting are expected
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to occur concurrently; therefore, both of these phenomena
will be observed.

In the case of the exponentialmodel, this complex process
is described by the equation ] = (]

0
− 𝑢/𝜆)𝑒−𝜆𝑡 + 𝑢/𝜆. The

student is to pick an unknown set of information; hence,
]
0
= 0 and (14) reduces to ] = (𝑢/𝜆)(1 − 𝑒−𝜆𝑡). The student

must memorize the given set of information ] and will write
down the time needed to accomplish this task.The volume of
information should bememorizable in a relatively short time;
otherwise, the nonlinearity coupled with ongoing forgetting
would start to be apparent. Therefore the condition 𝜆𝑡 ≈ 0
should be met. In such a case one can approximate (14) with
sufficient accuracy by second order Taylor series around the
origin 𝑡 = 0: ] ≐ 𝑢𝑡 − 𝑢𝜆𝑡2. When one uses this formula, the
rate of learning becomes

𝑢 =
]

𝑡 − 𝜆𝑡2
. (31)

In the case of the power-lawmodel, assuming that ]
0
= 0 and

𝛼𝑡 ≈ 0, one can approximate (22) with sufficient accuracy
by second order Taylor series around the origin 𝑡 = 0: ] ≐
𝑢𝑡 − 𝑢𝛽𝑡2. This formula generates the rate of learning to be

𝑢 =
]

𝑡 − 𝛽𝑡2
. (32)

In the case of the combined model, under the conditions,
mentioned previously, one can approximate (26) with suf-
ficient accuracy by second order Taylor series around the
origin 𝑡 = 0: ] ≐ 𝑢𝑡 − 𝑢(𝛼𝛽 + 𝜆)𝑡2. This formula results in
the rate of learning to be

𝑢 =
]

𝑡 − (𝛼𝛽 + 𝜆) 𝑡2
. (33)

It is very likely that if a student repeats the calibration
process under the same conditions several times, he or she
will obtain different values of parameters 𝛼, 𝛽, 𝜆, and 𝑢. This
can be caused by the fact that the forgetting term of used
model does not obey the distributive property or memory
characteristics changed over time, or because the described
calibration methods provide only an estimate of real values
of the parameters.

Imagine if one repeated the calibration process 𝑛-
times. One would get 𝑛-values {𝜆

1
, . . . , 𝜆

𝑛
}, {𝛼
1
, . . . , 𝛼

𝑛
},

{𝛽
1
, . . . , 𝛽

𝑛
}, and {𝑢

1
, . . . , 𝑢

𝑛
} that would be distributed nor-

mally around themean values𝜆,𝛼,𝛽, and 𝑢, with the variance
𝜎2
𝜆
, 𝜎2
𝛼
, 𝜎2
𝛽
, and 𝜎2

𝑢
. The mean value of function ] in the

exponential model will then be

] (]
0
, 𝑡) =

∬
∞

0
[(]
0
− 𝑢/𝜆) 𝑒−𝜆𝑡 + (𝑢/𝜆)] 𝑒−(𝜆−𝜆)

2

/2𝜎
2

𝜆𝑒−(𝑢−𝑢)
2
/2𝜎
2

𝑢𝑑𝜆 𝑑𝑢

∫
∞

0
𝑒−(𝜆−𝜆)

2

/2𝜎
2

𝜆𝑑𝜆∫
∞

0
𝑒−(𝑢−𝑢)

2
/2𝜎
2

𝑢𝑑𝑢
. (34)

Analogically, for the power-law model one can write

] (]
0
, 𝑡) =

∭
∞

0
(]
0
/(1 + 𝛼𝑡)𝛽 + 𝑢/ [𝛼 (𝛽 + 1)] [1 + 𝛼𝑡 − (1 + 𝛼𝑡)−𝛽]) 𝑒−[(𝛼−𝛼)

2
/2𝜎
2

𝛼
+(𝛽−𝛽)

2

/2𝜎
2

𝛽
+(𝑢−𝑢)

2
/2𝜎
2

𝑢
]𝑑𝛼𝑑𝛽𝑑𝑢

∭
∞

0
𝑒−[(𝛼−𝛼)

2
/2𝜎
2

𝛼
+(𝛽−𝛽)

2

/2𝜎
2

𝛽
+(𝑢−𝑢)

