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The derivation of conservation laws for the magma equation using the multiplier method for both the power law and exponential
law relating the permeability and matrix viscosity to the voidage is considered. It is found that all known conserved vectors for the
magma equation and the new conserved vectors for the exponential laws can be derived using multipliers which depend on the
voidage and spatial derivatives of the voidage. It is also found that the conserved vectors are associated with the Lie point symmetry
of themagma equationwhich generates travellingwave solutionswhichmay explain by the double reduction theorem for associated
Lie point symmetries why many of the known analytical solutions are travelling waves.

1. Introduction

The one-dimensional migration of melt upwards through the
mantle of the Earth is governed by the third order nonlinear
partial differential equation

𝜕𝜙

𝜕𝑡
+
𝜕

𝜕𝑧
[𝐾 (𝜙) (1 −

𝜕

𝜕𝑧
(𝐺 (𝜙)

𝜕𝜙

𝜕𝑡
))] = 0, (1)

where 𝜙(𝑡, 𝑧) is the voidage or volume fraction of melt, 𝑡 is
time, 𝑧 is the vertical spatial coordinate,𝐾 is the permeability
of the medium, and 𝐺 is the viscosity of the matrix phase.
The variables 𝜙, 𝑡, and 𝑧 and the physical quantities 𝐾(𝜙)
and 𝐺(𝜙) in (1) are dimensionless. The voidage 𝜙(𝑡, 𝑧) is
scaled by the background voidage 𝜙

0
. The background state

is therefore defined by 𝜙 = 1. The characteristic length in the
𝑧-direction, which is vertically upwards, is the compaction
length 𝛿

𝑐
defined by

𝛿
𝑐
= [

𝐾 (𝜙
0
) 𝐺 (𝜙

0
)

𝜇
]

1/2

, (2)

where 𝜇 is the coefficient of shear viscosity of the melt. The
characteristic time is 𝑡

0
defined by

𝑡
0
=

𝜙
0

𝑔Δ𝜌
[
𝜇𝐺 (𝜙

0
)

𝐾 (𝜙
0
)
]

1/2

, (3)

where 𝑔 is the acceleration due to gravity and Δ𝜌 is the
difference between the density of the solid matrix and the
density of the melt. The permeability is scaled by 𝐾(𝜙

0
) and

therefore

𝐾 (1) = 1. (4)

When the voidage is zero the permeability must also be zero
and therefore

𝐾 (0) = 0. (5)

The viscosity 𝐺(𝜙) is scaled by 𝐺(𝜙
0
) so that

𝐺 (1) = 1 (6)

and 𝐺(0) will be infinite because the matrix viscosity is
infinite when the voidage vanishes. In the derivation of (1)
it is assumed that the background voidage satisfies 𝜙

0
≪ 1.
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The partially molten medium consists of a solid matrix
and a fluid melt which are modelled as two immiscible
fully connected fluids of constant but different densities. The
density of the melt is less than the density of the solid matrix
and the melt migrates through the compacting medium by
the buoyancy force due to the difference in density between
the melt and the solid matrix. Changes of phase are not
included in the model. It is assumed that the melting has
occurred and only migration of the melt under gravity is
described by (1) [1].

In the model proposed by Scott and Stevenson [2],
consider

𝐾(𝜙) = 𝜙
𝑛
, 𝐺 (𝜙) = 𝜙

−𝑚
, (7)

where 𝑛 ≥ 0 and 𝑚 ≥ 0. Harris and Clarkson [3] have
investigated this model using Painleve analysis. Mindu and
Mason [4] showed that the magma equation also admits Lie
point symmetries other than translations in time and space if
the permeability is in the form of an exponential law:

𝐾(𝜙) = exp [𝑛 (𝜙 − 1)] . (8)

Conservation laws for (1) when the permeability and matrix
viscosity satisfy the power laws (7) have been obtained using
the direct method by Barcilon and Richter [5] and Harris [6]
and using Lie point symmetry generators by Maluleke and
Mason [7].

In this paper we will derive the conservation laws for the
partial differential equation (1) using the multiplier method.
We will consider power laws given by (7) and also the
exponential laws
𝐾(𝜙) = exp [𝑛 (𝜙 − 1)] , 𝐺 (𝜙) = exp [−𝑚 (𝜙 − 1)] ,

(9)

where 𝑛 ≥ 0 and 𝑚 ≥ 0, relating the permeability and
matrix viscosity to the voidage. The permeability increases
as the voidage increases while the viscosity of the matrix
decreases as the voidage increases. The exponential laws are
not suitable models when the voidage 𝜙 is small because
𝐾(0) = exp(−𝑛) ̸= 0 and 𝐺(0) = exp(𝑚) ̸=∞. They are
suitable for describing rarefaction for which 𝜙 > 1.

An outline of the paper is as follows. In Section 2 we
present the formulae and theory that we will use in the paper.
In Section 3 conservation laws for the magma equation, with
power laws relating the permeability and viscosity to the
voidage, are derived using the multiplier method. Further in
Section 4 conservation laws for the magma equation, with
exponential laws relating the permeability and viscosity to the
voidage, are derived using the multiplier method. Finally the
conclusions are summarized in Section 5.

2. Formulae and Theory

Consider an 𝑠th order partial differential equation
𝐹 (𝑥, 𝜙, 𝜙

(1)
, . . . , 𝜙

(𝑠)
) = 0, (10)

in the variables 𝑥 = (𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑝
), where 𝜙

(𝑝)
denotes the

collection of 𝑝th-order partial derivatives of 𝜙. The equation

𝐷
𝑖
𝑇
𝑖
= 0, (11)

evaluated on the surface given by (10), where 𝑖 runs from 1 to
𝑟 and𝐷

𝑖
is the total derivative defined by

𝐷
𝑖
=

𝜕

𝜕𝑥
𝑖

+ 𝜙
𝑖

𝜕

𝜕𝜙
+ 𝜙
𝑘𝑖

𝜕

𝜕𝜙
𝑘

+ ⋅ ⋅ ⋅ , (12)

is called a conservation law for the differential equation (10).
The vector 𝑇 = (𝑇

1
, . . . , 𝑇

𝑟
) is a conserved vector for the par-

tial differential equation and 𝑇1, . . . , 𝑇𝑟 are its components.
Thus, a conserved vector gives rise to a conservation law. A
Lie point symmetry generator

𝑋 = 𝜉
𝑖
(𝑥, 𝑢)

𝜕

𝜕𝑥𝑖
+ 𝜂 (𝑥, 𝜙)

𝜕

𝜕𝜙
, (13)

where 𝑖 runs from 1 to 𝑟, is said to be associated with the
conserved vector 𝑇 = (𝑇

1
, . . . , 𝑇

𝑟
) for the partial differential

equation (10) if [8, 9]

𝑋(𝑇
𝑖
) + 𝑇
𝑖
𝐷
𝑘
(𝜉
𝑘
) − 𝑇
𝑘
𝐷
𝑘
(𝜉
𝑖
) = 0, 𝑖 = 1, 2, . . . 𝑟. (14)

The association of a Lie point symmetrywith a conserved vec-
tor can be used to integrate the partial differential equation
twice by the double reduction theorem of Sjöberg [10].

Conserved vectors for a partial differential equation can
be generated from known conserved vectors and Lie point
symmetries of the partial differential equation. For

𝑇
𝑖

∗
= 𝑋(𝑇

𝑖
) + 𝑇
𝑖
𝐷
𝑘
(𝜉
𝑘
) − 𝑇
𝑘
𝐷
𝑘
(𝜉
𝑖
) , 𝑖 = 1, 2, . . . 𝑟,

(15)

where 𝑘 runs from 1 to 𝑟, is a conserved vector for the partial
differential equation although it may be a linear combination
of known conserved vectors [8, 9].

We now present the multiplier method for the derivation
of conservation laws for partial differential equations.Wewill
outline its application to the partial differential equation (1) in
two independent variables.

(1) Multiply the partial differential equation (1) by the
multiplier, Λ, to obtain the conservation law

Λ𝐹 = 𝐷
1
𝑇
1
+ 𝐷
2
𝑇
2
, (16)

where 𝐹 = 0 is the partial differential equation (1), 𝑥1 = 𝑡 and
𝑥
2
= 𝑧, and

𝐷
1
= 𝐷
𝑡
=
𝜕

𝜕𝑡
+ 𝜙
𝑡

𝜕

𝜕𝜙
+ 𝜙
𝑡𝑡

𝜕

𝜕
𝑡

+ 𝜙
𝑧𝑡

𝜕

𝜕
𝑧

+ ⋅ ⋅ ⋅ ,

𝐷
2
= 𝐷
𝑧
=

𝜕

𝜕𝑧
+ 𝜙
𝑧

𝜕

𝜕𝜙
+ 𝜙
𝑡𝑧

𝜕

𝜕
𝑡

+ 𝜙
𝑧𝑧

𝜕

𝜕
𝑧

+ ⋅ ⋅ ⋅ .

(17)

The multiplier depends on 𝑡, 𝑧, 𝜙, and the partial derivatives
of𝜙.Themore derivatives included in themultiplier thewider
the range of conserved vectors that can be derived.

