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The row first-minus-last right (RFMLR) circulant matrix and row last-minus-first left (RLMFL) circulant matrices are two special
pattern matrices. By using the inverse factorization of polynomial, we give the exact formulae of determinants of the two pattern
matrices involving Perrin, Padovan, Tribonacci, and the generalized Lucas sequences in terms of finite many terms of these
sequences.

1. Introduction

Several special matrices arise frequently in many fields
including image processing, communications, medicine, and
signal encoding [1]. The application of a block-circulant
matrix approach for singular value decomposition rendered
the analysis independent of tracer arrival time to improve
the results in [2]. Yin et al. introduced fast algorithms for
reconstructing signals from incomplete Toeplitz and circu-
lant measurements and showed that Toeplitz and circulant
matrices not only were as effective as random matrices for
signal encoding but also permitted much faster decoding in
[3]. Wu et al. proposed a technique that was made time-shift
insensitive by the use of a block-circulant matrix for decon-
volution with (oSVD) and without (cSVD) minimization of
oscillation of the derived residue function in [4].

The circulantmatrices [5, 6], a fruitful subject of research,
have in recent years been extended in many directions. The
𝑓(𝑥)-circulant matrices are another natural extension of this
well-studied class and can be found in [7–10]. The 𝑓(𝑥)-
circulant matrix has a wide application, especially on the
generalized cyclic codes [7]. The properties and structures
of the 𝑥𝑛 + 𝑥 − 1-circulant matrices, which are called the
row first-minus-last right (RFMLR) circulant matrices, are
better than those of the general 𝑓(𝑥)-circulant matrices,
so it is significant that we give our attention to them.

We first introduce the definitions of the row first-minus-
last right (RFMLR) circulant matrices and row last-minus-
first left (RLMFL) circulant matrices. As regards their more
properties, please refer to [11, 12].

Definition 1. A row first-minus-last right (RFMLR) circu-
lant matrix with the first row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
), denoted by

RFMLRcircfr(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), is meant to be a square matrix

of the form

A = (

𝑎
1

𝑎
2

. . . 𝑎
𝑛

𝑎
𝑛
𝑎
1
− 𝑎
𝑛
. . . 𝑎

𝑛−1

...
... d

...
𝑎
3
𝑎
4
− 𝑎
3
. . . 𝑎

2

𝑎
2
𝑎
3
− 𝑎
2
. . . 𝑎
1
− 𝑎
𝑛

). (1)

We define matrix Θ
(1,−1)

as the basic RFMLR circulant
matrix; that is,

Θ
(1,−1)

= (

(

0 1 0 ⋅ ⋅ ⋅ 0
... d d d

...
... d d d 0
0 ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ 0 1
1 −1 0 ⋅ ⋅ ⋅ 0

)

)

= RFMLRcircfr(0, 1, 0, . . . , 0) .
(2)
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Definition 2. A row last-minus-first left (RLMFL) circu-
lant matrix with the first row (𝑎

1
, 𝑎
2
, . . . , 𝑎

𝑛
), denoted by

RLMFLcircfr(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
), is meant to be a square matrix

of the form

B = (

𝑎
1

⋅ ⋅ ⋅ 𝑎
𝑛−1

𝑎
𝑛

𝑎
2

⋅ ⋅ ⋅ 𝑎
𝑛
− 𝑎
1

𝑎
1

... c
...

...
𝑎
𝑛−1

⋅ ⋅ ⋅ 𝑎
𝑛−3

− 𝑎
𝑛−2

𝑎
𝑛−2

𝑎
𝑛
− 𝑎
1
⋅ ⋅ ⋅ 𝑎
𝑛−2

− 𝑎
𝑛−1

𝑎
𝑛−1

). (3)

Let A = RFMLRcircfr(𝑎
𝑛
, 𝑎
𝑛−1

, . . . , 𝑎
1
) and B =

RLMFLcircfr(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
). By explicit computation, we find

B = AÎ, (4)

where Î is the backward identity matrix of the form

Î = (

1
1

c
1

1

)

𝑛×𝑛

. (5)

There are many interests in properties and generalization
of some special matrices with famous numbers. Jaiswal
evaluated some determinants of circulant whose elements
are the generalized Fibonacci numbers [13]. Lin gave the
determinant of the Fibonacci-Lucas quasi-cyclic matrices
[14]. Lind presented the determinants of circulant and skew
circulant involving Fibonacci numbers in [15]. Shen et al.
[16] discussed the determinant of circulant matrix involving
Fibonacci and Lucas numbers. Akbulak and Bozkurt [17]
gave the norms of Toeplitz involving Fibonacci and Lucas
numbers.

The determinant problems of the row first-minus-last
right (RFMLR) circulant matrices and row last-minus-
first left (RLMFL) circulant matrices involving the Perrin,
Padovan, Tribonacci, and the generalized Lucas sequences are
considered in this paper. The exact formulae of determinants
are presented by using some terms of these sequences. The
techniques used herein are based on the inverse factorization
of polynomial.

The Perrin and Padovan sequences {𝑅
𝑛
} and {P

𝑛
} [18–20]

are defined by a third-order recurrence:

𝑅
𝑛
= 𝑅
𝑛−2

+ 𝑅
𝑛−3

, 𝑛 ≥ 3, (6)

P
𝑛
= P
𝑛−2

+ P
𝑛−3

, 𝑛 ≥ 3, (7)

with the initial conditions 𝑅
0
= 3, 𝑅

1
= 0, and 𝑅

2
= 2, and

P
0
= 1, P

1
= 1, and P

2
= 1.

The Tribonacci and the generalized Lucas sequences {𝑇
𝑛
}

and {L
𝑛
} [20, 21] are defined by a third-order recurrence:

𝑇
𝑛
= 𝑇
𝑛−1

+ 𝑇
𝑛−2

+ 𝑇
𝑛−3

, 𝑛 ≥ 3,

L
𝑛
= L
𝑛−1

+ L
𝑛−2

+ L
𝑛−3

, 𝑛 ≥ 3,
(8)

with the initial conditions 𝑇
0
= 0, 𝑇

1
= 1, and 𝑇

2
= 1 and

L
0
= 3, L

1
= 1, and L

2
= 3.

The first few members of these sequences are given as
follows:

𝑛 0 1 2 3 4 5 6
𝑅
𝑛
3 0 2 3 2 5 5

P
𝑛
1 1 1 2 2 3 4

𝑇
𝑛
0 1 1 2 4 7 13

L
𝑛
3 1 3 7 11 21 39.

(9)

Recurrences (6) and (7) involve the characteristic equation
𝑥3 − 𝑥 − 1 = 0. If its roots are denoted by 𝑟

1
, 𝑟
2
, 𝑟
3
, then the

following equalities can be derived:

𝑟
1
+ 𝑟
2
+ 𝑟
3
= 0,

𝑟
1
𝑟
2
+ 𝑟
1
𝑟
3
+ 𝑟
2
𝑟
3
= −1,

𝑟
1
𝑟
2
𝑟
3
= 1.

(10)

Moreover, the Binet form for the Perrin sequence is

𝑅
𝑛
= 𝑟𝑛
1
+ 𝑟𝑛
2
+ 𝑟𝑛
3
, (11)

and the Binet form for Padovan sequence is

P
𝑛
= 𝑎
1
𝑟𝑛
1
+ 𝑎
2
𝑟𝑛
2
+ 𝑎
3
𝑟𝑛
3
, (12)

where

𝑎
𝑖
=
3

∏
𝑗=1

𝑗 ̸= 𝑖

𝑟
𝑗
− 1

𝑟
𝑖
− 𝑟
𝑗

, 𝑖 = 1, 2, 3. (13)

Recurrences (8) as well imply the characteristic equation 𝑥3−
𝑥2 − 𝑥 − 1 = 0. If its roots are denoted by 𝑡

1
, 𝑡
2
, 𝑡
3
, then we

have

𝑡
1
+ 𝑡
2
+ 𝑡
3
= 1,

𝑡
1
𝑡
2
+ 𝑡
1
𝑡
3
+ 𝑡
2
𝑡
3
= −1,

𝑡
1
𝑡
2
𝑡
3
= 1.