2
/2𝜎
2

𝑢
]𝑑𝛼𝑑𝛽𝑑𝑢

(35)

and for the combined power-exponential model we will
obtain (in shortened form)

] (]
0
, 𝑡) =

∫∫∫∫
∞

0
] (]
0
, 𝛼, 𝛽, 𝜆, 𝑢) 𝑒−(𝜆−𝜆)

2

/2𝜎
2

𝜆
−(𝛼−𝛼)

2
/2𝜎
2

𝛼
−(𝛽−𝛽)

2

/2𝜎
2

𝛽
−(𝑢−𝑢)

2
/2𝜎
2

𝑢𝑑𝜆 𝑑𝛼𝑑𝛽𝑑𝑢

∫∫∫∫
∞

0
𝑒−(𝜆−𝜆)

2

/2𝜎
2

𝜆
−(𝛼−𝛼)

2
/2𝜎
2

𝛼
−(𝛽−𝛽)

2

/2𝜎
2

𝛽
−(𝑢−𝑢)

2
/2𝜎
2

𝑢𝑑𝜆 𝑑𝛼𝑑𝛽𝑑𝑢
. (36)

Considering the complexity of these integrals, the process
of integration needs to be realized numerically.

Finally, in the formulas describing the real capacity of the
memory it is necessary to find the last of the parameters, the
time 𝜏. This parameter represents the part of the day during
which one is able to effectively assimilate information at a
constant rate. This rate can be determined as follows. Using

a small sample of study material, the student will determine
his or her rate of learning by one of the formulas (31)–
(33). The rate of learning should be determined several times
during the learning process (e.g., once per hour). In this
manner, the ordered pairs {[𝑡

0
, 𝑢
0
]; [𝑡
1
, 𝑢
1
]; . . . ; [𝑡

𝑛
, 𝑢
𝑛
]} will

be obtained. Here 𝑡
𝑖
represents the time elapsed from the

start of the learning process and 𝑢
𝑖
are the measured rates
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of learning. This process should be repeated until the rate of
learning decreases under a certain threshold due to fatigue
and loss of concentration (𝑢treshold ≅ 90%𝑢

0
= 𝑢
𝑛
). At

this point the rate of learning can no longer be considered
constant and the following estimation can be made: 𝜏 ≅ 𝑡

𝑛
.

It is known for a long time and experimentally verified [11,
12, 21] that a memory trace of information that is repeatedly
remembered lasts longer than a trace that is remembered for
the first time. Similarly, repeated memorizing of information
that one is unable to recall takes shorter amount of time than
information remembered for the first time. Furthermore, it
must be noted that none of the presented models takes these
factors into account. The authors are planning to deal with
these issues in the future.

3. Conclusion

In the presented work the relations describing the concurrent
processes of learning and forgetting were derived mathe-
matically. The relations are based on experimentally verified
retention functions. It has been shown that if these functions
realistically depict the process of forgetting on the time scale
of hours to days, then one of the implications is that the
capacity of human memory is limited and a person cannot,
even in theory, learn a limitless amount of information.
Presented models have a predictive potential to estimate the
time needed to learn a given set of information in a circadian
rhythm. This feature could be especially useful for students
facing examinations under time pressure. An outline which
describes the mechanism of calibration of the models for a
particular student is also included in the study.This tool could
also prove to be useful for students that are in the process of
choosing the right scientific discipline or for people looking
for the right job. It is assumed that the model gives realistic
results only if the nature of the memorized material does
not allow for the creation of logical bonds (connections to
prior learning) and does not provide options for utilization
of mnemonic devices or other memory aids.

At the beginning, three key criteria were defined that
a model should meet to be usable in practice. It must be
simple enough not to deter potential users. The solutions
must exist in analytical form and the process of calibration
for a particular user must be simple. These requirements
are primarily met by the exponential and power-law model.
The combined model lacks simplicity and contains many
free parameters, making the calibration process difficult.
Moreover, the power-law and combinedmodels do not satisfy
the distributive property.Whenone takes the aforementioned
facts into account, it becomes apparent that themost practical
and usable model is the model of learning with exponential
type of forgetting. It should be emphasized that the equations
in Section 2.2.2, for the sake of better compatibility with some
psychological articles do contain the asymptotic permastore
term 𝜔. However, it was shown that the presence of this term
creates a discrepancy between the model’s predictions and
logical expectations at the short-time scale. Therefore, it is
suggested that this term should be considered to be zero at
least for the purposes of the presented model.
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