(2) The determining equation for the multiplier is
obtained by operating on (16) by the Euler operator 𝐸

𝜙

defined by [11]

𝐸
𝜙
=

𝜕

𝜕𝜙
− 𝐷
𝑡

𝜕

𝜕𝜙
𝑡

− 𝐷
𝑧

𝜕

𝜕𝜙
𝑧

+ 𝐷
2

𝑡

𝜕

𝜕𝜙
𝑡𝑡

+ 𝐷
𝑡
𝐷
𝑧

𝜕

𝜕𝜙
𝑡𝑧

+ 𝐷
2

𝑧

𝜕

𝜕𝜙
𝑧𝑧

− ⋅ ⋅ ⋅ .

(18)
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Since the Euler operator annihilates divergence expressions
this gives [11]

𝐸
𝜙 [Λ𝐹] = 0. (19)

(3) The determining equation (19) is separated by equat-
ing the coefficients of like powers and products of the
derivatives of 𝜙 because 𝜙 is an arbitrary function.

(4) When 𝜙 is a solution of the partial differential equa-
tion, 𝐹 = 0, (16) becomes a conservation law. The condition
𝐹 = 0 is imposed on (16). The product of the multiplier and
the partial differential equation is then written in conserved
form by elementary manipulations.This yields the conserved
vectors by setting all the constants equal to zero except one in
turn.

3. Conservation Laws for the Magma
Equation with Power Law Permeability and
Viscosity by the Multiplier Method

When the permeability and viscosity are related to the
voidage by the power laws (7) the magma equation becomes

𝜕𝜙

𝜕𝑡
+
𝜕

𝜕𝑧
[𝜙
𝑛
(1 −

𝜕

𝜕𝑧
(𝜙
−𝑚 𝜕𝜙

𝜕𝑡
))] = 0. (20)

3.1. Lower Order Conservation Laws. In order to derive
conservation laws for (20) consider first a multiplier of the
form

Λ = Λ (𝜙) . (21)

A multiplier for the partial differential equation has the
property

Λ (𝜙) 𝐹 (𝜙, 𝜙
𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
) = 𝐷

1
𝑇
1
+ 𝐷
2
𝑇
2
, (22)

where
𝐹 (𝜙, 𝜙

𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)

= 𝜙
𝑡
+ 𝑛𝜙
𝑛−1
𝜙
𝑧
+ 𝑚 (𝑛 − 𝑚 − 1) 𝜙

𝑛−𝑚−2
𝜙
2

𝑧
𝜙
𝑡

+ 𝑚𝜙
𝑛−𝑚−1

𝜙
𝑧𝑧
𝜙
𝑡
+ (2𝑚 − 𝑛) 𝜙

𝑛−𝑚−1
𝜙
𝑧
𝜙
𝑡𝑧

− 𝜙
𝑛−𝑚

𝜙
𝑡𝑧𝑧
.

(23)

The determining equation for the multiplier is
𝐸
𝜙
[Λ (𝜙) 𝐹 (𝜙, 𝜙

𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)] = 0, (24)

where 𝐸
𝜙
is defined by (18). Separating (24) with respect to

products and powers of the partial derivatives of 𝜙 we obtain
the following system of equations:

𝜙
𝑧
𝜙
𝑡𝑧
: 𝜙

𝑑
2
Λ

𝑑𝜙2
+ (𝑚 + 𝑛)

𝑑Λ

𝑑𝜙
= 0, (25)

𝜙
𝑡
𝜙
𝑧𝑧
: 𝜙

𝑑
2
Λ

𝑑𝜙2
+ (𝑚 + 𝑛)

𝑑Λ

𝑑𝜙
= 0, (26)

𝜙
𝑡
𝜙
2

𝑧
: 𝜙
2 𝑑
3
Λ

𝑑𝜙3
+ 2𝑛𝜙

𝑑
2
Λ

𝑑𝜙2
− (𝑚 + 𝑛) (𝑚 − 𝑛 + 1)

𝑑Λ

𝑑𝜙
= 0.

(27)

n

m

n
=
m
−
1

( 3
2
,
1

2
)

m = 1

(1, 1)

n
+
m
−
2
=
0

n
+
m
−
1
=
0

2.01.51.00.5

2.0

1.5

1.0

0.5

0.0

(1, 0)

Figure 1: The (𝑚, 𝑛)-plane. The conservation laws are constrained
to the region 𝑚 ≥ 0, 𝑛 ≥ 0. The special cases are the straight lines
𝑛 + 𝑚 − 1 = 0, 𝑛 + 𝑚 − 2 = 0,𝑚 = 1, and 𝑛 = 𝑚 − 1.

Equation (26) is the same as (25). It is readily verified that
every solution of (25) is a solution of (27). We therefore need
to consider only (25). The general solution of (25) is

Λ (𝜙) = 𝑐
2
𝜙
1−𝑚−𝑛

+ 𝑐
1
, if 𝑛 + 𝑚 − 1 ̸= 0, (28)

Λ (𝜙) = 𝑐
2
ln𝜙 + 𝑐

1
, if 𝑛 + 𝑚 − 1 = 0. (29)

There are several cases to consider depending on the
values of 𝑚 and 𝑛. The special cases are illustrated as lines
and points in the (𝑚, 𝑛) plane in Figure 1.

(i) 𝑛 + 𝑚 − 1 ̸= 0, 𝑛 + 𝑚 − 2 ̸= 0,𝑚 ̸= 1. From (22) and (28),

(𝑐
1
+ 𝑐
2
𝜙
1−𝑚−𝑛

) (𝜙
𝑡
+ 𝑛𝜙
𝑛−1
𝜙
𝑧
+ 𝑚 (𝑛 − 𝑚 − 1)

× 𝜙
𝑛−𝑚−2

𝜙
2

𝑧
𝜙
𝑡
+ 𝑚𝜙
𝑛−𝑚−1

𝜙
𝑧𝑧
𝜙
𝑡

+ (2𝑚 − 𝑛) 𝜙
𝑛−𝑚−1

𝜙
𝑧
𝜙
𝑡𝑧
− 𝜙
𝑛−𝑚

𝜙
𝑡𝑧𝑧
)

= 𝐷
1
[𝑐
1
𝜙 + 𝑐
2
(

1

2 − 𝑚 − 𝑛
(𝜙
2−𝑚−𝑛

− 1)

+
(1 − 𝑚 − 𝑛)

2
𝜙
−2𝑚

𝜙
2

𝑧
)]

+ 𝐷
2
[𝑐
1
(𝜙
𝑛
(1 + 𝑚𝜙

−𝑚−1
𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
))

+ 𝑐
2
(

𝑛

𝑚 − 1
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙
−2𝑚

𝜙
𝑡
𝜙
𝑧
)] .

(30)
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Equation (30) is satisfied for arbitrary functions𝜙(𝑡, 𝑧).When
𝜙(𝑡, 𝑧) is a solution of the partial differential equation (20),
then

𝐷
1
[𝑐
1
𝜙+𝑐
2
(

1

2 − 𝑚 − 𝑛
(𝜙
2−𝑚−𝑛

−1)+
(1−𝑚 −𝑛)

2
𝜙
−2𝑚

𝜙
2

𝑧
)]

+ 𝐷
2
[𝑐
1
(𝜙
𝑛
(1 + 𝑚𝜙

−𝑚−1
𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
))

+𝑐
2
(

𝑛

𝑚 − 1
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙
−2𝑚

𝜙
𝑡
𝜙
𝑧
)] = 0.

(31)

Hence, any conserved vector of the partial differential equa-
tion (20) with 𝑚 and 𝑛 satisfying the conditions of this
case and with multiplier of the form Λ = Λ(𝜙) is a linear
combination of the two conserved vectors

𝑇
1
= 𝜙, 𝑇

2
= 𝜙
𝑛
(1 + 𝑚𝜙

−𝑚−1
𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
) , (32)

𝑇
1
=

1

2 − 𝑚 − 𝑛
(𝜙
2−𝑚−𝑛

− 1) +
(1 − 𝑚 − 𝑛)

2
𝜙
−2𝑚

𝜙
2

𝑧
,

𝑇
2
=

𝑛

1 − 𝑚
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙
−2𝑚

𝜙
𝑡
𝜙
𝑧
.

(33)

The conserved vector (32) is the elementary conserved vector.

(ii) 𝑛 + 𝑚 = 1,𝑚 ̸= 1. Proceeding as before we obtain

𝑇
1
= 𝜙, 𝑇

2
= 𝜙
1−𝑚

(1 + 𝑚𝜙
−𝑚−1

𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
) ,

(34)

𝑇
1
= −

1

2
𝜙
−2𝑚

𝜙
2

𝑧
+ ln𝜙,

𝑇
2
= 𝜙
1−2𝑚 ln𝜙 − 1

1 − 𝑚
𝜙
1−𝑚

− (𝜙
1−2𝑚 ln𝜙) 𝜙

𝑡𝑧
+ (𝑚𝜙

−2𝑚 ln𝜙) 𝜙
𝑡
𝜙
𝑧
.