(14)

Furthermore, an exact expression for the 𝑛th Tribonacci
number can be given explicitly by

𝑇
𝑛
=

𝑡𝑛+1
1

(𝑡
1
− 𝑡
2
) (𝑡
1
− 𝑡
3
)
+

𝑡𝑛+1
2

(𝑡
2
− 𝑡
1
) (𝑡
2
− 𝑡
3
)

+
𝑡𝑛+1
3

(𝑡
3
− 𝑡
1
) (𝑡
3
− 𝑡
2
)

=
𝑡𝑛
1

−𝑡2
1
+ 4𝑡
1
− 1

+
𝑡𝑛
2

−𝑡2
2
+ 4𝑡
2
− 1

+
𝑡𝑛
3

−𝑡2
3
+ 4𝑡
3
− 1

.

(15)

This can be written in a slightly more concise form (the Binet
form) as

𝑇
𝑛
= 𝑏
1
𝑡𝑛
1
+ 𝑏
2
𝑡𝑛
2
+ 𝑏
3
𝑡𝑛
3
, (16)

where 𝑏
𝑖
is the 𝑖th root of the polynomial 44𝑦3 − 2𝑦 − 1. And

the Binet form for the generalized Lucas sequence is

L
𝑛
= 𝑡𝑛
1
+ 𝑡𝑛
2
+ 𝑡𝑛
3
. (17)
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2. Main Results

By Proposition 5.1 in [7] and properties of RFMLR circulant
matrices [12], we deduce the following lemma.

Lemma 3. Let A = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝑎
1
, 𝑎
2
, . . . , 𝑎

𝑛
) and 𝜀

𝑖
(𝑖 =

1, 2, . . . , 𝑛) be the roots of the characteristic equation ofΘ
(1,−1)

.
Then the eigenvalues of A are given by

𝜆
𝑖
= 𝑓 (𝜀

𝑖
) =
𝑛

∑
𝑗=1

𝑎
𝑗
𝜀
𝑗−1

𝑖
, 𝑖 = 1, 2, . . . , 𝑛, (18)

and the determinant of A is given by

detA =
𝑛

∏
𝑖=1

𝜆
𝑖
=
𝑛

∏
𝑖=1

𝑛

∑
𝑗=1

𝑎
𝑗
𝜀
𝑗−1

𝑖
. (19)

Lemma 4. Suppose 𝜀
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the roots of the

characteristic equation of Θ
(1,−1)

. If 𝑎 = 0, then

𝑛

∏
𝑖=1

(𝑎𝜀3
𝑖
+ 𝑏𝜀2
𝑖
+ 𝑐𝜀
𝑖
+ 𝑑) =

𝑛

∏
𝑖=1

(𝑏𝜀2
𝑖
+ 𝑐𝜀
𝑖
+ 𝑑)

= 𝑑𝑛 + 𝑏𝑛−1 (𝑏 + 𝑐 + 𝑑)

+ 𝑑 (𝛿𝑛−1
1

+ 𝛿𝑛−1
2

) − (𝛿𝑛
1
+ 𝛿𝑛
2
) ,

(20)

where 𝑎, 𝑏, 𝑐 ∈ R and

𝛿
1
=
−𝑐 + √𝑐2 − 4𝑏𝑑

2
,

𝛿
2
=
−𝑐 − √𝑐2 − 4𝑏𝑑

2
.

(21)

If 𝑎 ̸= 0, then

𝑛

∏
𝑖=1

(𝑎𝜀3
𝑖
+ 𝑏𝜀2
𝑖
+ 𝑐𝜀
𝑖
+ 𝑑)

=
(−𝑎)𝑛

2
(−Δ2
𝑛
+ Δ
2𝑛
+ 2Δ
𝑛+1

+ 2Δ
𝑛
)

+
(−𝑎)𝑛−1

2
𝑑 (Δ2
𝑛−1

− Δ
2(𝑛−1)

+ 2Δ
𝑛−1

)

+ (−𝑎)
𝑛−1 (−𝑏Δ

𝑛
+ 𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝑑𝑛,

(22)

where Δ
𝑛
= 𝛿𝑛
1
+ 𝛿𝑛
2
+ 𝛿𝑛
3
, and 𝛿

1
, 𝛿
2
, 𝛿
3
are the roots of the

equation 𝑎𝑥3 + 𝑏𝑥2 + 𝑐𝑥 + 𝑑 = 0.

Proof. Since 𝜀
𝑖
(𝑖 = 1, 2, . . . , 𝑛) are the roots of the character-

istic equation of Θ
(1,−1)

, 𝑔(𝑥) = 𝑥𝑛 + 𝑥 − 1 can be factored
as

𝑥𝑛 + 𝑥 − 1 =
𝑛

∏
𝑖=1

(𝑥 − 𝜀
𝑖
) . (23)

Let 𝛿
1
, 𝛿
2
, 𝛿
3
be the roots of the equation 𝑎𝑥3+𝑏𝑥2+𝑐𝑥+𝑑 = 0.

If 𝑎 = 0, please see [12] for details of the proof.
If 𝑎 ̸= 0, then

𝑛

∏
𝑖=1

(𝑎𝜀3
𝑖
+ 𝑏𝜀2
𝑖
+ 𝑐𝜀
𝑖
+ 𝑑)

= 𝑎𝑛
𝑛

∏
𝑖=1

(𝜀3
𝑖
+
𝑏

𝑎
𝜀2
𝑖
+
𝑐

𝑎
𝜀
𝑖
+
𝑑

𝑎
)

= 𝑎𝑛
𝑛

∏
𝑖=1

(𝜀
𝑖
− 𝛿
1
) (𝜀
𝑖
− 𝛿
2
) (𝜀
𝑖
− 𝛿
3
)

= (−𝑎)
𝑛

𝑛

∏
𝑖=1

(𝛿
1
− 𝜀
𝑖
)
𝑛

∏
𝑖=1

(𝛿
2
− 𝜀
𝑖
)
𝑛

∏
𝑖=1

(𝛿
3
− 𝜀
𝑖
)

= (−𝑎)
𝑛 (𝛿𝑛
1
+ 𝛿
1
− 1) (𝛿𝑛

2
+ 𝛿
2
− 1) (𝛿𝑛

3
+ 𝛿
3
− 1)

= (−𝑎)
𝑛 {(𝛿
1
𝛿
2
𝛿
3
)
𝑛

+ 𝛿
1
𝛿
2
𝛿
3
[(𝛿
1
𝛿
2
)
𝑛−1

+ (𝛿
1
𝛿
3
)
𝑛−1

+ (𝛿
2
𝛿
3
)
𝑛−1

]

− [(𝛿
1
𝛿
2
)
𝑛

+ (𝛿
1
𝛿
3
)
𝑛

+ (𝛿
2
𝛿
3
)
𝑛

]

+ 𝛿
1
𝛿
2
𝛿
3
(𝛿𝑛−1
1

+ 𝛿𝑛−1
2

+ 𝛿𝑛−1
3

)

− [𝛿𝑛
1
(𝛿
2
+ 𝛿
3
) + 𝛿𝑛
2
(𝛿
1
+ 𝛿
3
)

+𝛿𝑛
3
(𝛿
1
+ 𝛿
2
) ] + (𝛿𝑛

1
+ 𝛿𝑛
2
+𝛿𝑛
3
)

+ 𝛿
1
𝛿
2
𝛿
3
− (𝛿
1
𝛿
2
+ 𝛿
1
𝛿
3
+ 𝛿
2
𝛿
3
)

+ (𝛿
1
+ 𝛿
2
+ 𝛿
3
) − 1} .

