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Some fixed point theorems for 𝜌-expansive mappings in modular spaces are presented. As an application, two nonlinear integral
equations are considered and the existence of their solutions is proved.

1. Introduction

Let (𝑋, 𝑑) be a metric space and 𝐵 a subset of 𝑋. A mapping
𝑇 : 𝐵 → 𝑋 is said to be expansive with a constant 𝑘 > 1 such
that

𝑑 (𝑇𝑥, 𝑇𝑦) ≥ 𝑘𝑑 (𝑥, 𝑦) ∀𝑥, 𝑦 ∈ 𝐵. (1)

Xiang and Yuan [1] state a Krasnosel’skii-type fixed point
theorem as follows.

Theorem 1 (see [1]). Let (𝑋, ‖⋅‖) be a Banach space and𝐾 ⊂ 𝑋

a nonempty, closed, and convex subset. Suppose that 𝑇 and 𝑆
map 𝐾 into𝑋 such that

(I) 𝑆 is continuous; 𝑆(𝐾) resides in a compact subset of𝑋;
(II) 𝑇 is an expansive mapping;
(III) 𝑧 ∈ 𝑆(𝐾) implies that 𝑇(𝐾)+𝑧 ⊃ 𝐾, where 𝑇(𝐾)+𝑧 =

{𝑦 + 𝑧 | 𝑦 ∈ 𝑇(𝐾)}.
Then there exists a point 𝑥∗ ∈ 𝐾 with 𝑆𝑥∗ + 𝑇𝑥∗ = 𝑥

∗.

For other related results, see also [2, 3].
In this paper, we study somefixedpoint theorems for 𝑆+𝑇,

where 𝑇 is 𝜌-expansive and 𝑆(𝐵) resides in a compact subset
of𝑋
𝜌
, where𝐵 is a closed, convex, and nonempty subset of𝑋

𝜌

and 𝑇, 𝑆 : 𝐵 → 𝑋
𝜌
. Our results improve the classical version

of Krasnosel’skii fixed point theorems in modular spaces.
Finally, as an application, we study the existence of a

solution of some nonlinear integral equations in modular
function spaces.

In order to do this, first, we recall the definition of
modular space (see [4–6]).

Definition 2. Let 𝑋 be an arbitrary vector space over 𝐾 = (R

or C). Then we have the following.

(a) A functional 𝜌 : 𝑋 → [0,∞] is called modular if

(i) 𝜌(𝑥) = 0 if and only if 𝑥 = 0;
(ii) 𝜌(𝛼𝑥) = 𝜌(𝑥) for 𝛼 ∈ 𝐾 with |𝛼| = 1, for all

𝑥 ∈ 𝑋;
(iii) 𝜌(𝛼𝑥 + 𝛽𝑦) ≤ 𝜌(𝑥) + 𝜌(𝑦) if 𝛼, 𝛽 ≥ 0, 𝛼 + 𝛽 = 1,

for all 𝑥, 𝑦 ∈ 𝑋.
If (iii) is replaced by

(iii)󸀠 𝜌(𝛼𝑥+𝛽𝑦) ≤ 𝛼𝜌(𝑥)+𝛽𝜌(𝑦) for 𝛼, 𝛽 ≥ 0, 𝛼+𝛽 =

1, for all 𝑥, 𝑦 ∈ 𝑋, then the modular 𝜌 is called
a convex modular.

(b) A modular 𝜌 defines a corresponding modular space,
that is, the space𝑋

𝜌
given by

𝑋
𝜌
= {𝑥 ∈ 𝑋 | 𝜌 (𝛼𝑥) 󳨀→ 0 as 𝛼 󳨀→ 0} . (2)

(c) If 𝜌 is convex modular, the modular 𝑋
𝜌
can be

equipped with a norm called the Luxemburg norm
defined by

‖𝑥‖
𝜌
= inf {𝛼 > 0; 𝜌 (

𝑥

𝛼
) ≤ 1} . (3)

Remark 3. Note that 𝜌 is an increasing function. Suppose that
0 < 𝑎 < 𝑏; then property (iii), with 𝑦 = 0, shows that 𝜌(𝑎𝑥) =
𝜌((𝑎/𝑏)(𝑏𝑥)) ≤ 𝜌(𝑏𝑥).
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Definition 4. Let 𝑋
𝜌
be a modular space. Then we have the

following.

(a) A sequence (𝑥
𝑛
)
𝑛∈N in𝑋

𝜌
is said to be

(i) 𝜌-convergent to 𝑥 if 𝜌(𝑥
𝑛
− 𝑥) → 0 as 𝑛 → ∞;

(ii) 𝜌-Cauchy if 𝜌(𝑥
𝑛
− 𝑥
𝑚
) → 0 as 𝑛,𝑚 → ∞.

(b) 𝑋
𝜌
is 𝜌-complete if every 𝜌-Cauchy sequence is 𝜌-

convergent.
(c) A subset 𝐵 ⊂ 𝑋

𝜌
is said to be 𝜌-closed if for any

sequence (𝑥
𝑛
)
𝑛∈N ⊂ 𝐵 and 𝑥

𝑛
→ 𝑥 then 𝑥 ∈ 𝐵.