(35)

The conserved vector (34) is the elementary conserved vector
with 𝑛 = 1 − 𝑚. The multiplier for (35) is, from (29),

Λ (𝜙) = ln𝜙. (36)

(iii) 𝑛 + 𝑚 = 2,𝑚 ̸= 1.We find that

𝑇
1
= 𝜙, 𝑇

2
= 𝜙
2−𝑚

(1 + 𝑚𝜙
−𝑚−1

𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
) ,

(37)

𝑇
1
= −

1

2
𝜙
−2𝑚

𝜙
2

𝑧
+ ln𝜙,

𝑇
2
=
2 − 𝑚

1 − 𝑚
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙
−2𝑚

𝜙
𝑡
𝜙
𝑧
.

(38)

The conserved vector (37) is the elementary conserved vector
with 𝑛 = 2 − 𝑚. The multiplier for (38) is, from (28),

Λ (𝜙) =
1

𝜙
. (39)

(iv)𝑚 = 1, 𝑛 = 0.We obtain

𝑇
1
= 𝜙, 𝑇

2
= 1 + 𝜙

−2
𝜙
𝑡
𝜙
𝑧
− 𝜙
−1
𝜙
𝑡𝑧
, (40)

𝑇
1
= −

1

2
𝜙
−2
𝜙
2

𝑧
+ 𝜙 ln𝜙 − 𝜙,

𝑇
2
= − (𝜙

−1 ln𝜙) 𝜙
𝑡𝑧
+ (𝜙
−2 ln𝜙) 𝜙

𝑡
𝜙
𝑧
.

(41)

The conserved vector (40) is the elementary conserved vector
with𝑚 = 1, 𝑛 = 0. The multiplier for (41) is given by (29).

(v)𝑚 = 𝑛 = 1.We obtain

𝑇
1
= 𝜙, 𝑇

2
= 𝜙 (1 + 𝜙

−2
𝜙
𝑡
𝜙
𝑧
− 𝜙
−1
𝜙
𝑡𝑧
) , (42)

𝑇
1
= −

1

2
𝜙
−2
𝜙
2

𝑧
+ ln𝜙,

𝑇
2
= ln𝜙 − 𝜙−1𝜙

𝑡𝑧
+ 𝜙
−2
𝜙
𝑡
𝜙
𝑧
.

(43)

The conserved vector (42) is the elementary conserved vector
with𝑚 = 𝑛 = 1. The multiplier for (43) is (39).

(vi)𝑚 = 1, 𝑛 ̸= 0, 𝑛 ̸= 1.We obtain

𝑇
1
= 𝜙, 𝑇

2
= 𝜙
𝑛
(1 + 𝜙

−2
𝜙
𝑡
𝜙
𝑧
− 𝜙
−1
𝜙
𝑡𝑧
) , (44)

𝑇
1
=

1

1 − 𝑛
𝜙
1−𝑛

−
𝑛

2
𝜙
−2
𝜙
2

𝑧
,

𝑇
2
= ln𝜙 − 𝜙−1𝜙

𝑡𝑧
+ 𝜙
−2
𝜙
𝑡
𝜙
𝑧
.

(45)

The conserved vector (44) is the elementary conserved vector
with𝑚 = 1. The multiplier for (45) is

Λ (𝜙) = 𝜙
−𝑛
. (46)

3.2. The Search for Higher Order Conservation Laws. We now
consider a multiplier of the form

Λ = Λ (𝜙, 𝜙
𝑧
) . (47)

As before the determining equation for the multiplier is

𝐸
𝜙
[Λ (𝜙, 𝜙

𝑧
) 𝐹 (𝜙, 𝜙

𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)] = 0, (48)

where 𝐹 is given by (23). By equating the coefficient of the
highest order derivative term, 𝜙

𝑡𝑧𝑧𝑧
, to zero in (48) we have

𝜕Λ

𝜕𝜙
𝑧

= 0, (49)

and therefore

Λ (𝜙, 𝜙
𝑧
) = Λ (𝜙) . (50)

Hence, (47) does not give a newmultiplier or a new conserved
vector.

Consider next the multiplier

Λ = Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) . (51)
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The determining equation for the multiplier is

𝐸
𝜙
[Λ (𝜙, 𝜙

𝑧
, 𝜙
𝑧𝑧
) 𝐹 (𝜙, 𝜙

𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)] = 0, (52)

where 𝐹 is given by (23). By Equating the coefficients of
𝜙
𝑡𝑧
𝜙
𝑧𝑧𝑧𝑧

, 𝜙
𝑡
𝜙
𝑧𝑧𝑧𝑧

, and 𝜙
2

𝑧𝑧𝑧𝑧
to zero in (52), we obtain the

following system of equations:

𝜙
𝑡𝑧
𝜙
𝑧𝑧𝑧𝑧

: (2𝑚 − 𝑛) 𝜙
𝑧

𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

+ 𝜙
𝜕
2
Λ

𝜕𝜙
𝑧
𝜙
𝑧𝑧

= 0, (53)

𝜙
𝑡
𝜙
𝑧𝑧𝑧𝑧

: (𝜙
𝑚+2

+ 𝑚 (𝑛 − 𝑚 − 1) 𝜙
𝑛
+ 𝑚𝜙
𝑛+1
)
𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

+ (𝑚 + 𝑛) 𝜙
𝑛+1 𝜕Λ

𝜕𝜙
𝑧𝑧

+ 𝜙
𝑛+2 𝜕

2
Λ

𝜕𝜙𝜕𝜙
𝑧𝑧

= 0,

(54)

𝜙
2

𝑧𝑧𝑧𝑧
:
𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

= 0. (55)

From (55) it follows that

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝐴 (𝜙, 𝜙

𝑧
) 𝜙
𝑧𝑧
+ 𝐵 (𝜙, 𝜙

𝑧
) . (56)

Substituting (56) into (53) we find that

𝜕𝐴

𝜕𝜙
𝑧

= 0, (57)

and therefore

𝐴 (𝜙, 𝜙
𝑧
) = 𝐴 (𝜙) . (58)

Thus, (51) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝐴 (𝜙) 𝜙

𝑧𝑧
+ 𝐵 (𝜙, 𝜙

𝑧
) . (59)

Now substitute (59) into (54) which gives

𝜙
𝑑𝐴

𝑑𝜙
+ (𝑚 + 𝑛)𝐴 = 0. (60)

The solution to (60) is

𝐴 = 𝑐
1
𝜙
−(𝑚+𝑛)

, (61)

where 𝑐
1
is a constant. Equation (59) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
−(𝑚+𝑛)

𝜙
𝑧𝑧
+ 𝐵 (𝜙, 𝜙

𝑧
) . (62)

Now substitute (62) into (48) and then equate the coeffi-
cient of 𝜙

𝑡𝑧𝑧𝑧
in (48) to zero. This gives

𝜕𝐵

𝜕𝜙
𝑧

= 𝑐
1 (𝑛 − 2𝑚) 𝜙

−(𝑚+𝑛+1)
𝜙
𝑧 (63)

and integrating (63) we have

𝐵 (𝜙, 𝜙
𝑧
) =

1

2
𝑐
1
(𝑛 − 2𝑚) 𝜙

−(𝑚+𝑛+1)
𝜙
2

𝑧
+ 𝑃 (𝜙) . (64)

Thus, (62) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
−(𝑚+𝑛)

𝜙
𝑧𝑧

+
1

2
𝑐
1
(𝑛 − 2𝑚) 𝜙

−(𝑚+𝑛+1)
𝜙
2

𝑧
+ 𝑃 (𝜙) .

(65)

Lastly, substitute (65) into (48) and equate the coefficient of
𝜙
𝑡
𝜙
2

𝑧
𝜙
𝑧𝑧
to zero, which gives

(𝑚 − 𝑛 − 1) 𝑐
1
= 0. (66)

It follows from (66) that there are two cases.

Case 1 (𝑐
1
= 0). If𝑚−𝑛−1 ̸= 0, then from (66) we have 𝑐

1
= 0.

Therefore,

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑃 (𝜙) . (67)

Thus, Λ(𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) does not give a new multiplier and

therefore new conservation laws will not be derived.

Case 2 (𝑛 = 𝑚−1). If 𝑐
1
̸= 0, then from (66), we have 𝑛 = 𝑚−1.

Thus, (65) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
1−2𝑚

𝜙
𝑧𝑧
−
1

2
(𝑚 + 1) 𝑐

1
𝜙
−2𝑚

𝜙
2

𝑧
+ 𝑃 (𝜙) .

(68)

Now substitute (68) into (48) and equate the coefficient of
𝜙
𝑧
𝜙
𝑡𝑧
in (48) to zero, which gives

𝑑
2
𝑃

𝑑𝜙2
+
(2𝑚 − 1)

𝜙

𝑑𝑃

𝑑𝜙
= (𝑚 − 2) 𝑐

1
𝜙
1−2𝑚

. (69)

Solving (69) we have

𝑃 (𝜙) =
𝑚 − 2

3 − 2𝑚
𝜙
3−2𝑚

𝑐
1
+

𝜙
2(1−𝑚)

2 (1 − 𝑚)
𝑐
2
+ 𝑐
3

(70)

provided that 𝑚 ̸= 3/2 and 𝑚 ̸= 1. Since 𝑛 = 𝑚 − 1, these two
special cases correspond to the points (3/2, 1/2) and (1, 0) on
the (𝑚, 𝑛) plane in Figure 1.