(24)

Let Δ
𝑛
= 𝛿𝑛
1
+𝛿𝑛
2
+𝛿𝑛
3
. We derive (𝛿

1
𝛿
2
)𝑛 + (𝛿

1
𝛿
3
)𝑛 + (𝛿

2
𝛿
3
)𝑛 =

(Δ2
𝑛
−Δ
2𝑛
)/2 from (𝛿𝑛

1
+𝛿𝑛
2
+𝛿𝑛
3
)2 = 𝛿2𝑛

1
+𝛿2𝑛
2
+𝛿2𝑛
3
+2[(𝛿

1
𝛿
2
)𝑛+

(𝛿
1
𝛿
3
)𝑛+(𝛿

2
𝛿
3
)𝑛]. Taking the relation of roots and coefficients

𝛿
1
+ 𝛿
2
+ 𝛿
3
= −

𝑏

𝑎

𝛿
1
𝛿
2
+ 𝛿
1
𝛿
3
+ 𝛿
2
𝛿
3
=
𝑐

𝑎

𝛿
1
𝛿
2
𝛿
3
= −

𝑑

𝑎

(25)

into account, we deduce that
𝑛

∏
𝑖=1

(𝑎𝜀3
𝑖
+ 𝑏𝜀2
𝑖
+ 𝑐𝜀
𝑖
+ 𝑑)

=
(−𝑎)𝑛

2
(−Δ2
𝑛
+ Δ
2𝑛
+ 2Δ
𝑛+1

+ 2Δ
𝑛
)

+
(−𝑎)𝑛−1

2
𝑑 (Δ2
𝑛−1

− Δ
2(𝑛−1)

+ 2Δ
𝑛−1

)

+ (−𝑎)
𝑛−1 (−𝑏Δ

𝑛
+ 𝑎 + 𝑏 + 𝑐 + 𝑑) + 𝑑𝑛.

(26)

The proof is completed.
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We present the exact formulae of determinants of the
RFMLR and RLMFL circulant matrices involving four kinds
of famous numbers and the detailed process.

2.1. Determinants of the RFMLR and RLMFLCirculantMatrix
Involving Perrin Sequence

Theorem 5. Let C = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
). If 𝑛 is

odd, then

detC =
(−X
1
+X
2
+X
3
)

Y
1

, (27)

and if 𝑛 is even, then

detC =
(X
1
−X
2
−X
3
)

Y
1

, (28)

where

X
1
= 𝑅𝑛
𝑛
(𝑋2
𝑛
− 𝑋
2𝑛
− 2𝑋
𝑛+1

) ,

X
2
= 𝑅
𝑛+1

𝑅𝑛−1
𝑛

(𝑋2
𝑛−1

− 𝑋
2(𝑛−1)

+ 2𝑋
𝑛−1

) ,

X
3
= 2𝑅𝑛−1
𝑛

(𝑅
𝑛+2

𝑋
𝑛
+ 3𝑋
𝑛
− 5) + 2𝑅𝑛

𝑛+1
,

Y
1
= 𝑌2
𝑛
− 𝑌2
𝑛−1

− 𝑌
2𝑛
+ 𝑌
2(𝑛−1)

−2𝑌
𝑛+1

− 4𝑌
𝑛
− 2𝑌
𝑛−1

,

𝑋
𝑛
= 𝑥𝑛
1
+ 𝑥𝑛
2
+ 𝑥𝑛
3
,

𝑌
𝑛
= 𝑦𝑛
1
+ 𝑦𝑛
2
+ 𝑦𝑛
3
,

(29)

where 𝑥
1
, 𝑥
2
, 𝑥
3
and 𝑦

1
, 𝑦
2
, 𝑦
3
are the roots of the equation

𝑅
𝑛
𝑥3 + (𝑅

𝑛−1
+ 3)𝑥2 − (𝑅

𝑛−3
− 2)𝑥 −𝑅

𝑛+1
= 0, 𝑥3 + 𝑥2 − 1 = 0,

respectively.

Proof. Obviously, C has the form

C = (

𝑅
1

𝑅
2

. . . 𝑅
𝑛

𝑅
𝑛
𝑅
1
− 𝑅
𝑛
. . . 𝑅

𝑛−1

...
... d

...
𝑅
3
𝑅
4
− 𝑅
3
. . . 𝑅

2

𝑅
2
𝑅
3
− 𝑅
2
. . . 𝑅
1
− 𝑅
𝑛

). (30)

In the light of Lemma 3 and the Binet form (11) and (10), we
have

detC =
𝑛

∏
𝑖=1

(𝑅
1
+ 𝑅
2
𝜀
𝑖
+ ⋅ ⋅ ⋅ + 𝑅

𝑛
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛

∑
𝑘=1

3

∑
𝑗=1

𝑟𝑘
𝑗
𝜀𝑘−1
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑟
𝑗
(1 − 𝑟𝑛

𝑗
𝜀𝑛
𝑖
)

1 − 𝑟
𝑗
𝜀
𝑖

=
𝑛

∏
𝑖=1

𝑅
𝑛
𝜀3
𝑖
+ (𝑅
𝑛−1

+ 3) 𝜀2
𝑖

−𝜀3
𝑖
− 𝜀2
𝑖
+ 1

−
(𝑅
𝑛−3

− 2) 𝜀
𝑖
+ 𝑅
𝑛+1

−𝜀3
𝑖
− 𝜀2
𝑖
+ 1

.

(31)

By Lemma 4 and recurrence (6), we obtain

𝑛

∏
𝑖=1

[𝑅
𝑛
𝜀3
𝑖
+ (𝑅
𝑛−1

+ 3) 𝜀2
𝑖
− (𝑅
𝑛−3

− 2) 𝜀
𝑖
− 𝑅
𝑛+1

]

= (−𝑅
𝑛
)
𝑛−1

[𝑅
𝑛
𝑋2
𝑛
− 𝑅
𝑛+1

𝑋2
𝑛−1

− 𝑅
𝑛
𝑋
2𝑛

+ 𝑅
𝑛+1

𝑋
2(𝑛−1)

− 2𝑅
𝑛
𝑋
𝑛+1

− 2 (𝑅
𝑛+2

+ 3)𝑋
𝑛
− 2𝑅
𝑛+1

𝑋
𝑛−1

+ 10] × 2−1

+ (−𝑅
𝑛+1

)
𝑛

,

(32)

where 𝑋
𝑛
= 𝑥𝑛
1
+ 𝑥𝑛
2
+ 𝑥𝑛
3
and 𝑥

1
, 𝑥
2
, 𝑥
3
are the roots of the

equation 𝑅
𝑛
𝑥3 + (𝑅

𝑛−1
+ 3)𝑥2 − (𝑅

𝑛−3
− 2)𝑥 − 𝑅

𝑛+1
= 0. And

𝑛

∏
𝑖=1

(−𝜀3
𝑖
− 𝜀2
𝑖
+ 1) =

1

2
(−𝑌2
𝑛
+ 𝑌2
𝑛−1

+ 𝑌
2𝑛
− 𝑌
2(𝑛−1)

)

+ 𝑌
𝑛+1

+ 2𝑌
𝑛
+ 𝑌
𝑛−1

,

(33)

where 𝑌
𝑛
= 𝑦𝑛
1
+ 𝑦𝑛
2
+ 𝑦𝑛
3
and 𝑦

1
, 𝑦
2
, 𝑦
3
are the roots of the

equation 𝑥3 + 𝑥2 − 1 = 0. Consequently, if 𝑛 is odd, then

detC =
(−X
1
+X
2
+X
3
)

Y
1

, (34)

and if 𝑛 is even, then

detC =
(X
1
−X
2
−X
3
)

Y
1

, (35)

where

X
1
= 𝑅𝑛
𝑛
(𝑋2
𝑛
− 𝑋
2𝑛
− 2𝑋
𝑛+1

) ,

X
2
= 𝑅
𝑛+1

𝑅𝑛−1
𝑛

(𝑋2
𝑛−1

− 𝑋
2(𝑛−1)

+ 2𝑋
𝑛−1

) ,

X
3
= 2𝑅𝑛−1
𝑛

(𝑅
𝑛+2

𝑋
𝑛
+ 3𝑋
𝑛
− 5) + 2𝑅𝑛

𝑛+1
,

Y
1
= 𝑌2
𝑛
− 𝑌2
𝑛−1

− 𝑌
2𝑛
+ 𝑌
2(𝑛−1)

− 2𝑌
𝑛+1

− 4𝑌
𝑛
− 2𝑌
𝑛−1

.

(36)

The proof is completed.