(d) A subset 𝐵 ⊂ 𝑋
𝜌
is called 𝜌-bounded if 𝛿

𝜌
(𝐵) =

sup 𝜌(𝑥 − 𝑦) < ∞, for all 𝑥, 𝑦 ∈ 𝐵, where 𝛿
𝜌
(𝐵) is

called the 𝜌-diameter of 𝐵.
(e) 𝜌 has the Fatou property if

𝜌 (𝑥 − 𝑦) ≤ lim inf 𝜌 (𝑥
𝑛
− 𝑦
𝑛
) , (4)

whenever 𝑥
𝑛
→ 𝑥 and 𝑦

𝑛
→ 𝑦 as 𝑛 → ∞.

(f) 𝜌 is said to satisfy the Δ
2
-condition if 𝜌(2𝑥

𝑛
) → 0

whenever 𝜌(𝑥
𝑛
) → 0 as 𝑛 → ∞.

2. Expansive Mapping in Modular Space

In 2005, Hajji and Hanebaly [7] presented a modular version
of Krasnosel’skii fixed point theorem, for a 𝜌-contraction and
a 𝜌-completely continuous mapping.

Using the same argument as in [1], we state the modular
version of Krasnosel’skii fixed point theorem for 𝑆 +𝑇, where
𝑇 is a 𝜌-expansive mapping and the image of 𝐵 under 𝑆 ; that
is, 𝑆(𝐵) resides in a compact subset of𝑋

𝜌
, where 𝐵 is a subset

of𝑋
𝜌
.

Due to this, we recall the following definitions and
theorems.

Definition 5. Let 𝑋
𝜌
be a modular space and 𝐵 a nonempty

subset of𝑋
𝜌
.Themapping 𝑇 : 𝐵 → 𝑋

𝜌
is called 𝜌-expansive

mapping, if there exist constants 𝑐, 𝑘, 𝑙 ∈ R+ such that 𝑐 > 𝑙,
𝑘 > 1 and

𝜌 (𝑙 (𝑇𝑥 − 𝑇𝑦)) ≥ 𝑘𝜌 (𝑐 (𝑥 − 𝑦)) , (5)

for all 𝑥, 𝑦 ∈ 𝐵.

Example 6. Let 𝑋
𝜌
= 𝐵 = R+ and consider 𝑇 : 𝐵 → 𝐵 with

𝑇𝑥 = 𝑥
𝑛

+ 4𝑥 + 5 for 𝑥 ∈ 𝐵 and 𝑛 ∈ N. Then for all 𝑥, 𝑦 ∈ 𝐵,
we have
󵄨󵄨󵄨󵄨𝑇𝑥 − 𝑇𝑦

󵄨󵄨󵄨󵄨 =
󵄨󵄨󵄨󵄨𝑥
𝑛

− 𝑦
𝑛

+ 4 (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
(𝑥 − 𝑦) (𝑥

𝑛−1

+ 𝑦𝑥
𝑛−2

+ ⋅ ⋅ ⋅ + 𝑦
𝑛−1

) + 4 (𝑥 − 𝑦)
󵄨󵄨󵄨󵄨󵄨

≥ 4
󵄨󵄨󵄨󵄨𝑥 − 𝑦

󵄨󵄨󵄨󵄨 .

(6)

Therefore 𝑇 is an expansive mapping with constant 𝑘 = 4.

Theorem 7 (Schauder’s fixed point theorem, page 825; see [1,
8]). Let (𝑋, ‖ ⋅ ‖) be a Banach space and𝐾 ⊂ 𝑋 is a nonempty,
closed, and convex subset. Suppose that the mapping 𝑆 : 𝐾 →

𝐾 is continuous and 𝑆(𝐾) resides in a compact subset of𝑋.Then
𝑆 has at least one fixed point in 𝐾.

We need the following theorem from [6, 9].

Theorem8 (see [6, 9]). Let𝑋
𝜌
be a𝜌-completemodular space.

Assume that 𝜌 is a convex modular satisfying the Δ
2
-condition

and 𝐵 is a nonempty, 𝜌-closed, and convex subset of 𝑋
𝜌
. 𝑇 :

𝐵 → 𝐵 is a mapping such that there exist 𝑐, 𝑘, 𝑙 ∈ R+ such
that 𝑐 > 𝑙, 0 < 𝑘 < 1 and for all 𝑥, 𝑦 ∈ 𝐵 one has

𝜌 (𝑐 (𝑇𝑥 − 𝑇𝑦)) ≤ 𝑘𝜌 (𝑙 (𝑥 − 𝑦)) . (7)

Then there exists a unique fixed point 𝑧 ∈ 𝐵 such that 𝑇𝑧 = 𝑧.

Theorem 9. Let 𝑋
𝜌
be a 𝜌-complete modular space. Assume

that 𝜌 is a convex modular satisfying the Δ
2
-condition and 𝐵 is

a nonempty, 𝜌-closed, and convex subset of𝑋
𝜌
. 𝑇 : 𝐵 → 𝑋

𝜌
is

a 𝜌-expansive mapping satisfying inequality (5) and 𝐵 ⊂ 𝑇(𝐵).
Then there exists a unique fixed point 𝑧 ∈ 𝐵 such that 𝑇𝑧 = 𝑧.