Consider first the general case 𝑛 = 𝑚 − 1 excluding the
points (3/2, 1/2) and (1, 0). Equation (68) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
1−2𝑚

𝜙
𝑧𝑧
−
1

2
(𝑚 + 1) 𝑐

1
𝜙
−2𝑚

𝜙
2

𝑧

+
𝑚 − 2

3 − 2𝑚
𝜙
3−2𝑚

𝑐
1
+

𝜙
2(1−𝑚)

2 (1 − 𝑚)
𝑐
2
+ 𝑐
3
.

(71)

Substituting (71) into (48) we find that 𝑐
2
= 0. Hence,

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
1−2𝑚

𝜙
𝑧𝑧
−
1

2
(𝑚 + 1) 𝑐

1
𝜙
−2𝑚

𝜙
2

𝑧

+
𝑚 − 2

3 − 2𝑚
𝜙
3−2𝑚

𝑐
1
+ 𝑐
3
.

(72)

Since the multiplier (72) contains two constants, 𝑐
1
and 𝑐
3
,

it leads to two conserved vectors. The conserved vector
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corresponding to 𝑐
3
= 1, 𝑐
1
= 0 is the elementary conserved

vector (32).The constants 𝑐
1
= 1, 𝑐
3
= 0 lead to the conserved

vector

𝑇
1
=
1

2
𝜙
−2𝑚

𝜙
2

𝑧𝑧
−
1

6
𝑚 (𝑚 + 2) 𝜙

−2𝑚−2
𝜙
4

𝑧

+
1

2
(3 − 𝑚) 𝜙

1−2𝑚
𝜙
2

𝑧
+

1

2 (3 − 2𝑚)
𝜙
4−2𝑚

,

(73)

𝑇
2
= [

1

6
𝑚 (𝑚 + 5) 𝜙

−2𝑚−2
𝜙
3

𝑧
−
(𝑚 − 3) (𝑚 − 1)

(3 − 2𝑚)
𝜙
1−2𝑚

𝜙
𝑧
] 𝜙
𝑡

− [
1

2
(𝑚 + 1) 𝜙

−2𝑚−1
𝜙
2

𝑧
+
(2 − 𝑚)

(3 − 2𝑚)
𝜙
2−2𝑚

] 𝜙
𝑡𝑧

−
1

2
(𝑚 − 1) 𝜙

−𝑚−1
𝜙
2

𝑧
+
(𝑚 − 1)

(3 − 2𝑚)
𝜙
2−𝑚

.

(74)

The case 𝑛 = 𝑚−1with𝑚 = 1 and 𝑛 = 0 has already been
considered.Themultiplier is given by (29) and the conserved
vectors by (40) and (41).

Consider 𝑛 = 𝑚 − 1 with 𝑚 = 3/2 and 𝑛 = 1/2. The
differential equation (69) becomes

𝑑
2
𝑃

𝑑𝜙2
+
2

𝜙

𝑑𝑃

𝑑𝜙
= −

1

2

𝑐
1

𝜙2
. (75)

The general solution of (75) is

𝑃 (𝜙) = −
1

2
𝑐
1
ln𝜙 +

𝑐
3

𝜙
+ 𝑐
4
. (76)

When𝑚 = 3/2 the multiplier (68) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
−2
𝜙
𝑧𝑧
−
5

4
𝑐
1
𝜙
−3
𝜙
2

𝑧
−
1

2
𝑐
1
ln𝜙 + 𝜙−1𝑐

3
+ 𝑐
4
.

(77)

On substituting (77) into the determining equation (48) we
find that 𝑐

3
= 0 and the multiplier reduces to

Λ = 𝑐
1
𝜙
−2
𝜙
2

𝑧𝑧
−
5

4
𝑐
1
𝜙
−3
𝜙
2

𝑧
−
1

2
𝑐
1
ln𝜙 + 𝑐

4
. (78)

The multiplier (78) again contains two arbitrary constants,
𝑐
1
and 𝑐
4
. Setting the constants 𝑐

4
= 1, 𝑐

1
= 0 gives the

elementary conserved vector (32). Setting 𝑐
1
= 1, 𝑐
4
= 0 leads

to the conserved vector

𝑇
1
=
1

2
𝜙
−3
𝜙
2

𝑧𝑧
−
7

8
𝜙
−5
𝜙
4

𝑧
+
3

4
𝜙
−2
𝜙
2

𝑧

1

2
𝜙 ln𝜙 − 1

2
𝜙, (79)

𝑇
2
= [

13

8
𝜙
−5
𝜙
3

𝑧
− 𝜙
−2
𝜙
𝑧
+
3

4
(𝜙
−2 ln𝜙) 𝜙

𝑧
] 𝜙
𝑡

− [
5

4
𝜙
−4
𝜙
2

𝑧
+
1

2
𝜙
−1 ln𝜙] 𝜙

𝑡𝑧
−
1

4
𝜙
−5/2

𝜙
2

𝑧
+
1

2
𝜙
1/2 ln𝜙.

(80)

Consider next multipliers of the form

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑧𝑧𝑧
) . (81)

The determining equation for the multiplier is

𝐸
𝜙
(Λ (𝜙, 𝜙

𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑧𝑧𝑧
) 𝐹 (𝜙, 𝜙

𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)] = 0,

(82)

where 𝐹 is given by (23). Equating the coefficient of 𝜙
𝑡𝑧𝑧𝑧𝑧𝑧

in
(82) to zero, we find that

𝜕Λ

𝜕𝜙
𝑧𝑧𝑧

= 0 (83)

and therefore

Λ = Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) , (84)

which has already been considered.
Harris [6] proved that, except possibly for the two special

cases 𝑛 = 𝑚− 1 with𝑚 ̸= 1 and𝑚 = 1 with 𝑛 ̸= 0, there are no
more independent conserved vectors. She proved this result
using the direct method for conservation laws.

The multipliers and the corresponding conserved vectors
for the partial differential equation (20) are listed in Table 1.
This table was presented by Maluleke and Mason [7] without
themultipliers.These conserved vectors agreewith the results
obtained by Barcilon and Richter [5] and Harris [6].

3.3. Association of Lie Point Symmetries with Conserved
Vectors. The Lie point symmetries for the partial differential
equation (20) are listed inTable 2.These Lie point symmetries
were derived by Maluleke and Mason [7, 12]. Using (14) we
will investigate which of the Lie point symmetries are associ-
ated with the conserved vectors for theMagma equation (20).

(i) 0 ≤ 𝑛 < ∞, 0 ≤ 𝑚 < ∞. Consider first the Lie symmetry
generator

𝑋 = (𝑐
1
+ (2 − 𝑚 − 𝑛) 𝑐

3
𝑡)

𝜕

𝜕𝑡

+ (𝑐
2
+ (𝑛 − 𝑚) 𝑐3𝑧)

𝜕

𝜕𝑧
+ 2𝑐
3
𝜙
𝜕

𝜕𝜙

(85)

and the elementary conserved vector (32). Applying (14) we
find that (85) is associated with the conserved vector (32)
provided that 𝑐

3
= 0, that is, provided that

𝑋 = 𝑐
1

𝜕

𝜕𝑡
+ 𝑐
2

𝜕

𝜕𝑧
. (86)

(ii) 𝑛 + 𝑚 ̸= 2, 𝑚 ̸= 1, 𝑛 + 𝑚 ̸= 1. Consider next the Lie
point symmetry generator (85), with the conserved vector
(33). Applying (14) we find that (85) is associated with (33)
provided that 𝑐

3
= 0, that is, provided𝑋 is given by (86).

(iii)𝑚 = 1, 𝑛 ̸= 0, 𝑛 ̸= 1. Now consider

𝑋 = (−𝑐
3
𝑡 + 𝑐
1
)
𝜕

𝜕𝑡
+ (𝑐
3
𝑧 + 𝑐
2
)
𝜕

𝜕𝑧
+
2𝑐
3
𝜙

𝑛 − 1

𝜕

𝜕𝜙
(87)
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Table 1: Multipliers and conserved vectors for the partial differential equation (20).