Theorem 6. Let D = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝑅
𝑛
, . . . , 𝑅

1
). Then

detD =
2 [𝛼
4
+ (𝑅
𝑛
− 3) (𝛼𝑛−1

1
+ 𝛼𝑛−1
2

) − (𝛼𝑛
1
+ 𝛼𝑛
2
)]

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (37)
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where

𝛼
1
=
(−𝑅
𝑛+2

− 1 + √𝛼3)

2
,

𝛼
2
=
(−𝑅
𝑛+2

− 1 − √𝛼3)

2
,

𝛼
3
= (𝑅
𝑛+2

+ 1)
2

− 4 (𝑅
𝑛+1

+ 2) (𝑅
𝑛
− 3) ,

𝛼
4
= (𝑅
𝑛
− 3)
𝑛

+ 𝑅
𝑛+5

(𝑅
𝑛+1

+ 2)
𝑛−1

.

(38)

Proof. ThematrixD has the form

D = (

𝑅
𝑛

𝑅
𝑛−1

. . . 𝑅
1

𝑅
1

𝑅
𝑛
− 𝑅
1

. . . 𝑅
2

...
... d

...
𝑅
𝑛−2

𝑅
𝑛−3

− 𝑅
𝑛−2

. . . 𝑅
𝑛−1

𝑅
𝑛−1

𝑅
𝑛−2

− 𝑅
𝑛−1

. . . 𝑅
𝑛
− 𝑅
𝑛−1

). (39)

According to Lemma 3 and the Binet form (11) and (10), we
have

detD =
𝑛

∏
𝑖=1

(𝑅
𝑛
+ 𝑅
𝑛−1

𝜀
𝑖
+ ⋅ ⋅ ⋅ + 𝑅

1
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛−1

∑
𝑘=0

3

∑
𝑗=1

𝑟𝑛−𝑘
𝑗

𝜀𝑘
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑟𝑛+1
𝑗

− 𝑟
𝑗
𝜀𝑛
𝑖

𝑟
𝑗
− 𝜀
𝑖

=
𝑛

∏
𝑖=1

(𝑅
𝑛+1

+ 2) 𝜀2
𝑖
+ (𝑅
𝑛+2

+ 1) 𝜀
𝑖
+ 𝑅
𝑛
− 3

−𝜀3
𝑖
+ 𝜀
𝑖
+ 1

.

(40)

Using Lemma 4 and recurrence (6), we obtain
𝑛

∏
𝑖=1

[(𝑅
𝑛+1

+ 2) 𝜀2
𝑖
+ (𝑅
𝑛+2

+ 1) 𝜀
𝑖
+ 𝑅
𝑛
− 3]

= 𝛼
4
+ (𝑅
𝑛
− 3) (𝛼𝑛−1

1
+ 𝛼𝑛−1
2

) − (𝛼𝑛
1
+ 𝛼𝑛
2
) ,

(41)

where

𝛼
1
=
(−𝑅
𝑛+2

− 1 + √𝛼3)

2
,

𝛼
2
=
(−𝑅
𝑛+2

− 1 − √𝛼3)

2
,

𝛼
3
= (𝑅
𝑛+2

+ 1)
2

− 4 (𝑅
𝑛+1

+ 2) (𝑅
𝑛
− 3) ,

𝛼
4
= (𝑅
𝑛
− 3)
𝑛

+ 𝑅
𝑛+5

(𝑅
𝑛+1

+ 2)
𝑛−1

,

(42)

𝑛

∏
𝑖=1

(−𝜀3
𝑖
+ 𝜀
𝑖
+ 1)

= −
1

2
(𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4) .

(43)

Therefore,

detD =
2 [𝛼
4
+ (𝑅
𝑛
− 3) (𝛼𝑛−1

1
+ 𝛼𝑛−1
2

) − (𝛼𝑛
1
+ 𝛼𝑛
2
)]

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
. (44)

The proof is completed.

Corollary 7. Let E = 𝑅𝐿𝑀𝐹𝐿𝑐𝑖𝑟𝑐𝑓𝑟(𝑅
1
, 𝑅
2
, . . . , 𝑅

𝑛
). If 𝑛 ≡

0 (𝑚𝑜𝑑 4) or 𝑛 ≡ 1 (𝑚𝑜𝑑 4), then

detE =
2 [𝛼
4
+ (𝑅
𝑛
− 3) (𝛼𝑛−1

1
+ 𝛼𝑛−1
2

) − (𝛼𝑛
1
+ 𝛼𝑛
2
)]

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (45)

and if 𝑛 ≡ 2 (𝑚𝑜𝑑 4) or 𝑛 ≡ 3 (𝑚𝑜𝑑 4), then

detE =
2 [𝛼
4
+ (𝑅
𝑛
− 3) (𝛼𝑛−1

1
+ 𝛼𝑛−1
2

) − (𝛼𝑛
1
+ 𝛼𝑛
2
)]

𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4
, (46)

where 𝛼
1
, 𝛼
2
, 𝛼
3
, 𝛼
4
are defined the same as Theorem 6.

Proof. Since

det Î = (−1)
𝑛(𝑛−1)/2, (47)

the result can be derived from Theorem 6 and relation (4).

2.2. Determinants of the RFMLR and RLMFL Circulant
Matrix Involving Padovan Sequence

Theorem 8. Let F = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(P
1
,P
2
, . . . ,P

𝑛
). If 𝑛 is

odd, then

det F =
(−Q
1
+ Q
2
+ Q
3
)

Y
1

, (48)

and if 𝑛 is even, then

det F =
(Q
1
− Q
2
− Q
3
)

Y
1

, (49)

where

Q
1
= P
𝑛

𝑛
(𝑄2
𝑛
− 𝑄
2𝑛
− 2𝑄
𝑛+1

) ,

Q
2
= (P
𝑛+1

− 1)P𝑛−1
𝑛

(𝑄2
𝑛−1

− 𝑄
2(𝑛−1)

+ 2𝑄
𝑛−1

) ,

Q
3
= 2P𝑛−1
𝑛

(P
𝑛+2

𝑄
𝑛
+ 𝑄
𝑛
− 3) + 2(P

𝑛+1
− 1)
𝑛

,

𝑄
𝑛
= 𝑞𝑛
1
+ 𝑞𝑛
2
+ 𝑞𝑛
3
,

(50)

where 𝑞
1
, 𝑞
2
, 𝑞
3
are the roots of the equation P

𝑛
𝑥3 + (1 +

P
𝑛−1

)𝑥2 + (1 − P
𝑛−3

)𝑥 + 1 − P
𝑛+1

= 0 and Y
1
is defined as

Theorem 5.

Proof. Thematrix F has the form

F = (

P
1

P
2

. . . P
𝑛

P
𝑛

P
1
− P
𝑛
. . . P

𝑛−1

...
... d

...
P
3

P
4
− P
3
. . . P

2

P
2

P
3
− P
2
. . . P

1
− P
𝑛

). (51)
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The determinant of F is

det F =
𝑛

∏
𝑖=1

(P
1
+ P
2
𝜀
𝑖
+ ⋅ ⋅ ⋅ + P

𝑛
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛

∑
𝑘=1

3

∑
𝑗=1

𝑎
𝑗
𝑟𝑘
𝑗
𝜀𝑘−1
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑎
𝑗
𝑟
𝑗
(1 − 𝑟𝑛

𝑗
𝜀𝑛
𝑖
)

1 − 𝑟
𝑗
𝜀
𝑖

=
𝑛

∏
𝑖=1

[
P
𝑛
𝜀3
𝑖
+ (1 + P

𝑛−1
) 𝜀2
𝑖
+ (1 − P

𝑛−3
) 𝜀
𝑖

−𝜀3
𝑖
− 𝜀2
𝑖
+ 1

+
1 − P
𝑛+1

−𝜀3
𝑖
− 𝜀2
𝑖
+ 1

]

(52)

from Lemma 3 and the Binet form (12) and (10).
Using Lemma 4 and recurrence (7), we obtain
𝑛

∏
𝑖=1

[P
𝑛
𝜀3
𝑖
+ (1 + P

𝑛−1
) 𝜀2
𝑖
+ (1 − P

𝑛−3
) 𝜀
𝑖
+ 1 − P

𝑛+1
]

= (−P
𝑛
)
𝑛−1

[P
𝑛
𝑄2
𝑛
+ (1 − P

𝑛+1
) 𝑄2
𝑛−1

− P
𝑛
𝑄
2𝑛

− (1 − P
𝑛+1

) 𝑄
2(𝑛−1)