Proof. We show that operator𝑇 is a bijection from 𝐵 to𝑇(𝐵).
Let 𝑥
1
and 𝑥

2
be in 𝐵 such that 𝑇𝑥

1
= 𝑇𝑥
2
; by inequality (5),

we have𝑥
1
= 𝑥
2
; also since𝐵 ⊂ 𝑇(𝐵) it follows that the inverse

of 𝑇 : 𝐵 → 𝑇(𝐵) exists. For all 𝑥, 𝑦 ∈ 𝑇(𝐵),

𝜌 (𝑐 (𝑓𝑥 − 𝑓𝑦)) ≤
1

𝑘
𝜌 (𝑙 (𝑥 − 𝑦)) , (8)

where 𝑓 = 𝑇
−1. We consider 𝑓 = 𝑇

−1

|
𝐵
: 𝐵 → 𝐵, where

𝑇
−1

|
𝐵
denotes the restriction of the mapping 𝑇−1 to the set 𝐵.

Since 𝐵 ⊂ 𝑇(𝐵), then 𝑓 is a 𝜌-contraction. Also since 𝐵 is a 𝜌-
closed subset of 𝑋

𝜌
, then, by Theorem 8, there exists a 𝑧 ∈ 𝐵

such that 𝑓𝑧 = 𝑧. Also 𝑧 is a fixed point of 𝑇.
For uniqueness, let 𝑧 and 𝑤 be two arbitrary fixed points

of 𝑇; then
𝜌 (𝑐 (𝑧 − 𝑤)) ≥ 𝜌 (𝑙 (𝑧 − 𝑤)) = 𝜌 (𝑙 (𝑇𝑧 − 𝑇𝑤))

≥ 𝑘𝜌 (𝑐 (𝑧 − 𝑤)) ;

(9)

hence (𝑘 − 1)𝜌(𝑐(𝑧 − 𝑤)) ≤ 0 and 𝑧 = 𝑤.

We need the following lemma for the main result.

Lemma 10. Suppose that all conditions of Theorem 9 are
fulfilled. Then the inverse of 𝑓 := 𝐼 − 𝑇 : 𝐵 → (𝐼 − 𝑇)(𝐵)

exists and

𝜌 (𝑐 (𝑓
−1

𝑥 − 𝑓
−1

𝑦)) ≤
1

𝑘 − 1
𝜌 (𝑙
󸀠

(𝑥 − 𝑦)) , (10)

for all 𝑥, 𝑦 ∈ 𝑓(𝐵), where 𝑙󸀠 = 𝛼𝑙 and 𝛼 is conjugate of 𝑐/𝑙; that
is, (𝑙/𝑐) + (1/𝛼) = 1 and 𝑐 > 2𝑙.

Proof. For all 𝑥, 𝑦 ∈ 𝐵,

𝜌 (𝑙 (𝑇𝑥 − 𝑇𝑦)) = 𝜌 (𝑙 ((𝑥 − 𝑓𝑥) − (𝑦 − 𝑓𝑦)))

≤ 𝜌 (𝑐 (𝑥 − 𝑦)) + 𝜌 (𝛼𝑙 (𝑓𝑥 − 𝑓𝑦)) ;

𝑘𝜌 (𝑐 (𝑥 − 𝑦)) − 𝜌 (𝑐 (𝑥 − 𝑦)) ≤ 𝜌 (𝛼𝑙 (𝑓𝑥 − 𝑓𝑦)) ,

(11)
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then
(𝑘 − 1) 𝜌 (𝑐 (𝑥 − 𝑦)) ≤ 𝜌 (𝑙

󸀠

(𝑓𝑥 − 𝑓𝑦)) . (12)

Now, we show that 𝑓 is an injective operator. Let 𝑥, 𝑦 ∈ 𝐵

and 𝑓𝑥 = 𝑓𝑦; then by inequality (12), (𝑘 − 1)𝜌(𝑐(𝑥 − 𝑦)) ≤ 0

and 𝑥 = 𝑦. Therefore 𝑓 is an injective operator from 𝐵 into
𝑓(𝐵), and the inverse of 𝑓 : 𝐵 → 𝑓(𝐵) exists. Also for all
𝑥, 𝑦 ∈ 𝑓(𝐵), we have𝑓−1𝑥, 𝑓−1𝑦 ∈ 𝐵.Then for all𝑥, 𝑦 ∈ 𝑓(𝐵),
by inequality (12) we get

𝜌 (𝑐 (𝑓
−1

𝑥 − 𝑓
−1

𝑦)) ≤
1

𝑘 − 1
𝜌 (𝑙
󸀠

(𝑥 − 𝑦)) . (13)

Theorem 11. Let 𝑋
𝜌
be a 𝜌-complete modular space. Assume

that 𝜌 is a convex modular satisfying the Δ
2
-condition and 𝐵

is a nonempty, 𝜌-closed, and convex subset of𝑋
𝜌
. Suppose that

(I) 𝑆 : 𝐵 → 𝑋
𝜌
is a 𝜌-continuous mapping and 𝑆(𝐵)

resides in a 𝜌-compact subset of𝑋
𝜌
;

(II) 𝑇 : 𝐵 → 𝑋
𝜌
is a 𝜌-expansive mapping satisfying

inequality (5) such that 𝑐 > 2𝑙;
(III) 𝑥 ∈ 𝑆(𝐵) implies that 𝐵 ⊂ 𝑥 + 𝑇(𝐵), where 𝑇(𝐵) + 𝑥 =

{𝑦 + 𝑥 | 𝑦 ∈ 𝑇(𝐵)}.