Case A. 0 ≤ 𝑛 < ∞, 0 ≤ 𝑚 < ∞ Case B.5. 𝑛 + 𝑚 = 1,𝑚 ̸= 1

Multiplier: Λ = 1 Multiplier: Λ = 𝜙
−2(𝑛−2)

𝑇
1
= 𝜙 𝑇

1
= −

1

2
𝜙
−2𝑚

𝜙
2

𝑧
+ ln𝜙

𝑇
2
= 𝜙
𝑛
(1 + 𝑚𝜙

−𝑚−1
𝜙
𝑡
𝜙
𝑧
− 𝜙
−𝑚
𝜙
𝑡𝑧
) 𝑇

2
= 𝜙
1−𝑚 ln𝜙 − 1

1 − 𝑚
𝜙
1−𝑚

− (𝜙
1−2𝑚 ln𝜙)𝜙

𝑡𝑧

+(𝑚𝜙
−2𝑚 ln𝜙)𝜙

𝑡
𝜙
𝑧

Case B.1.𝑚 ̸= 1,𝑚 + 𝑛 ̸= 1,𝑚 + 𝑛 ̸= 2 Case B.6. 𝑛 + 𝑚 = 2,𝑚 ̸= 1

Multiplier: Λ = 𝜙
1−𝑚−𝑛 Multiplier: Λ =

1

𝜙

𝑇
1
=

1

2 − 𝑚 − 𝑛
(𝜙
2−𝑚−𝑛

− 1) +
1

2
(1 − 𝑚 − 𝑛)𝜙

−2𝑚
𝜙
2

𝑧
𝑇
1
= −

1

2
𝜙
−2𝑚

𝜙
2

𝑧
+ ln𝜙

𝑇
2
=

𝑛

1 − 𝑚
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙

−2𝑚
𝜙
𝑡
𝜙
𝑧

𝑇
2
=
2 − 𝑚

1 − 𝑚
𝜙
1−𝑚

− 𝜙
1−2𝑚

𝜙
𝑡𝑧
+ 𝑚𝜙

−2𝑚
𝜙
𝑡
𝜙
𝑧

Case B.2.𝑚 = 1, 𝑛 ̸= 0, 𝑛 ̸= 1 Case C.1. 𝑛 = 𝑚 − 1,𝑚 ̸=
3

2
,𝑚 ̸= 1

Multiplier: Λ = 𝜙
−𝑛 Multiplier: Λ = 𝜙

1−2𝑚
𝜙
𝑧𝑧
−
1

2
(𝑚 + 1)𝜙

−2𝑚
𝜙
2

𝑧

𝑇
1
=

1

1 − 𝑛
−
𝑛

2
𝜙
−2
𝜙
2

𝑧
+
𝑚 − 2

3 − 2𝑚
𝜙
3−2𝑚

𝑇
2
= 𝑛 ln𝜙 − 𝜙−1𝜙

𝑡𝑧
+ 𝜙
−2
𝜙
𝑡
𝜙
𝑧

𝑇
1
=

1

1 − 𝑛
𝜙
1−𝑛

−
𝑛

2
𝜙
−2
𝜙
2

𝑧

Case B.3.𝑚 = 𝑛 = 1 +
1

2
(3 − 𝑚)𝜙

1−2𝑚
𝜙
2

𝑧
+

1

2(3 − 2𝑚)
𝜙
4−2𝑚

Multiplier: Λ =
1

𝜙
𝑇
2
= [

1

6
𝑚 (𝑚 + 5) 𝜙

−2𝑚−2
𝜙
3

𝑧
−
(𝑚 − 3) (𝑚 − 1)

(3 − 2𝑚)
𝜙
1−2𝑚

𝜙
𝑧
] 𝜙
𝑡

𝑇
1
= −

1

2
𝜙
−2
𝜙
2

𝑧
+ ln𝜙 − [

1

2
(𝑚 + 1)𝜙

−2𝑚−1
𝜙
2

𝑧
+
(2 − 𝑚)

(3 − 2𝑚)
𝜙
2−2𝑚

] 𝜙
𝑡𝑧

𝑇
2
= ln𝜙 − 𝜙−1𝜙

𝑡𝑧
+ 𝜙
−2
𝜙
𝑡
𝜙
𝑧

−
1

2
(𝑚 − 1)𝜙

−𝑚−1
𝜙
2

𝑧
+
(𝑚 − 1)

(3 − 2𝑚)
𝜙
2−𝑚

Case B.4.𝑚 = 1, 𝑛 = 0 Case C.2. 𝑛 = 𝑚 − 1,𝑚 =
3

2
, 𝑛 =

1

2

Multiplier: Λ = 𝜙
2 Multiplier: Λ = 𝜙

−2
𝜙
2

𝑧𝑧
−
5

4
𝜙
−3
𝜙
2

𝑧
−
1

2
ln𝜙

𝑇
1
=
1

2
𝜙
−2
𝜙
2

𝑧
+ 𝜙 ln𝜙 − 𝜙 𝑇

1
=
1

2
𝜙
−3
𝜙
2

𝑧𝑧
−
7

8
𝜙
−5
𝜙
4

𝑧
+
3

4
𝜙
−2
𝜙
2

𝑧

𝑇
2
= −(𝜙

−1 ln𝜙)𝜙
𝑡𝑧
+ (𝜙
−2 ln𝜙)𝜙

𝑡
𝜙
𝑧

+
1

2
𝜙 ln𝜙 − 1

2
𝜙

𝑇
2
= [

13

8
𝜙
−5
𝜙
3

𝑧
− 𝜙
−2
𝜙
𝑧
+
3

4
(𝜙
−2 ln𝜙) 𝜙

𝑧
] 𝜙
𝑡
− [

5

4
𝜙
−4
𝜙
2

𝑧
+
1

2
𝜙
−1 ln𝜙] 𝜙

𝑡𝑧

−
1

4
𝜙
−(5/2)

𝜙
2

𝑧
+
1

2
𝜙
1/2 ln𝜙

and the conserved vector (45). Applying (14) we find that (87)
is associated with (45) provided that 𝑐

3
= 0, that is, provided

that𝑋 is given by (86).

(iv)𝑚 = 𝑛 = 1. Consider next

𝑋 = 𝑐
1

𝜕

𝜕𝑡
+ 𝑐
2

𝜕

𝜕𝑧
+ 2𝑐
3
𝜙
𝜕

𝜕𝜙
(88)

and the conserved vector (42). Applying (14) we find that (88)
is associated with (42) provided that 𝑐

3
= 0, that is, provided

that𝑋 is (86).

(v)𝑚 = 1, 𝑛 = 0. Consider

𝑋 = 𝜉
1
(𝑡, 𝑧)

𝜕

𝜕𝑡
+ (𝑐
2
+ 𝑐
3
𝑧)

𝜕

𝜕𝑧
− 2𝑐
3
𝜙
𝜕

𝜕𝜙
(89)

and the conserved vector (41). Applying (14) we find that (89)
is associated with (41) provided that 𝑐

3
= 0, that is, provided

that

𝑋 = 𝜉
1
(𝑡, 𝑧)

𝜕

𝜕𝑡
+ 𝑐
2

𝜕

𝜕𝑧
. (90)

(vi) 𝑛 + 𝑚 = 1,𝑚 ̸= 1. Consider next

𝑋 = (𝑐
1
+ 𝑐
3
𝑡)

𝜕

𝜕𝑡
+ (𝑐
2
+ (1 − 2𝑚) 𝑐

3
𝑧)

𝜕

𝜕𝑧
+ 2𝑐
3
𝜙
𝜕

𝜕𝜙

(91)
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and the conserved vector (35). Applying (14) we find that (91)
is associated with (35) provided that 𝑐

3
= 0, that is, provided

that𝑋 is given by (86).

(vii) 𝑛 + 𝑚 = 2,𝑚 ̸= 1. Consider

𝑋 = 𝑐
1

𝜕

𝜕𝑡
+ (𝑐
2
+ 2 (1 − 𝑚) 𝑐

3
𝑧)

𝜕

𝜕𝑧
+ 2𝑐
3
𝜙
𝜕

𝜕𝜙
(92)

with the conserved vector (38). Applying (14)we find that (92)
is associated with (38) provided that 𝑐

3
= 0, that is, provided

that𝑋 is given by (86).

(viii) 𝑛 = 𝑚 − 1,𝑚 ̸= 3/2,𝑚 ̸= 1. Consider

𝑋 = (𝑐
1
+ (3 − 2𝑚) 𝑐

3
)
𝜕

𝜕𝑡
+ (𝑐
2
− 𝑐
3
𝑧)

𝜕

𝜕𝑧
+ 2𝑐
3
𝜙
𝜕

𝜕𝜙
(93)

with the conserved vector given by (73) and (74). Applying
(14) we find that (93) is associated with the conserved vector
with components (73) and (74) provided that 𝑐

3
= 0, that is,

provided that𝑋 is given by (86).

(ix) 𝑛 = 𝑚−1,𝑚 = 3/2, 𝑛 = 1/2. Finally consider the Lie point
symmetry (93) and the conserved vector with components
(79) and (80). Applying (14) we find that (93) is associated
with this conserved vector provided that 𝑐

3
= 0, that is,

provided that𝑋 is given by (86).
Except for the conserved vector (41) (𝑛 = 0,𝑚 = 1)

the conserved vectors are all associated with the Lie point
symmetry which generates travelling wave solutions. The Lie
point symmetry with which the conserved vector (41) is
associated contains (86) as a special case. In all cases new
conserved vectors are not generated by (15).

Next we derive the conservation laws for the magma
equation with an exponential law for the permeability and
viscosity using the multiplier method.