− 2P
𝑛
𝑄
𝑛+1

−2 (1 + P
𝑛+2

) 𝑄
𝑛
+ 2 (1 − P

𝑛+1
) 𝑄
𝑛−1

] × 2−1

+ 3(−P
𝑛
)
𝑛−1

+ (1 − P
𝑛+1

)
𝑛

,

(53)

where𝑄
𝑛
= 𝑞𝑛
1
+𝑞𝑛
2
+𝑞𝑛
3
, 𝑞
1
, 𝑞
2
, 𝑞
3
are the roots of the equation

P
𝑛
𝑥3 + (1 +P

𝑛−1
)𝑥2 + (1 −P

𝑛−3
)𝑥 + 1 −P

𝑛+1
= 0. According

to (33), we have the following results: if 𝑛 is odd, then

det F =
(−Q
1
+ Q
2
+ Q
3
)

Y
1

, (54)

and if 𝑛 is even, then

det F =
(Q
1
− Q
2
− Q
3
)

Y
1

, (55)

where

Q
1
= P
𝑛

𝑛
(𝑄2
𝑛
− 𝑄
2𝑛
− 2𝑄
𝑛+1

) ,

Q
2
= (P
𝑛+1

− 1)P𝑛−1
𝑛

(𝑄2
𝑛−1

− 𝑄
2(𝑛−1)

+ 2𝑄
𝑛−1

) ,

Q
3
= 2P𝑛−1
𝑛

(P
𝑛+2

𝑄
𝑛
+ 𝑄
𝑛
− 3) + 2(P

𝑛+1
− 1)
𝑛

,

(56)

andY
1
is defined as Theorem 5.

Theorem 9. Let G = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(P
𝑛
, . . . ,P

1
). If 𝑛 is odd,

then

detG =
Z
1
+Z
2
−Z
3
+ 2(P

𝑛
− 1)
𝑛

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (57)

and if 𝑛 is even, then

detG =
Z
1
+Z
2
−Z
3
− 2(P

𝑛
− 1)
𝑛

𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4
, (58)

where

Z
1
= (P
𝑛
− 1) (𝑍2

𝑛−1
− 𝑍
2(𝑛−1)

+ 2𝑍
𝑛−1

) ,

Z
2
= 𝑍2
𝑛
− 𝑍
2𝑛
− 2𝑍
𝑛+1

,

Z
3
= 2 [(1 + P

𝑛+1
) 𝑍
𝑛
− P
𝑛+5

] ,

𝑍
𝑛
= 𝑧𝑛
1
+ 𝑧𝑛
2
+ 𝑧𝑛
3
,

(59)

where 𝑧
1
, 𝑧
2
, 𝑧
3
are the roots of the equation 𝑥3 + P

𝑛+1
𝑥2 +

P
𝑛+2

𝑥 + P
𝑛
− 1 = 0.

Proof. Thematrix G has the form

G = (

P
𝑛

P
𝑛−1

. . . P
1

P
1

P
𝑛
− P
1

. . . P
2

...
... d

...
P
𝑛−2

P
𝑛−3

− P
𝑛−2

. . . P
𝑛−1

P
𝑛−1

P
𝑛−2

− P
𝑛−1

. . . P
𝑛
− P
𝑛−1

). (60)

According to Lemma 3 and the Binet form (12) and (10), we
have

detG =
𝑛

∏
𝑖=1

(P
𝑛
+ P
𝑛−1

𝜀
𝑖
+ ⋅ ⋅ ⋅ + P

1
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛−1

∑
𝑘=0

3

∑
𝑗=1

𝑎
𝑗
𝑟𝑛−𝑘
𝑗

𝜀𝑘
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑎
𝑗
𝑟𝑛+1
𝑗

− 𝑎
𝑗
𝑟
𝑗
𝜀𝑛
𝑖

𝑟
𝑗
− 𝜀
𝑖

=
𝑛

∏
𝑖=1

𝜀3
𝑖
+ P
𝑛+1

𝜀2
𝑖
+ P
𝑛+2

𝜀
𝑖
+ P
𝑛
− 1

−𝜀3
𝑖
+ 𝜀
𝑖
+ 1

.

(61)

Using Lemma 4 and (12), we obtain

𝑛

∏
𝑖=1

(𝜀3
𝑖
+ P
𝑛+1

𝜀2
𝑖
+ P
𝑛+2

𝜀
𝑖
+ P
𝑛
− 1)

= (−1)
𝑛−1 [(P

𝑛
− 1) (𝑍2

𝑛−1
− 𝑍
2(𝑛−1)

+ 2𝑍
𝑛−1

)

+ 𝑍2
𝑛
− 𝑍
2𝑛
− 2𝑍
𝑛+1

− 2 (1 + P
𝑛+1

) 𝑍
𝑛

+2P
𝑛+5

] × 2−1 + (P
𝑛
− 1)
𝑛

,

(62)

where𝑍
𝑛
= 𝑧𝑛
1
+𝑧𝑛
2
+𝑧𝑛
3
, 𝑧
1
, 𝑧
2
, 𝑧
3
are the roots of the equation

𝑥3 + P
𝑛+1

𝑥2 + P
𝑛+2

𝑥 + P
𝑛
− 1 = 0. Employing (43), we have

the following results: if 𝑛 is odd, then

detG =
Z
1
+Z
2
−Z
3
+ 2(P

𝑛
− 1)
𝑛

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (63)
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and if 𝑛 is even, then

detG =
Z
1
+Z
2
−Z
3
− 2(P

𝑛
− 1)
𝑛

𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4
, (64)

where

Z
1
= (P
𝑛
− 1) (𝑍2

𝑛−1
− 𝑍
2(𝑛−1)

+ 2𝑍
𝑛−1

) ,

Z
2
= 𝑍2
𝑛
− 𝑍
2𝑛
− 2𝑍
𝑛+1

,

Z
3
= 2 [(1 + P

𝑛+1
) 𝑍
𝑛
− P
𝑛+5

] .

(65)

Corollary 10. Let H = RLMFLcircfr(P
1
, . . . ,P

𝑛
). If 𝑛 ≡

0 (𝑚𝑜𝑑 4), then

detH =
Z
1
+Z
2
−Z
3
− 2(P

𝑛
− 1)
𝑛

𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4
, (66)

and if 𝑛 ≡ 1 (𝑚𝑜𝑑 4), then

detH =
Z
1
+Z
2
−Z
3
+ 2(P

𝑛
− 1)
𝑛

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (67)

and if 𝑛 ≡ 2 (𝑚𝑜𝑑 4), then

detH =
−Z
1
−Z
2
+Z
3
+ 2(P

𝑛
− 1)
𝑛

𝑅
𝑛+2

𝑅
𝑛−5

− 𝑅
2𝑛−3

− 2𝑅
𝑛+4

− 4
, (68)

and if 𝑛 ≡ 3 (𝑚𝑜𝑑 4), then

detH =
−Z
1
−Z
2
+Z
3
− 2(P

𝑛
− 1)
𝑛

−𝑅
𝑛+2

𝑅
𝑛−5

+ 𝑅
2𝑛−3

+ 2𝑅
𝑛+4

+ 4
, (69)

whereZ
1
,Z
2
,Z
3
are defined the same as Theorem 9.

Proof. The theorem can be proved by using Theorem 9 and
relation (4).

2.3. Determinants of the RFMLR and RLMFL Circulant
Matrix Involving Tribonacci Numbers

Theorem 11. Let J = RFMLRcircfr(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
). If 𝑛 is odd,

then

det J =
(−U
1
−U
2
−U
3
− 2(1 − 𝑇

𝑛+1
)
𝑛

)

V
1

, (70)

and if 𝑛 is even, then

det J =
(U
1
+U
2
+U
3
− 2(1 − 𝑇

𝑛+1
)
𝑛

)

V
1

, (71)

where

U
1
= 𝑇𝑛
𝑛
(𝑈2
𝑛
− 𝑈
2𝑛
− 2𝑈
𝑛+1

− 2𝑈
𝑛
) ,

U
2
= 2𝑇𝑛−1
𝑛

(1 − 𝑇
𝑛−1

𝑈
𝑛
) ,

U
3
= 𝑇𝑛−1
𝑛

(1 − 𝑇
𝑛+1

) (𝑈2
𝑛−1

− 𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1

) ,

V
1
= 𝑉2
𝑛
− 𝑉2
𝑛−1

− 𝑉
2𝑛
+ 𝑉
2(𝑛−1)

− 2𝑉
𝑛+1

− 4𝑉
𝑛
− 2𝑉
𝑛−1

+ 2,

𝑈
𝑛
= 𝑢𝑛
1
+ 𝑢𝑛
2
+ 𝑢𝑛
3
,

𝑉
𝑛
= V𝑛
1
+ V𝑛
2
+ V𝑛
3
,

(72)

where 𝑢
1
, 𝑢
2
, 𝑢
3
and V

1
, V
2
, V
3
are the roots of the equations

𝑇
𝑛
𝑥3 + 𝑇

𝑛−1
𝑥2 + 𝑇

𝑛−2
𝑥 + 1 − 𝑇

𝑛+1
= 0, 𝑥3 + 𝑥2 + 𝑥 − 1 = 0,

respectively.