There exists a point 𝑧 ∈ 𝐵 such that 𝑆𝑧 + 𝑇𝑧 = 𝑧.

Proof. Let 𝑤 ∈ 𝑆(𝐵) and 𝑇
𝑤
= 𝑇 + 𝑤. Consider the mapping

𝑇
𝑤
: 𝐵 → 𝑋

𝜌
; then by Theorem 9, the equation 𝑇𝑥 + 𝑤 = 𝑥

has a unique solution 𝑥 = 𝜂(𝑤). Now, we show that 𝜂 is a
𝜌-contraction. For 𝑤

1
, 𝑤
2
∈ 𝑆(𝐵), 𝑇(𝜂(𝑤

1
)) + 𝑤

1
= 𝜂(𝑤

1
)

and 𝑇(𝜂(𝑤
2
)) + 𝑤

2
= 𝜂(𝑤

2
). Applying the same technique in

Lemma 10,

(𝑘 − 1) 𝜌 (𝑐 (𝜂 (𝑤
1
) − 𝜂 (𝑤

2
))) ≤ 𝜌 (𝑙

󸀠

(𝑤
1
− 𝑤
2
)) , (14)

where 𝑙󸀠 = 𝛼𝑙. Then

𝜌 (𝑐 (𝜂 (𝑤
1
) − 𝜂 (𝑤

2
))) ≤

1

𝑘 − 1
𝜌 (𝑙
󸀠

(𝑤
1
− 𝑤
2
)) . (15)

Therefore, mapping 𝜂 : 𝑆(𝐵) → 𝐵 is a 𝜌-contraction and
hence is a 𝜌-continuous mapping. By condition (I), 𝜂𝑆 : 𝐵 →

𝐵 is also 𝜌-continuous mapping and, by Δ
2
-condition, 𝜂𝑆

is ‖ ⋅ ‖
𝜌
-continuous mapping. Also 𝜂𝑆(𝐵) resides in a ‖ ⋅ ‖

𝜌
-

compact subset of 𝑋
𝜌
. Then using Theorem 7, there exists a

𝑧 ∈ 𝐵 such that 𝑧 = 𝜂(𝑆(𝑧)) which implies that 𝑇𝑧 + 𝑆𝑧 =

𝑧.

The following theorem is another version of Theorem 11.

Theorem 12. Let 𝑋
𝜌
be a 𝜌-complete modular space. Assume

that 𝜌 is a convex modular satisfying the Δ
2
-condition and 𝐵

is a nonempty, 𝜌-closed, and convex subset of𝑋
𝜌
. Suppose that

(I) 𝑆 : 𝐵 → 𝑋
𝜌
is a 𝜌-continuous mapping and 𝑆(𝐵)

resides in a 𝜌-compact subset of𝑋
𝜌
;

(II) 𝑇 : 𝐵 → 𝑋
𝜌
or 𝑇 : 𝑋

𝜌
→ 𝑋

𝜌
is a 𝜌-expansive

mapping satisfying inequality (5) such that 𝑐 > 2𝑙;
(III) 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝑋

𝜌
) and [𝑥 = 𝑇𝑥 + 𝑆𝑦, 𝑦 ∈ 𝐵 implies

that 𝑥 ∈ 𝐵] or 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝐵).

Then there exists a point 𝑧 ∈ 𝐵 such that 𝑆𝑧 + 𝑇𝑧 = 𝑧.

Proof. By condition (III), for each 𝑤 ∈ 𝐵, there exists 𝑥 ∈ 𝑋
𝜌

such that 𝑥 − 𝑇𝑥 = 𝑆𝑤. If 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝐵), then 𝑥 ∈ 𝐵; if
𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝑋

𝜌
), then by Lemma 10 and condition (III),

𝑥 = (𝐼 − 𝑇)
−1

𝑆𝑤 ∈ 𝐵. Now (𝐼 − 𝑇)
−1 is a 𝜌-continuous and so

(𝐼 − 𝑇)
−1

𝑆 is a 𝜌-continuous mapping of 𝐵 into 𝐵. Since 𝑆(𝐵)
resides in a 𝜌-compact subset of𝑋

𝜌
, so (𝐼−𝑇)−1𝑆(𝐵) resides in

a 𝜌-compact subset of the closed set 𝐵. By using Theorem 7,
there exists a fixed point 𝑧 ∈ 𝐵 such that 𝑧 = (𝐼 −𝑇)

−1

𝑆𝑧.

Using the same argument as in [2], we can state a new
version of Theorem 11, where 𝑆 is 𝜌-sequentially continuous.