4. Conservation Laws for the Magma
Equation with an Exponential Law for
the Permeability and Viscosity by
the Multiplier Method

When the permeability and viscosity are related to the
voidage by exponential laws the magma equation becomes

𝜕𝜙

𝜕𝑡
+
𝜕

𝜕𝑧
[exp [𝑛 (𝜙 − 1)](1 − 𝜕

𝜕𝑧
(exp [−𝑚 (𝜙 − 1)]

𝜕𝜙

𝜕𝑡
))]

= 0.

(94)

4.1. Lower Order Conservation Laws. In order to derive con-
servation laws for (94) consider a multiplier of the form

(21). A multiplier for the partial differential equation has the
property (22), where now

𝐹 (𝜙, 𝜙
𝑡
, 𝜙
𝑧
, 𝜙
𝑡𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑡𝑧𝑧
)

= 𝜙
𝑡
+ 𝑛𝜙
𝑧
exp [𝑛 (𝜙 − 1)]

+ 𝑚𝑛𝜙
𝑡
𝜙
2

𝑧
exp [(𝑛 − 𝑚) (𝜙 − 1)]

− 𝑛𝜙
𝑧
𝜙
𝑡𝑧
exp [(𝑛 − 𝑚) (𝜙 − 1)]

− 𝑚
2
𝜙
𝑡
𝜙
2

𝑧
exp [(𝑛 − 𝑚) (𝜙 − 1)]

+ 𝑚𝜙
𝑡
𝜙
𝑧𝑧
exp [(𝑛 − 𝑚) (𝜙 − 1)]

+ 2𝑚𝜙
𝑧
𝜙
𝑡𝑧
exp [(𝑛 − 𝑚) (𝜙 − 1)]

− exp [(𝑛 − 𝑚) (𝜙 − 1)] 𝜙
𝑡𝑧𝑧
.

(95)

The determining equation for the multiplier is given by (24),
where 𝐸

𝜙
is given by (18). Separating (24) with respect to

products and powers of the partial derivatives of 𝜙 we obtain
the following system of equations:

𝜙
𝑧
𝜙
𝑡𝑧
:
𝑑
2
Λ

𝑑𝜙2
+ (𝑚 + 𝑛)

𝑑Λ

𝑑𝜙
= 0, (96)

𝜙
𝑡
𝜙
𝑧𝑧
:
𝑑
2
Λ

𝑑𝜙2
+ (𝑚 + 𝑛)

𝑑Λ

𝑑𝜙
= 0, (97)

𝜙
𝑡
𝜙
2

𝑧
:
𝑑
3
Λ

𝑑𝜙3
+ 2𝑛

𝑑
2
Λ

𝑑𝜙2
+ (𝑛
2
− 𝑚
2
)
𝑑Λ

𝑑𝜙
= 0. (98)

Equation (96) is the same as (97). It is readily verified that
every solution of (96) is a solution of (98). We therefore need
to consider only (96). The general solution of (96) is

Λ (𝜙) = 𝑐
2
exp [− (𝑚 + 𝑛) 𝜙] + 𝑐

1
, if 𝑛 + 𝑚 ̸= 0, (99)

Λ (𝜙) = 𝑐
2
𝜙 + 𝑐
1
, if 𝑛 + 𝑚 = 0. (100)

We are considering 𝑛 ≥ 0 and𝑚 ≥ 0 and therefore 𝑛+𝑚 =

0 only if 𝑛 = 0 and 𝑚 = 0. Proceeding as before we have for
various combinations of𝑚 and 𝑛 different conserved vectors.

(i) 𝑛 + 𝑚 ̸= 0,𝑚 ̸= 0.This gives the conserved vectors

𝑇
1
= 𝜙,

𝑇
2
= exp [𝑛 (𝜙 − 1)] + 𝑚 exp [(𝑛 − 𝑚) (𝜙 − 1)] 𝜙

𝑡
𝜙
𝑧

− exp [(𝑛 − 𝑚) (𝜙 − 1)] 𝜙
𝑡𝑧
,

(101)

𝑇
1
= −

1

𝑚 + 𝑛
exp [− (𝑚 + 𝑛) 𝜙]

−
(𝑛 + 𝑚)

2
𝜙
2

𝑧
exp [−2𝑚𝜙 + 𝑚 − 𝑛] ,

𝑇
2
= −

𝑛

𝑚
exp [− (𝑚𝜙 + 𝑛)]

+ exp [−2𝑚𝜙 + 𝑚 − 𝑛] (𝑚𝜙
𝑡
𝜙
𝑧
− 𝜙
𝑡𝑧
) .

(102)



Abstract and Applied Analysis 9

Table 2: Lie point symmetries of the partial differential equation (20).

Case 1.𝑚 ̸= 1,𝑚 ̸= 𝑛, 𝑛 ̸= 0 Case 4. 𝑛 = 0,𝑚 ̸= 0,𝑚 ̸=
4

3

𝑋
1
= (2 − 𝑛 − 𝑚)𝑡

𝜕

𝜕𝑡
+ (𝑛 − 𝑚)𝑧

𝜕

𝜕𝑧
+ 2𝜙

𝜕

𝜕𝜙
𝑋
1
= 𝜉(𝑡)

𝜕

𝜕𝑡

𝑋
2
=
𝜕

𝜕𝑡
𝑋
2
= −

𝑚

2
𝑧
𝜕

𝜕𝑧
+ 𝜙

𝜕

𝜕𝜙

𝑋
3
=

𝜕

𝜕𝑧
𝑋
3
=

𝜕

𝜕𝑧

Case 2. 𝑛 ̸= 0,𝑚 = 1, 𝑛 ̸= 1 Case 5.𝑚 = 0, 𝑛 = 0

𝑋
1
= −𝑡

𝜕

𝜕𝑡
+ 𝑧

𝜕

𝜕𝑧
+

2𝜙

𝑛 − 1

𝜕

𝜕𝜙
𝑋
1
= 𝜉(𝑡)

𝜕

𝜕𝑡

𝑋
2
=
𝜕

𝜕𝑡
𝑋
2
=

𝜕

𝜕𝑧

𝑋
3
=

𝜕

𝜕𝑧
𝑋
3
= sinh(2𝑧) 𝜕

𝜕𝑧
+ 𝜙 cosh(2𝑧) 𝜕

𝜕𝜙

Case 3.𝑚 =
4

3
, 𝑛 = 0 𝑋

4
= cosh(2𝑧) 𝜕

𝜕𝑧
+ 𝜙 sinh(2𝑧) 𝜕

𝜕𝜙

𝑋
1
= −

1

3
𝑧
2 𝜕

𝜕𝑧
+ 𝑧𝜙

𝜕

𝜕𝜙
𝑋
5
= 𝜙

𝜕

𝜕𝜙

𝑋
2
= 𝜉(𝑡)

𝜕

𝜕𝑡
𝑋
𝐴
= 𝐴(𝑡, 𝑧)

𝜕

𝜕𝜙

𝑋
3
= 𝑧

𝜕

𝜕𝑧
−
3

2
𝜙
𝜕

𝜕𝜙
𝐴(𝑡, 𝑧) satisfies (20) with 𝑛 = 𝑚 = 0

𝑋
4
=

𝜕

𝜕𝑧

The conserved vector (101) is the elementary conserved
vector. The multiplier for (102) is, from (99),

Λ (𝜙) = exp [− (𝑚 + 𝑛) 𝜙] . (103)

(ii) 𝑛 = 𝑚 = 0.We obtain two conserved vectors

𝑇
1
= 𝜙, 𝑇

2
= 1 − 𝜙

𝑡𝑧
, (104)

𝑇
1
=
𝜙
2

2
, 𝑇

2
= 𝜙
𝑡
− 𝜙
𝑡𝑧
. (105)

The conserved vector (104) is the elementary conserved
vector with multiplier 𝑐

1
and 𝑚 = 𝑛 = 0. The multiplier for

(105) is, from (100),

Λ (𝜙) = 𝜙. (106)

(iii)𝑚 = 0 and 𝑛 > 0.We again obtain two conserved vectors

𝑇
1
= 𝜙, 𝑇

2
= exp [𝑛 (𝜙 − 1)] (1 − 𝜙

𝑡𝑧
) , (107)

𝑇
1
= −

1

𝑛
exp [−𝑛𝜙] − 1

2
𝑛 exp [−𝑛𝜙] 𝜙2

𝑧
,

𝑇
2
= 𝑛 exp [−𝑛𝜙] − 𝜙

𝑡𝑧
.

(108)

The conserved vector (107) is the elementary conserved
vector with multiplier 𝑐

1
and 𝑚 = 0. The multiplier of the

conserved vector (108) is by (99)

Λ (𝜙) = exp [−𝑛𝜙] . (109)

(iv) 𝑛 = 0,𝑚 > 0. Finally we obtain the conserved vectors

𝑇
1
= 𝜙,

𝑇
2
= 1 + 𝑚 exp [−𝑚 (𝜙 − 1)] 𝜙

𝑡
𝜙
𝑧
− exp [−𝑚 (𝜙 − 1)] 𝜙

𝑡𝑧
,

(110)

𝑇
1
= −

1

𝑚
exp (−𝑚𝜙) − 1

2
𝑚 exp [𝑚 (1 − 2𝜙)] 𝜙

2

𝑧
,

𝑇
2
= exp [𝑚 (1 − 2𝜙)] (𝑚𝜙

𝑡
𝜙
𝑧
− 𝜙
𝑡𝑧
) .