Proof. Obviously, J has the form

J = (

𝑇
1

𝑇
2

. . . 𝑇
𝑛

𝑇
𝑛
𝑇
1
− 𝑇
𝑛
. . . 𝑇

𝑛−1

...
... d

...
𝑇
3
𝑇
4
− 𝑇
3
. . . 𝑇

2

𝑇
2
𝑇
3
− 𝑇
2
. . . 𝑇
1
− 𝑇
𝑛

). (73)

According to Lemma 3 and the Binet form (16) and (14), we
have

det J =
𝑛

∏
𝑖=1

(𝑇
1
+ 𝑇
2
𝜀
𝑖
+ ⋅ ⋅ ⋅ + 𝑇

𝑛
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛

∑
𝑘=1

3

∑
𝑗=1

𝑏
𝑗
𝑡𝑘
𝑗
𝜀𝑘−1
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑖=1

𝑏
𝑗
𝑡
𝑗
(1 − 𝑡𝑛

𝑗
𝜀𝑛
𝑖
)

1 − 𝑡
𝑗
𝜀
𝑖

=
𝑛

∏
𝑖=1

𝑇
𝑛
𝜀3
𝑖
+ 𝑇
𝑛−1

𝜀2
𝑖
+ 𝑇
𝑛−2

𝜀
𝑖
+ 1 − 𝑇

𝑛+1

−𝜀3
𝑖
− 𝜀2
𝑖
− 𝜀
𝑖
+ 1

.

(74)

From Lemma 4 it follows that

𝑛

∏
𝑖=1

(𝑇
𝑛
𝜀3
𝑖
+ 𝑇
𝑛−1

𝜀2
𝑖
+ 𝑇
𝑛−2

𝜀
𝑖
+ 1 − 𝑇

𝑛+1
)

=
1

2
(−𝑇
𝑛
)
𝑛

(−𝑈2
𝑛
+ 𝑈
2𝑛
+ 2𝑈
𝑛+1

+ 2𝑈
𝑛
)

+ (−𝑇
𝑛
)
𝑛−1

(1 − 𝑇
𝑛−1

𝑈
𝑛
) +

1

2
(−𝑇
𝑛
)
𝑛−1

(1 − 𝑇
𝑛+1

)

× (𝑈2
𝑛−1

− 𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1

) + (1 − 𝑇
𝑛+1

)
𝑛

,

(75)
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where 𝑈
𝑛
= 𝑢𝑛
1
+ 𝑢𝑛
2
+ 𝑢𝑛
3
, 𝑢
1
, 𝑢
2
, 𝑢
3
are the roots of the

equation 𝑇
𝑛
𝑥3 + 𝑇

𝑛−1
𝑥2 + 𝑇

𝑛−2
𝑥 + 1 − 𝑇

𝑛+1
= 0. And

𝑛

∏
𝑖=1

(−𝜀3
𝑖
− 𝜀2
𝑖
− 𝜀
𝑖
+ 1) =

1

2
(−𝑉2
𝑛
+ 𝑉2
𝑛−1

+ 𝑉
2𝑛

− 𝑉
2(𝑛−1)

+ 2𝑉
𝑛+1

,

+4𝑉
𝑛
+ 2𝑉
𝑛−1

− 2) ,

(76)

where𝑉
𝑛
= V𝑛
1
+ V𝑛
2
+ V𝑛
3
, V
1
, V
2
, V
3
are the roots of the equation

𝑥3+𝑥2+𝑥−1 = 0. Consequently, we have the following results:
if 𝑛 is odd, then

det J =
(−U
1
−U
2
−U
3
− 2(1 − 𝑇

𝑛+1
)
𝑛

)

V
1

, (77)

and if 𝑛 is even, then

det J =
(U
1
+U
2
+U
3
− 2(1 − 𝑇

𝑛+1
)
𝑛

)

V
1

, (78)

where

U
1
= 𝑇𝑛
𝑛
(𝑈2
𝑛
− 𝑈
2𝑛
− 2𝑈
𝑛+1

− 2𝑈
𝑛
) ,

U
2
= 2𝑇𝑛−1
𝑛

(1 − 𝑇
𝑛−1

𝑈
𝑛
) ,

U
3
= 𝑇𝑛−1
𝑛

(1 − 𝑇
𝑛+1

) (𝑈2
𝑛−1

− 𝑈
2(𝑛−1)

+ 2𝑈
𝑛−1

) ,

V
1
= 𝑉2
𝑛
− 𝑉2
𝑛−1

− 𝑉
2𝑛
+ 𝑉
2(𝑛−1)

− 2𝑉
𝑛+1

− 4𝑉
𝑛
− 2𝑉
𝑛−1

+ 2.

(79)

The proof is completed.

Theorem 12. Let K = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(𝑇
𝑛
, . . . , 𝑇

1
). If 𝑛 is odd,

then

detK =
(−W
1
−W
2
+W
3
)

L
1

, (80)

and if 𝑛 is even, then

detK =
(W
1
+W
2
−W
3
)

L
1

, (81)

where

W
1
= 𝑊2
𝑛
−𝑊
2𝑛
− 2𝑊
𝑛+1

,

W
2
= 𝑇
𝑛
(𝑊2
𝑛−1

−𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1

) ,

W
3
= 2 (𝑇

𝑛+1
𝑊
𝑛
− 𝑇
𝑛+2

− 𝑇
𝑛
+ 𝑇𝑛
𝑛
) ,

L
1
= L
2

𝑛
− L
2

𝑛−1
− L
2𝑛
+ L
2(𝑛−1)

− 2L
𝑛+1

− 2L
𝑛−1

− 6,

𝑊
𝑛
= 𝑤𝑛
1
+ 𝑤𝑛
2
+ 𝑤𝑛
3
,

(82)

where 𝑤
1
, 𝑤
2
, 𝑤
3
are the roots of the equation 𝑥3 + (𝑇

𝑛+1
−

1)𝑥2 + (𝑇
𝑛+2

− 𝑇
𝑛+1

)𝑥 + 𝑇
𝑛
= 0.

Proof. Thematrix K has the form

K = (

𝑇
𝑛

𝑇
𝑛−1

. . . 𝑇
1

𝑇
1

𝑇
𝑛
− 𝑇
1

. . . 𝑇
2

...
... d

...
𝑇
𝑛−2

𝑇
𝑛−3

− 𝑇
𝑛−2

. . . 𝑇
𝑛−1

𝑇
𝑛−1

𝑇
𝑛−2

− 𝑇
𝑛−1

. . . 𝑇
𝑛
− 𝑇
1

). (83)

According to Lemma 3 and the Binet form (16) and (14), we
have

detK =
𝑛

∏
𝑖=1

(𝑇
𝑛
+ 𝑇
𝑛−1

𝜀
𝑖
+ ⋅ ⋅ ⋅ + 𝑇

1
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛−1

∑
𝑘=0

3

∑
𝑗=1

𝑏
𝑗
𝑡𝑛−𝑘
𝑗

𝜀𝑘
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑏
𝑗
𝑡𝑛+1
𝑗

− 𝑏
𝑗
𝑡
𝑗
𝜀𝑛
𝑖

𝑡
𝑗
− 𝜀
𝑖

=
𝑛

∏
𝑖=1

𝜀3
𝑖
+ (𝑇
𝑛+1

− 1) 𝜀2
𝑖
+ (𝑇
𝑛+2

− 𝑇
𝑛+1

) 𝜀
𝑖
+ 𝑇
𝑛

−𝜀3
𝑖
+ 𝜀2
𝑖
+ 𝜀
𝑖
+ 1

.