Definition 13. Let 𝑋
𝜌
be a modular space and 𝐵 a subset of

𝑋
𝜌
. A mapping 𝑇 : 𝐵 → 𝑋

𝜌
is said to be

(1) 𝜌-sequentially continuous on the set 𝐵 if for every
sequence {𝑥

𝑛
} ⊂ 𝐵 and𝑥 ∈ 𝐵 such that𝜌(𝑥

𝑛
−𝑥) → 0,

then 𝜌(𝑇𝑥
𝑛
− 𝑇𝑥) → 0;

(2) 𝜌-closed if for every sequence {𝑥
𝑛
} ⊂ 𝐵 such that

𝜌(𝑥
𝑛
− 𝑥) → 0 and 𝜌(𝑇𝑥

𝑛
− 𝑦) → 0, then 𝑇𝑥 = 𝑦.

Definition 14. Let𝑋
𝜌
be amodular space and𝐵,𝐶 two subsets

of 𝑋
𝜌
. Suppose that 𝑇 : 𝐵 → 𝑋

𝜌
and 𝑆 : 𝐶 → 𝑋

𝜌
are two

mappings. Define

𝐹 = {𝑥 ∈ 𝐵 : 𝑥 = 𝑇𝑥 + 𝑆𝑦 for some𝑦 ∈ 𝐶} . (16)

Theorem 15. Let 𝑋
𝜌
be a 𝜌-complete modular space. Assume

that 𝜌 is a convex modular satisfying the Δ
2
-condition and 𝐵 is

a nonempty, 𝜌-closed, and convex subset of𝑋
𝜌
. Suppose that

(I) 𝑆 : 𝐵 → 𝑋
𝜌
is 𝜌-sequentially continuous;

(II) 𝑇 : 𝐵 → 𝑋
𝜌
is a 𝜌-expansive mapping satisfying

inequality (5) such that 𝑐 > 2𝑙;
(III) 𝑥 ∈ 𝑆(𝐵) implies that 𝐵 ⊂ 𝑥 + 𝑇(𝐵), where 𝑇(𝐵) + 𝑥 =

{𝑦 + 𝑥 | 𝑦 ∈ 𝑇(𝐵)};
(IV) 𝑇 is 𝜌-closed in 𝐹 and 𝐹 is relatively 𝜌-compact.

Then there exists a point 𝑧 ∈ 𝐵 such that 𝑆𝑧 + 𝑇𝑧 = 𝑧.

Proof. Let 𝑤 ∈ 𝐵, and 𝑇
𝑆𝑤

= 𝑇 + 𝑆𝑤. One considers the
mapping 𝑇

𝑆𝑤
: 𝐵 → 𝑋

𝜌
; by Theorem 9, the equation

𝑇𝑥 + 𝑆𝑤 = 𝑥 (17)

has a unique solution 𝑥 = 𝜂(𝑆𝑤) ∈ 𝐵.
Now, we show that 𝜂𝑆 = (𝐼 −𝑇)

−1 exists. For any𝑤
1
, 𝑤
2
∈

𝐵 and by the same technique of Lemma 10, we have

𝜌 (𝑐 (𝜂 (𝑆𝑤
1
) − 𝜂 (𝑆𝑤

2
))) ≤

1

𝑘 − 1
𝜌 (𝑙
󸀠

(𝑤
1
− 𝑤
2
)) , (18)

where 𝑙󸀠 = 𝛼𝑙. This implies that 𝜂𝑆 = (𝐼 − 𝑇)
−1 exists and for

all 𝑤 ∈ 𝐵, 𝜂𝑆𝑤 = (𝐼 − 𝑇)
−1

𝑆𝑤 and 𝜂𝑆(𝐵) ⊂ 𝐹.
We show that 𝜂𝑆 is 𝜌-sequentially continuous in 𝐵. Let

{𝑥
𝑛
} be a sequence in 𝐵 and 𝑥 ∈ 𝐵 such that 𝜌(𝑥

𝑛
− 𝑥) → 0.

Since 𝜂𝑆(𝑥
𝑛
) ∈ 𝐹 and 𝐹 is relatively 𝜌-compact, then there

exists 𝑧 ∈ 𝐵 such that 𝜌(𝜂𝑆𝑥
𝑛
− 𝑧) → 0. On the other hand,

by condition (I), 𝜌(𝑆𝑥
𝑛
− 𝑆𝑥) → 0. Thus by (17), we get

𝑇 (𝜂𝑆𝑥
𝑛
) + 𝑆𝑥

𝑛
= 𝜂𝑆𝑥

𝑛
; (19)
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then

𝜌(
𝑇 (𝜂𝑆𝑥

𝑛
) − (𝑧 − 𝑆𝑥)

2
) = 𝜌(

(𝜂𝑆𝑥
𝑛
− 𝑆𝑥
𝑛
) − (𝑧 − 𝑆𝑥)

2
)

≤ 𝜌 (𝜂𝑆𝑥
𝑛
− 𝑧) + 𝜌 (𝑆𝑥

𝑛
− 𝑆𝑥) ;

(20)

therefore when 𝑛 → ∞, condition (IV) implies that 𝑇𝑧 =

𝑧 − 𝑆𝑥; that is, 𝑧 = 𝜂𝑆𝑥 and

𝜌 (𝜂𝑆𝑥
𝑛
− 𝜂𝑆𝑥) 󳨀→ 0; (21)

then 𝜂𝑆 is 𝜌-sequentially continuous in 𝐹. By Δ
2
-condition,

𝜂𝑆 is ‖ ⋅ ‖
𝜌
-sequentially continuous. Let 𝐻 = co‖⋅‖𝜌𝐹, where

co‖⋅‖𝜌 denotes the closure of the convex hull in the sense of
‖ ⋅ ‖
𝜌
. Then 𝐻 ⊂ 𝐵 and is a compact set. Therefore 𝜂𝑆 is

‖ ⋅ ‖
𝜌
-sequentially continuous from 𝐻 into 𝐻. Then using

Theorem 7, 𝜂𝑆 has a fixed point 𝑧 ∈ 𝐻 such that 𝜂𝑆𝑧 = 𝑧.
From (17), we have

𝑇 (𝜂𝑆𝑧) + 𝑆𝑧 = 𝜂𝑆𝑧; (22)

that is, 𝑇𝑧 + 𝑆𝑧 = 𝑧.