(111)

The conserved vector (110) is the elementary conserved vector
with multiplier 𝑐

1
and 𝑛 = 0, while the multiplier for (111) is

by (99):

Λ = exp [−𝑚𝜙] . (112)

4.2.The Search for Higher Order Conservation Laws. We now
consider a multiplier of the form

Λ = Λ (𝜙, 𝜙
𝑧
) . (113)

Thedetermining equation for themultiplier is (48), where𝐹 is
given by (95). By equating the coefficient of the highest order
derivative term, 𝜙

𝑡𝑧𝑧𝑧
, to zero in (48) we obtain again (49),

so that Λ(𝜙, 𝜙
𝑧
) = Λ(𝜙). The multiplier therefore reduces to

that of the previous case and new conserved vectors are not
derived.

Consider next the multiplier

Λ = Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) . (114)
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As before, the determining equation for the multiplier is
(48), where 𝐹 is given by (95). By equating the coefficients
of 𝜙
𝑡𝑧
𝜙
𝑧𝑧𝑧𝑧

, 𝜙
𝑡
𝜙
𝑧𝑧𝑧𝑧

, and 𝜙2
𝑧𝑧𝑧𝑧

to zero in (48), the following
system of equations is obtained:

𝜙
𝑡𝑧
𝜙
𝑧𝑧𝑧𝑧

: (2𝑚 − 𝑛) 𝜙𝑧
𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

+
𝜕
2
Λ

𝜕𝜙
𝑧
𝜙
𝑧𝑧

= 0, (115)

𝜙
𝑡
𝜙
𝑧𝑧𝑧𝑧

: 𝑚 ((𝑛 − 𝑚) 𝜙
2

𝑧
+ 𝜙
𝑧𝑧
)
𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

+ (𝑚 + 𝑛)
𝜕Λ

𝜕𝜙
𝑧𝑧

+
𝜕
2
Λ

𝜕𝜙𝜕𝜙
𝑧𝑧

= 0,

(116)

𝜙
2

𝑧𝑧𝑧𝑧
:
𝜕
2
Λ

𝜕𝜙2
𝑧𝑧

= 0. (117)

By using (115) and (117), it is readily shown that (56) again
holds. Substituting (56) into (116) gives

𝑑𝐴

𝑑𝜙
+ (𝑚 + 𝑛)𝐴 = 0, (118)

and therefore

𝐴 (𝜙) = 𝑐
1
exp [− (𝑚 + 𝑛) 𝜙] . (119)

Equation (56) now becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
exp [− (𝑚 + 𝑛) 𝜙] 𝜙

𝑧𝑧
+ 𝐵 (𝜙, 𝜙

𝑧
) .

(120)

Substituting (120) into the determining equation (48) and
then equating the coefficients of 𝜙

𝑡𝑧𝑧𝑧
in (48) to zero gives

𝜕𝐵

𝜕𝜙
𝑧

=
1

2
(𝑛 − 2𝑚) 𝑐1 exp [− (𝑚 + 𝑛) 𝜙] 𝜙𝑧 (121)

and hence

𝐵 (𝜙, 𝜙
𝑧
) =

1

4
(𝑛 − 2𝑚) 𝑐

1
exp [− (𝑚 + 𝑛) 𝜙] 𝜙

2

𝑧
+ 𝑃 (𝜙) .

(122)

The multiplier becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
𝜙
−(𝑚+𝑛)

𝜙
𝑧𝑧
+
1

4
(𝑛 − 2𝑚)

× 𝑐
1
exp [− (𝑚 + 𝑛) 𝜙] 𝜙

2

𝑧
+ 𝑃 (𝜙) .

(123)

Finally we substitute (123) back into (48) and equate the
coefficient of 𝜙

𝑡
𝜙
2

𝑧
𝜙
𝑧𝑧
to zero. This yields

𝑚(𝑚 − 𝑛) 𝑐
1
= 0. (124)

There are three cases to consider, 𝑚 = 0, 𝑚 = 𝑛, and 𝑐
1
= 0.

The conserved vectors for𝑚 = 0, 𝑛 > 0 are given by (107) and
(108). We now consider the two remaining cases.

Case 1 (𝑚 ̸= 𝑛,𝑚 > 0). Then, 𝑐
1
= 0 and (123) reduces to

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑃 (𝜙) . (125)

The multiplier is therefore a function of 𝜙 only which does
not yield new conserved vectors.

Case 2 (𝑐
1
̸= 0, 𝑚 > 0). Then, 𝑚 = 𝑛 and the multiplier (123)

becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
exp [−2𝑛𝜙] 𝜙

𝑧𝑧

−
1

4
𝑛𝑐
1
exp [−2𝑛𝜙] 𝜙2

𝑧
+ 𝑃 (𝜙) .

(126)

Equation (126) is substituted back into the determining
equation (48) and by equating the coefficient of 𝜙

𝑧
𝜙
𝑡𝑧
to zero

we obtain

𝑑
2
𝑃

𝑑𝜙2
+ 2𝑛

𝑑𝑃

𝑑𝜙
= 𝑛 exp [−𝑛 (2𝜙 + 1) + 1] 𝑐

1
. (127)

The general solution to (127) is

𝑃 (𝜙) = −
𝑐
1

4𝑛
(1 + 2𝑛𝜙) exp [1 − 𝑛 − 2𝑛𝜙]

+ 𝑐
2
exp [−2𝑛𝜙] + 𝑐

3
,

(128)

where 𝑛 ̸= 0 since 𝑛 = 𝑚 and𝑚 ̸= 0. Thus, (123) becomes

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
exp [−2𝑛𝜙] 𝜙

𝑧𝑧
−
1

4
𝑛𝑐
1
exp [−2𝑛𝜙] 𝜙2

𝑧

−
𝑐
1

4𝑛
(1 + 2𝑛𝜙) exp [1 − 𝑛 − 2𝑛𝜙]

+ 𝑐
2
exp [−2𝑛𝜙] + 𝑐

3
.

(129)

Finally substituting (129) into the determining equation (48)
gives 𝑐

2
= 0 and therefore

Λ (𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = 𝑐
1
exp [−2𝑛𝜙] 𝜙

𝑧𝑧
−
1

4
𝑛𝑐
1
exp [−2𝑛𝜙] 𝜙2

𝑧

−
𝑐
1

4𝑛
(1 + 2𝑛𝜙) exp [1 − 𝑛 − 2𝑛𝜙] + 𝑐

3
.

(130)

Two conserved vectors are obtained since themultiplier (130)
contains two arbitrary constants. The constant 𝑐

3
gives the

elementary conserved vector (100) while the constant 𝑐
1
gives

the new conserved vector

𝑇
1
=
1

2
exp [−2𝑛𝜙] 𝜙2

𝑧𝑧
−
1

2
𝑛
2 exp [−2𝑛𝜙] 𝜙4

𝑧

+
1

4
𝑛 (1 + 2𝑛𝜙) 𝜙

2

𝑧
+

1

8𝑛2
(1 + 2𝑛𝜙) exp [1 − 𝑛 − 2𝑛𝜙] ,

(131)

𝑇
2
= [𝑛
2 exp [−2𝑛𝜙] 𝜙3

𝑧
−
𝑛

4
(2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙] 𝜙

𝑧
]

× 𝜙
𝑡
− 𝑛 exp [−𝑛 (𝜙 + 1)] 𝜙

𝑡𝑧

−
1

4
(2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙] ,

(132)

which exists if𝑚 = 𝑛 and𝑚 > 0, 𝑛 > 0.
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Table 3: Multipliers and conserved vectors for the partial differential equation (94).