(84)

Considering Lemma 4 and (17), we obtain

𝑛

∏
𝑖=1

[𝜀3
𝑖
+ (𝑇
𝑛+1

− 1) 𝜀2
𝑖
+ (𝑇
𝑛+2

− 𝑇
𝑛+1

) 𝜀
𝑖
+ 𝑇
𝑛
]

=
1

2
(−1)
𝑛−1 [𝑊2

𝑛
−𝑊
2𝑛
− 2𝑊
𝑛+1

− 2𝑊
𝑛

+ 𝑇
𝑛
(𝑊2
𝑛−1

−𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1

)]

+ (−1)
𝑛−1 (−𝑇

𝑛+1
𝑊
𝑛
+𝑊
𝑛
+ 𝑇
𝑛+2

+ 𝑇
𝑛
) + 𝑇𝑛
𝑛
,

(85)

where 𝑊
𝑛
= 𝑤𝑛
1
+ 𝑤𝑛
2
+ 𝑤𝑛
3
, 𝑤
1
, 𝑤
2
, 𝑤
3
are the roots of the

equation 𝑥3 + (𝑇
𝑛+1

− 1)𝑥2 + (𝑇
𝑛+2

− 𝑇
𝑛+1

)𝑥 + 𝑇
𝑛
= 0. And

𝑛

∏
𝑖=1

(−𝜀3
𝑖
+ 𝜀2
𝑖
+ 𝜀
𝑖
+ 1) = (−L2

𝑛
+ L
2

𝑛−1
+ L
2𝑛

−L
2(𝑛−1)

+ 2L
𝑛+1

+ 2L
𝑛−1

+ 6)

× 2−1.

(86)

Consequently, if 𝑛 is odd, then

detK =
(−W
1
−W
2
+W
3
)

L
1

, (87)

and if 𝑛 is even, then

detK =
(W
1
+W
2
−W
3
)

L
1

, (88)
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where
W
1
= 𝑊2
𝑛
−𝑊
2𝑛
− 2𝑊
𝑛+1

,

W
2
= 𝑇
𝑛
(𝑊2
𝑛−1

−𝑊
2(𝑛−1)

+ 2𝑊
𝑛−1

) ,

W
3
= 2 (𝑇

𝑛+1
𝑊
𝑛
− 𝑇
𝑛+2

− 𝑇
𝑛
+ 𝑇𝑛
𝑛
) ,

L
1
= L
2

𝑛
− L
2

𝑛−1
− L
2𝑛
+ L
2(𝑛−1)

− 2L
𝑛+1

− 2L
𝑛−1

− 6.

(89)

Corollary 13. Let L = RLMFLcircfr(𝑇
1
, 𝑇
2
, . . . , 𝑇

𝑛
). If 𝑛 ≡

0 (𝑚𝑜𝑑4), then

det L =
(W
1
+W
2
−W
3
)

L
1

, (90)

and if 𝑛 ≡ 1 (mod 4), then

det L =
(−W
1
−W
2
+W
3
)

L
1

, (91)

and if 𝑛 ≡ 2 (mod 4), then

det L =
(−W
1
−W
2
+W
3
)

L
1

, (92)

and if 𝑛 ≡ 3 (mod 4), then

det L =
(W
1
+W
2
−W
3
)

L
1

, (93)

whereW
1
,W
2
,W
3
,L
1
are defined as Theorem 12.

Proof. The theorem can be proved by using Theorem 12 and
relation (4).

2.4. Determinants of the RFMLR and RLMFL Circulant
Matrix Involving Generalized Lucas Numbers

Theorem 14. LetM = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(L
1
, . . . ,L

𝑛
). If 𝑛 is odd,

then

detM =
(−S
1
+S
2
− S
3
− 2(1 − L

𝑛+1
)
𝑛

)

V
1

, (94)

and if 𝑛 is even, then

detM =
(S
1
−S
2
+S
3
− 2(1 − L

𝑛+1
)
𝑛

)

V
1

, (95)

where
S
1
= L
𝑛

𝑛
(𝑆2
𝑛
− 𝑆
2𝑛
− 2𝑆
𝑛+1

− 2𝑆
𝑛
) ,

S
2
= 2L𝑛−1
𝑛

(L
𝑛−1

𝑆
𝑛
+ 3𝑆
𝑛
− 6) ,

S
3
= (1 − L

𝑛+1
) (𝑆2
𝑛−1

− 𝑆
2(𝑛−1)

+ 2𝑆
𝑛−1

) ,

𝑆
𝑛
= 𝑠𝑛
1
+ 𝑠𝑛
2
+ 𝑠𝑛
3
,

(96)

where 𝑠
1
, 𝑠
2
, 𝑠
3
are the roots of the equationL

𝑛
𝑥3+(L

𝑛−1
+3)𝑥2+

(L
𝑛−2

+ 2)𝑥 + 1 − L
𝑛+1

= 0, andV
1
is defined as Theorem 11.

Proof. ThematrixM has the form

M = (

L
1

L
2

. . . L
𝑛

L
𝑛

L
1
− L
𝑛
. . . L

𝑛−1

...
... d

...
L
3

L
4
− L
3
. . . L

2

L
2

L
3
− L
2
. . . L
1
− L
𝑛

). (97)

According to Lemma 3 and the Binet form (17) and (14), we
have

detM =
𝑛

∏
𝑖=1

(L
1
+ L
2
𝜀
𝑖
+ ⋅ ⋅ ⋅ + L

𝑛
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛

∑
𝑘=1

3

∑
𝑗=1

𝑡𝑘
𝑗
𝜀𝑘−1
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑡
𝑗
(1 − 𝑡𝑛

𝑗
𝜀𝑛
𝑖
)

1 − 𝑡𝑛
𝑗
𝜀
𝑖

=
𝑛

∏
𝑖=1

[
L
𝑛
𝜀3
𝑖
+ (L
𝑛−1

+ 3) 𝜀2
𝑖
+ (L
𝑛−2

+ 2) 𝜀
𝑖

−𝜀3
𝑖
− 𝜀2
𝑖
− 𝜀
𝑖
+ 1

+
1 − L
𝑛+1

−𝜀3
𝑖
− 𝜀2
𝑖
− 𝜀
𝑖
+ 1

] .

(98)

From Lemma 4 and (17), we obtain
𝑛

∏
𝑖=1

[L
𝑛
𝜀3
𝑖
+ (L
𝑛−1

+ 3) 𝜀2
𝑖
+ (L
𝑛−2

+ 2) 𝜀
𝑖
+ 1 − L

𝑛+1
]

=
1

2
(−L
𝑛
)
𝑛

(−𝑆2
𝑛
+ 𝑆
2𝑛
+ 2𝑆
𝑛+1

+ 2𝑆
𝑛
) + (−L

𝑛
)
𝑛−1

× (−L
𝑛−1

𝑆
𝑛
− 3𝑆
𝑛
+ 6) +

1

2
(−L
𝑛
)
𝑛−1

(1 − L
𝑛+1

)

× (𝑆2
𝑛−1

− 𝑆
2(𝑛−1)

+ 2𝑆
𝑛−1

) + (1 − L
𝑛+1

)
𝑛

,

(99)

where 𝑆
𝑛
= 𝑠𝑛
1
+ 𝑠𝑛
2
+ 𝑠𝑛
3
, 𝑠
1
, 𝑠
2
, 𝑠
3
are the roots of the equation

L
𝑛
𝑥3 + (L

𝑛−1
+ 3)𝑥2 + (L

𝑛−2
+ 2)𝑥 + 1 − L

𝑛+1
= 0. And

𝑛

∏
𝑖=1

(−𝜀3
𝑖
− 𝜀2
𝑖
− 𝜀
𝑖
+ 1) =

1

2
(−𝑉2
𝑛
+ 𝑉2
𝑛−1

+ 𝑉
2𝑛

− 𝑉
2(𝑛−1)

+ 2𝑉
𝑛+1

+4𝑉
𝑛
+ 2𝑉
𝑛−1

− 2) ,

(100)

where𝑉
𝑛
= V𝑛
1
+ V𝑛
2
+ V𝑛
3
, V
1
, V
2
, V
3
are the roots of the equation

𝑥3 + 𝑥2 + 𝑥 − 1 = 0. Hence, if 𝑛 is odd, then

detM =
−S
1
+S
2
−S
3
− 2(1 − L

𝑛+1
)
𝑛

V
1

, (101)

and if 𝑛 is even, then

detM =
S
1
−S
2
+S
3
− 2(1 − L

𝑛+1
)
𝑛

V
1

, (102)
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where

S
1
= L
𝑛

𝑛
(𝑆2
𝑛
− 𝑆
2𝑛
− 2𝑆
𝑛+1

− 2𝑆
𝑛
) ,

S
2
= 2L𝑛−1
𝑛

(L
𝑛−1

𝑆
𝑛
+ 3𝑆
𝑛
− 6) ,

S
3
= (1 − L

𝑛+1
) (𝑆2
𝑛−1

− 𝑆
2(𝑛−1)

+ 2𝑆
𝑛−1

) ,

(103)

andV
1
is defined as Theorem 11.