The following theorem is another version of Theorem 15.

Theorem 16. Let 𝑋
𝜌
be a 𝜌-complete modular space. Assume

that 𝜌 is a convex modular satisfying the Δ
2
-condition and 𝐵 is

a nonempty, 𝜌-closed, and convex subset of𝑋
𝜌
. Suppose that

(I) 𝑆 : 𝐵 → 𝑋
𝜌
is 𝜌-sequentially continuous;

(II) 𝑇 : 𝐵 → 𝑋
𝜌
is a 𝜌-expansive mapping satisfying

inequality (5), such that 𝑐 > 2l;
(III) 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝑋

𝜌
) and [𝑥 = 𝑇𝑥 + 𝑆𝑦, 𝑦 ∈ 𝐵] implies

that 𝑥 ∈ 𝐵 (or 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝐵)).
(IV) 𝑇 is 𝜌-closed in 𝐹 and 𝐹 is relatively 𝜌-compact.

Then there exists a point 𝑧 ∈ 𝐵 such that 𝑆𝑧 + 𝑇𝑧 = 𝑧.

Proof. By (III) for each 𝑤 ∈ 𝐵, there exists 𝑥 ∈ 𝑋
𝜌
such

that 𝑥 − 𝑇𝑥 = 𝑆𝑤 and 𝑥 = (𝐼 − 𝑇)
−1

𝑆𝑤 ∈ 𝐵. By the
same technique of Theorem 15, (𝐼 − 𝑇)

−1

𝑆 : 𝐵 → 𝐵 is 𝜌-
sequentially continuous and there exists a 𝑧 ∈ 𝐵 such that
𝑧 = (𝐼 − 𝑇)

−1

𝑆𝑧.

3. Integral Equation for 𝜌-Expansive Mapping
in Modular Function Spaces

In this section, we study the following integral equation:

𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡)) + ∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠, 𝑥 ∈ 𝐶 (𝐼, 𝐿
𝜑

) ,

(23)

where 𝐿𝜑 is the Musielak-Orlicz space and 𝐼 = [0, 𝑏] ⊂ R.
𝐶(𝐼, 𝐿

𝜑

) denote the space of all 𝜌-continuous functions from
𝐼 to 𝐿𝜑 with the modular 𝜎(𝑥) = sup

𝑡∈𝐼
𝜌(𝑥(𝑡)). Also 𝐶(𝐼, 𝐿𝜑)

is a real vector space. If 𝜌 is a convex modular, then 𝜎 is a

convex modular. Also, if 𝜌 satisfies the Fatou property and
Δ
2
-condition, then 𝜎 satisfies the Fatou property and Δ

2
-

condition (see [9]).
To study the integral equation (23), we consider the

following hypotheses.

(1) 𝜙 : 𝐼 × 𝐿
𝜑

→ 𝐿
𝜑 is a 𝜌-expansive mapping; that is,

there exist constants 𝑐, 𝑘, 𝑙 ∈ R+ such that 𝑐 > 2𝑙, 𝑘 ≥ 2

and for all 𝑥, 𝑦 ∈ 𝐿
𝜑

𝜌 (𝑙 (𝜙 (𝑡, 𝑥) − 𝜙 (𝑡, 𝑦))) ≥ 𝑘𝜌 (𝑐 (𝑥 − 𝑦)) (24)

and 𝜙 is onto. Also for 𝑡 ∈ 𝐼, 𝜙(𝑡, ⋅) : 𝐿
𝜑

→ 𝐿
𝜑 is 𝜌-

continuous.
(2) 𝜓 is a function from 𝐼 × 𝐼 × 𝐿

𝜑 into 𝐿
𝜑 such that

𝜓(𝑡, 𝑠, ⋅) : 𝑥 → 𝜓(𝑡, 𝑠, 𝑥) is 𝜌-continuous on 𝐿
𝜑 for

almost all 𝑡, 𝑠 ∈ 𝐼 and 𝜓(𝑡, ⋅, 𝑥) : 𝑠 → 𝜓(𝑡, 𝑠, 𝑥)

is measurable function on 𝐼 for each 𝑥 ∈ 𝐿
𝜑 and

for almost all 𝑡 ∈ 𝐼. Also, there are nondecreasing
continuous functions 𝛽, 𝛾 : 𝐼 → R+ such that

lim
𝑡→∞

𝛽 (𝑡) ∫

𝑡

0

𝛾 (𝑠) 𝑑𝑠 = 0,

𝜌 (𝑐 (𝜓 (𝑡, 𝑠, 𝑥))) ≤ 𝛽 (𝑡) 𝛾 (𝑠) ,

(25)