Case A. 0 ≤ 𝑛 < ∞, 0 ≤ 𝑚 < ∞

Multiplier: Λ(𝜙) = 1
𝑇
1
= 𝜙

𝑇
2
= exp [𝑛 (𝜙 − 1)] + 𝑚 exp [(𝑛 − 𝑚) (𝜙 − 1)] 𝜙

𝑡
𝜙
𝑧
− exp [(𝑛 − 𝑚) (𝜙 − 1)] 𝜙

𝑡𝑧

Case B.1.𝑚 + 𝑛 ̸= 0,𝑚 > 0, 𝑛 > 0

Multiplier: Λ(𝜙) = exp [− (𝑚 + 𝑛) 𝜙]

𝑇
1
= −

1

𝑚 + 𝑛
exp [− (𝑚 + 𝑛) 𝜙] −

1

2
(𝑛 + 𝑚) exp [𝑚 − 𝑛 − 2𝑚𝜙] 𝜙

2

𝑧

𝑇
2
= −

𝑛

𝑚
exp [− (𝑚𝜙 + 𝑛)] + exp [𝑚 − 𝑛 − 2𝑚𝜙] (𝑚𝜙

𝑡
𝜙
𝑧
− 𝜙
𝑡𝑧
)

Case B.2.𝑚 = 0, 𝑛 = 0
Multiplier: Λ(𝜙) = 𝜙
𝑇
1
=
1

2
𝜙
2

𝑇
2
= 𝜙
𝑡
− 𝜙
𝑡𝑧

Case B.3.𝑚 = 0, 𝑛 > 0
Multiplier: Λ(𝜙) = exp(−𝑛𝜙)

𝑇
1
= −

1

𝑛
exp(−𝑛𝜙) − 1

2
𝑛 exp [−𝑛𝜙] 𝜙2

𝑧

𝑇
2
= 𝑛 exp [−𝑛𝜙] − 𝜙

𝑡𝑧

Case B.4. 𝑛 = 0,𝑚 > 0

Multiplier: Λ(𝜙) = exp [−𝑚𝜙]

𝑇
1
= −

1

𝑚
exp [−𝑚𝜙] − 1

2
𝑚 exp [𝑚 (1 − 2𝜙)] 𝜙

2

𝑧

𝑇
2
= exp [𝑚 (1 − 2𝜙)] (𝑚𝜙

𝑡
𝜙
𝑧
− 𝜙
𝑡𝑧
)

Case C.𝑚 = 𝑛, 𝑛 ̸= 0

Multiplier: Λ(𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
) = exp [−2𝑛𝜙] 𝜙

𝑧𝑧
−
1

2
𝑛 exp [−2𝑛𝜙] 𝜙2

𝑧
−

1

4𝑛
(2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙]

𝑇
1
=
1

2
exp [−2𝑛𝜙] 𝜙2

𝑧𝑧
−
1

2
𝑛
2 exp [−2𝑛𝜙] 𝜙4

𝑧
+
1

4
𝑛(2𝑛𝜙 + 1)𝜙

2

𝑧
+

1

8𝑛2
(2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙]

𝑇
2
= [𝑛
2 exp (−2𝑛𝜙) 𝜙3

𝑧
−
1

4
𝑛 (2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙)] 𝜙

𝑧
] 𝜙
𝑡
− 𝑛 exp(−𝑛 (𝜙 + 1))𝜙

𝑡𝑧

−
1

4
(2𝑛𝜙 + 1) exp [1 − 𝑛 − 2𝑛𝜙]

Consider next multipliers of the form (81).The determin-
ing equation for the multiplier is (82), where 𝐹 is given by
(95). By equating to zero the coefficient of 𝜙

𝑡𝑧𝑧𝑧𝑧𝑧
in (82) we

again derive (83) and the multiplier therefore reduces to the
form (84) which has already been considered.

The multipliers and the corresponding conserved vectors
for the partial differential equation (94) are listed in Table 3.
The (𝑚, 𝑛) plane is illustrated in Figure 2.

4.3. Association of Lie Point Symmetries with Conserved
Vectors. The Lie point symmetries of the partial differential
equation (94) are given in Table 4. We use (14) to investigate
which Lie point symmetries of (94) are associated with the
conserved vectors for (94).

(i)𝑚 ̸= 0, 𝑛 > 0,𝑚 > 0.Consider first the Lie point symmetry
generator

𝑋 = (𝑐
3

𝑚 + 𝑛

𝑚 − 𝑛
𝑡 + 𝑐
1
)
𝜕

𝜕𝑡
+ (𝑐
3
𝑧 + 𝑐
2
)
𝜕

𝜕𝑧
−

2𝑐
3

𝑚 − 𝑛

𝜕

𝜕𝜙

(133)

and the elementary conserved vector (101). We find that (133)
is associated with the elementary conserved vector provided
that 𝑐
3
= 0, that is, provided that𝑋 is given by (86).

(ii) 𝑚 + 𝑛 ̸= 0, 𝑚 > 0, 𝑛 > 0. Consider next the Lie point
symmetry generator (133) and the conserved vector (102). It
can be verified that (102) is associatedwith (133) provided that
𝑐
3
= 0, that is, provided that𝑋 is given by (86).

(iii)𝑚 = 0, 𝑛 > 0. Now consider the Lie point symmetry

𝑋 = (𝑐
1
− 𝑐
3
𝑡)

𝜕

𝜕𝑡
+ (𝑐
3
𝑧 + 𝑐
2
)
𝜕

𝜕𝑧
+
2

𝑛
𝑐
3

𝜕

𝜕𝜙
(134)

and the conserved vector (108). Using again (14) we find that
(134) is associated with (108) provided that 𝑐

3
= 0, that is,

provided that𝑋 is given by (86).

(iv) 𝑛 = 0,𝑚 > 0. Consider the Lie point symmetry

𝑋 = 𝜉
1
(𝑡, 𝑧)

𝜕

𝜕𝑡
+ (𝑐
2
+ 𝑐
3
𝑧)

𝜕

𝜕𝑧
−
2𝑐
3

𝑚

𝜕

𝜕𝜙
(135)
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Figure 2: The (𝑚, 𝑛)-plane. The special cases lie on the line 𝑛 = 𝑚.

and the conserved vector (111).We find that (135) is associated
with (111) provided that 𝑐

3
= 0, that is, provided that

𝑋 = 𝜉
1
(𝑡, 𝑧) + 𝑐2

𝜕

𝜕𝑧
. (136)

We see that, except for (135) (𝑛 = 0,𝑚 > 0), the conserved
vector is associated with the Lie point symmetry (86) which
generates a travelling wave solution. The conserved vector
(111) is associated with (136) which includes (86) as a special
case. In all cases, (15) does not yield a new conserved
vector.

5. Conclusion

In this paper the multiplier method was used to derive the
conservation laws for the magma equation for the case in
which the permeability and viscosity satisfy a power law.
The results agree with those of Harris [6], who derived the
conserved vectors using the direct method. Unlike the direct
method the functional form of the conserved vector does
not need to be assumed with the multiplier method. Instead
the variables on which the multiplier depend have to be
chosen but this can be done by starting with a simple form
and including higher order partial derivatives later to derive
higher order conservation laws.Thedetermining equation for
the multiplier is readily obtained with the aid of the Euler
operator.

Conserved vectors for the magma equation when the
permeability and matrix viscosity depend on the voidage by
exponential laws were derived using the multiplier method.
Their properties are similar to the properties of the conserved
vectors for the power law relations.

We investigated the association of Lie point symmetries
of the magma equation with the conserved vectors. For all

Table 4: Lie point symmetries of the partial differential equation
(94).

Case 1.𝑚, 𝑛 ̸= 0,𝑚 ̸= 𝑛 Case 2. 𝑛 = 0,𝑚 ̸= 0

𝑋
1
=
𝑚 + 𝑛

𝑚 − 𝑛
𝑡
𝜕

𝜕𝑡
+ 𝑧

𝜕

𝜕𝑧
−

2

𝑚 − 𝑛

𝜕

𝜕𝜙
𝑋
1
= 𝜉(𝑡)

𝜕

𝜕𝑡

𝑋
2
=
𝜕

𝜕𝑡
𝑋
2
=

𝜕

𝜕𝑧

𝑋
3
=

𝜕

𝜕𝑧
𝑋
3
= 𝑧

𝜕

𝜕𝑧
−
2

𝑚

𝜕

𝜕𝜙

Case 3. 𝑛 ̸= 0,𝑚 ̸= 0,𝑚 = 𝑛 Case 4.𝑚 = 0, 𝑛 ̸= 0

𝑋
1
= 𝑡

𝜕

𝜕𝑡
−
1

𝑛

𝜕

𝜕𝜙
𝑋
1
= −𝑡

𝜕

𝜕𝑡
+ 𝑧

𝜕

𝜕𝑧
+
2

𝑛

𝜕

𝜕𝜙

𝑋
2
=
𝜕

𝜕𝑡
𝑋
2
=

𝜕

𝜕𝑧

𝑋
3
=

𝜕

𝜕𝑧
𝑋
3
=
𝜕

𝜕𝑡

conserved vectors considered except two the associated Lie
point symmetry was the Lie point symmetry which generates
travelling wave solutions [4, 5].

We were not able to derive new conservation laws for the
partial differential equation (20) or determine if the number
of conservation laws for (20) is finite or infinite. Harris [6]
has proved that except possibly for the two special cases,
𝑛 = 𝑚 − 1 with 𝑚 ̸= 1 and 𝑚 = 1 with 𝑛 ̸= 0, there
are no more independent conserved vectors. Our results
derived using multipliers are consistent with the results of
Harris. All known conserved vectors of (20) and also the new
conserved vectors for (94) can be derived from multipliers
which depend only on 𝜙 and the partial derivatives of 𝜙
with respect to 𝑧. We find that the multipliers Λ(𝜙, 𝜙

𝑧
)

and Λ(𝜙, 𝜙
𝑧
, 𝜙
𝑧𝑧
, 𝜙
𝑧𝑧𝑧
) whose variables ended in odd order

partial derivatives of 𝜙 with respect to 𝑧 did not generate
new conserved vectors but instead reduced to the multipliers
Λ(𝜙) and Λ(𝜙, 𝜙

𝑧
, 𝜙
𝑧𝑧
), respectively. This also applies to the

multipliers for the conserved vectors for (94).
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