Theorem 15. Let N = 𝑅𝐹𝑀𝐿𝑅𝑐𝑖𝑟𝑐𝑓𝑟(L
𝑛
, . . . ,L

1
). If 𝑛 is odd,

then

detN =
(−T
1
+T
2
−T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (104)

and if 𝑛 is even, then

detN =
(T
1
−T
2
+T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (105)

where

T
1
= Γ2
𝑛
− Γ
2𝑛
− 2Γ
𝑛+1

,

T
2
= 2 (L

𝑛+1
+ 2) Γ

𝑛
− 2 (L

𝑛+2
+ L
𝑛
) ,

T
3
= (L
𝑛
− 3) (Γ2

𝑛−1
− Γ
2(𝑛−1)

+ 2Γ
𝑛−1

) ,

Γ
𝑛
= 𝛾𝑛
1
+ 𝛾𝑛
2
+ 𝛾𝑛
3
,

(106)

where 𝛾
1
, 𝛾
2
, 𝛾
3
are the roots of the equation 𝑥3+(L

𝑛+1
+1)𝑥2+

(L
𝑛+2

−L
𝑛+1

+1)𝑥+L
𝑛
−3 = 0, andL

1
is defined asTheorem 12.

Proof. Thematrix N has the form

N = (

L
𝑛

L
𝑛−1

. . . L
1

L
1

L
𝑛
− L
1

. . . L
2

...
... d

...
L
𝑛−2

L
𝑛−3

− L
𝑛−2

. . . L
𝑛−1

L
𝑛−1

L
𝑛−2

− L
𝑛−1

. . . L
𝑛
− L
1

). (107)

According to Lemma 3, (17), and (14), we have

detN =
𝑛

∏
𝑖=1

(L
𝑛
+ L
𝑛−1

𝜀
𝑖
+ ⋅ ⋅ ⋅ + L

1
𝜀𝑛−1
𝑖

)

=
𝑛

∏
𝑖=1

𝑛−1

∑
𝑘=0

3

∑
𝑗=1

𝑡𝑛−𝑘
𝑗

𝜀𝑘
𝑖

=
𝑛

∏
𝑖=1

3

∑
𝑗=1

𝑡𝑛+1
𝑗

− 𝑡
𝑗
𝜀𝑛
𝑖

𝑡
𝑗
− 𝜀
𝑖

=
𝑛

∏
𝑖=1

[
𝜀3
𝑖
+ (L
𝑛+1

+ 1) 𝜀2
𝑖
+ L
𝑛
− 3

−𝜀3
𝑖
+ 𝜀2
𝑖
+ 𝜀
𝑖
+ 1

+
(L
𝑛+2

− L
𝑛+1

+ 1) 𝜀
𝑖

−𝜀3
𝑖
+ 𝜀2
𝑖
+ 𝜀
𝑖
+ 1

] .

(108)

By Lemma 4 and the Binet form (17), we obtain
𝑛

∏
𝑖=1

[𝜀3
𝑖
+ (L
𝑛+1

+ 1) 𝜀2
𝑖
+ (L
𝑛+2

− L
𝑛+1

+ 1) 𝜀
𝑖

+L
𝑛
− 3]

=
1

2
(−1)
𝑛 (−Γ2
𝑛
+ Γ
2𝑛
+ 2Γ
𝑛+1

+ 2Γ
𝑛
) + (−1)

𝑛−1

× (−L
𝑛+1

Γ
𝑛
− Γ
𝑛
+ L
𝑛+2

+ L
𝑛
) +

1

2
(−1)
𝑛−1

× (L
𝑛
− 3) (Γ2

𝑛−1
− Γ
2(𝑛−1)

+ 2Γ
𝑛−1

) + (L
𝑛
− 3)
𝑛

,

(109)

where Γ
𝑛
= 𝛾𝑛
1
+𝛾𝑛
2
+𝛾𝑛
3
, 𝛾
1
, 𝛾
2
, 𝛾
3
are the roots of the equation

𝑥3 + (L
𝑛+1

+ 1)𝑥2 + (L
𝑛+2

− L
𝑛+1

+ 1)𝑥 + L
𝑛
− 3 = 0. And

𝑛

∏
𝑖=1

(−𝜀3
𝑖
+ 𝜀2
𝑖
+ 𝜀
𝑖
+ 1) = (−L2

𝑛
+ L
2

𝑛−1
+ L
2𝑛

−L
2(𝑛−1)

+ 2L
𝑛+1

+ 2L
𝑛−1

+ 6)

× 2−1.

(110)

Thus, if 𝑛 is odd, then

detN =
(−T
1
+T
2
−T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (111)

and if 𝑛 is even, then

detN =
(T
1
−T
2
+T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (112)

where

T
1
= Γ2
𝑛
− Γ
2𝑛
− 2Γ
𝑛+1

,

T
2
= 2 (L

𝑛+1
+ 2) Γ

𝑛
− 2 (L

𝑛+2
+ L
𝑛
) ,

T
3
= (L
𝑛
− 3) (Γ2

𝑛−1
− Γ
2(𝑛−1)

+ 2Γ
𝑛−1

) ,

(113)

andL
1
is defined as Theorem 12.

Corollary 16. LetP=RLMFLcircfr(L
1
, . . . ,L

𝑛
). If 𝑛 ≡ 0 (mod

4), then

detP =
(T
1
−T
2
+T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (114)

and if 𝑛 ≡ 1 (mod 4), then

detP =
(−T
1
+T
2
−T
3
− 2(L

𝑛
− 3)
𝑛

)

L
1

, (115)

and if 𝑛 ≡ 2 (mod 4), then

detP =
(−T
1
+T
2
−T
3
+ 2(L

𝑛
− 3)
𝑛

)

L
1

, (116)
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and if 𝑛 ≡ 3 (mod 4), then

detP =
(T
1
−T
2
+T
3
+ 2(L

𝑛
− 3)
𝑛

)

L
1

, (117)

whereT
1
,T
2
,T
3
,L
1
are defined as Theorem 15.

Proof. The theorem can be proved by using Theorem 15 and
relation (4).

3. Conclusions

The row first-minus-last right (RFMLR) circulant matrices
and row last-minus-first left (RLMFL) circulant matrices are
two kinds of matrices with specific structure. We explored
the determinant problem of these two kinds of matrices
when their entries are Perrin, Padovan, Tribonacci, and
the generalized Lucas sequences, respectively. On the basis
of the inverse factorization of polynomial and the third-
order recurrence, Binet form, and other properties of these
sequences, we present the exact formulae of determinants by
some terms of these famous sequences. Chillag has studied
some properties and applications of 𝑓(𝑥)-circulant matrices
in [7]. The RFMLR circulant and RLMFL circulant matrices
have more explicit structures and better properties than
the general 𝑓(𝑥)-circulant matrices, so they will play more
important roles than the general 𝑓(𝑥)-circulant matrices in
some fields of signal encoding, image processing, and so on.
That is the reason why we focus our attentions on RFMLR
circulant and RLMFL circulant matrices.
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