for all 𝑡, 𝑠 ∈ 𝐼, 𝑠 ≤ 𝑡 and 𝑥 ∈ 𝐿𝜑.
(3) There exists measurable function 𝜂 : 𝐼 × 𝐼 × 𝐼 → R+

such that

𝜌 (𝜓 (𝑡, 𝑠, 𝑥) − 𝜓 (𝑟, 𝑠, 𝑥)) ≤ 𝜂 (𝑡, 𝑟, 𝑠) , (26)

for all 𝑡, 𝑟, 𝑠 ∈ 𝐼 and 𝑥 ∈ 𝐿
𝜑; also

lim
𝑡→ 𝑟

∫
𝑏

0

𝜂(𝑡, 𝑟, 𝑠)𝑑𝑠 = 0.
(4) 𝜌(𝜓(𝑡, 𝑠, 𝑥) − 𝜓(𝑡, 𝑠, 𝑦)) ≤ 𝜌(𝑥 − 𝑦) for all 𝑡, 𝑠 ∈ 𝐼 and

𝑥, 𝑦 ∈ 𝐿
𝜑.

Remark 17 (see [7]). We consider 𝐿𝜑, the Musielak-Orlicz
space. Since 𝜌 is convex and satisfies the Δ

2
-condition, then

󵄩󵄩󵄩󵄩𝑥𝑛 − 𝑥
󵄩󵄩󵄩󵄩𝜌 󳨀→ 0 ⇐⇒ 𝜌 (𝑥

𝑛
− 𝑥) 󳨀→ 0, (27)

as 𝑛 → ∞ on 𝐿𝜑. This implies that the topologies generated
by ‖ ⋅ ‖

𝜌
and 𝜌 are equivalent.

Theorem 18. Suppose that the conditions (1)–(4) are satisfied.
Further assume that 𝐿𝜑 satisfies the Δ

2
-condition. Also 𝜔(𝑡) =

𝛽(𝑡) ∫
𝑡

0

𝛾(𝑠)𝑑𝑠 and 𝜔(0) = 0; also sup{𝜌(𝑐(𝜙(𝑡, V))), 𝑡 ∈ 𝐼, V ∈

𝐿
𝜑

} ≤ 𝜔(𝑡). Then integral equation (23) has at least one
solution 𝑥 ∈ 𝐶(𝐼, 𝐿𝜑).

Proof. Suppose that

𝑇𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡)) ,

𝑆𝑥 (𝑡) = ∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(28)

Conditions (1) and (2) imply that 𝑇 and 𝑆 are well defined
on 𝐶(𝐼, 𝐿

𝜑

). Define the set 𝐵 = {𝑥 ∈ 𝐶(𝐼, 𝐿
𝜑

); 𝜌(𝑐(𝑥(𝑡))) ≤
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𝜔(𝑡) 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑡 ∈ 𝐼}. Then 𝐵 is a nonempty, 𝜌-bounded,
𝜌-closed, and convex subset of 𝐶(𝐼, 𝐿𝜑). Equation (23) is
equivalent to the fixed point problem 𝑥 = 𝑇𝑥 + 𝑆𝑥. By
Theorem 12, we find the fixed point for 𝑇 + 𝑆 in 𝐵. Due to
this, we prove that 𝑆 satisfies the condition (𝐼) ofTheorem 12.
For 𝑥 ∈ 𝐵, we show that 𝑆𝑥 ∈ 𝐵. Indeed,

𝜌 (𝑐 (𝑆𝑥 (𝑡))) = 𝜌(𝑐 (∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠))

≤ ∫

𝑡

0

𝜌 (𝑐 (𝜓 (𝑡, 𝑠, 𝑥 (𝑠)))) 𝑑𝑠

≤ ∫

𝑡

0

𝛽 (𝑡) 𝛾 (𝑠) 𝑑𝑠

= 𝜔 (𝑡) ;

(29)

then 𝑆𝑥 ∈ 𝐵. Since 𝑆(𝐵) ⊂ 𝐵 and 𝐵 is 𝜌-bounded, 𝑆(𝐵) is
𝜎-bounded and by Δ

2
-condition ‖ ⋅ ‖

𝜎
-bounded.

We show that 𝑆(𝐵) is 𝜌-equicontinuous. For all 𝑡, 𝑟 ∈ 𝐼

and 𝑥 ∈ 𝐿𝜑 such that 𝑡 < 𝑟,

𝑆𝑥 (𝑡) − 𝑆𝑥 (𝑟) = ∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

𝑟

0

𝜓 (𝑟, 𝑠, 𝑥 (𝑠)) 𝑑𝑠;

(30)

then by condition (3),

𝜌 (𝑆𝑥 (𝑡) − 𝑆𝑥 (𝑟)) ≤ ∫

𝑏

0

𝜂 (𝑡, 𝑟, 𝑠) 𝑑𝑠; (31)

since lim
𝑡→ 𝑟

∫
𝑏

0

𝜂(𝑡, 𝑟, 𝑠)𝑑𝑠 = 0, then 𝑆(𝐵) is 𝜌-
equicontinuous. By using the Arzela-Ascoli theorem,
we obtain that 𝑆 is a 𝜎-compact mapping. Next, we show
that 𝑆 is 𝜎-continuous. Suppose that 𝜀 > 0 is given; we find a
𝛿 > 0 such that 𝜎(𝑥 − 𝑦) < 𝛿, for some 𝑥, 𝑦 ∈ 𝐵. Note that

𝑆𝑥 (𝑡) − 𝑆𝑦 (𝑡) = ∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑥 (𝑠)) 𝑑𝑠 − ∫

𝑡

0

𝜓 (𝑡, 𝑠, 𝑦 (𝑠)) 𝑑𝑠;

(32)

also

𝜌 (𝑆𝑥 (𝑡) − 𝑆𝑦 (𝑡)) ≤ ∫

𝑡

0

𝜌 (𝑥 (𝑠) − 𝑦 (𝑠)) 𝑑𝑠 ≤ ∫

𝑡

0

𝜎 (𝑥 − 𝑦) 𝑑𝑠;

(33)

then

𝜎 (𝑆𝑥 − 𝑆𝑦) ≤ ∫

𝑏

0

𝜎 (𝑥 − 𝑦) 𝑑𝑠 ≤ 𝜀; (34)

therefore 𝑆 is 𝜎-continuous.
Since 𝜙 is 𝜌-continuous, it shows that 𝑇 transforms

𝐶(𝐼, 𝐿
𝜑

) into itself. In view of supremum 𝜌 and condition (1),
it is easy to see that 𝑇 is 𝜎-expansive with constant 𝑘 ≥ 2. For
𝑥, 𝑦 ∈ 𝐵,

𝜌 (𝑙 (𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)))

≤ 𝜌 (𝑐 (𝑥 (𝑡) − 𝑦 (𝑡)))

+ 𝜌 (𝛼𝑙 ((𝐼 − 𝑇) 𝑥 (𝑡) − (𝐼 − 𝑇) 𝑦 (𝑡))) ;

(35)

then

𝜌 (𝛼𝑙 ((𝐼 − 𝑇) 𝑥 (𝑡) − (𝐼 − 𝑇) 𝑦 (𝑡)))

≥ (𝑘 − 1) 𝜌 (𝑐 (𝑥 (𝑡) − 𝑦 (𝑡))) ,

(36)

where 𝛼 is conjugate of 𝑐/𝑙. Let 𝑟 = 𝛼𝑙; since 𝑘 ≥ 2, then

𝜌 (𝑟 (𝐼 − 𝑇) 𝑥 (𝑡)) ≥ (𝑘 − 1) 𝜌 (𝑐 (𝑥 (𝑡))) ≥ 𝜌 (𝑐 (𝑥 (𝑡))) . (37)

Now, assume that 𝑥 = 𝑇𝑥 + 𝑆𝑦 for some 𝑦 ∈ 𝐵. Since 𝑐 > 2𝑙,
then 𝑟 < 𝑐, and

𝜌 (𝑐 (𝑥 (𝑡))) ≤ 𝜌 (𝑟 (𝐼 − 𝑇) 𝑥 (𝑡)) = 𝜌 (𝑟 (𝑆𝑦 (𝑡)))

≤ 𝜌 (𝑐 (𝑆𝑦 (𝑡))) ≤ 𝜔 (𝑡) ,

(38)

which shows that 𝑥 ∈ 𝐵. Now, define a map 𝑇
𝑧
as follows:

𝑇
𝑧
: 𝐶 (𝐼, 𝐿

𝜑

) 󳨀→ 𝐶 (𝐼, 𝐿
𝜑

) , (39)

for each 𝑧 ∈ 𝐶(𝐼, 𝐿𝜑); by

𝑇
𝑧
𝑥 (𝑡) = 𝑇𝑥 (𝑡) + 𝑧 (𝑡) , (40)

for all 𝑥, 𝑦 ∈ 𝐶(𝐼, 𝐿
𝜑

),

𝜌 (𝑙 (𝑇
𝑧
𝑥 (𝑡) − 𝑇

𝑧
𝑦 (𝑡))) = 𝜌 (𝑙 (𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)))

≥ 𝑘𝜌 (𝑐 (𝑥 (𝑡) − 𝑦 (𝑡))) ;

(41)

therefore

𝜎 (𝑙 (𝑇
𝑧
𝑥 − 𝑇
𝑧
𝑦)) ≥ 𝑘𝜎 (𝑐 (𝑥 − 𝑦)) ; (42)

then 𝑇
𝑧
is 𝜎-expansive with constant 𝑘 ≥ 2 and 𝑇

𝑧
is onto. By

Theorem 9, there exists 𝑤 ∈ 𝐶(𝐼, 𝐿
𝜑

) such that 𝑇
𝑧
𝑤 = 𝑤; that

is, (𝐼 − 𝑇)𝑤 = 𝑧. Hence 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝐿
𝜑

) and condition
(III) ofTheorem 12 holds.Therefore byTheorem 12, 𝑆+𝑇 has
a fixed point 𝑧 ∈ 𝐵 with 𝑇𝑧 + 𝑆𝑧 = 𝑧; that is, 𝑧 is a solution to
(23).

Now, we consider another integral equation.
Let 𝐿𝜑 be the Musielak-Orlicz space and 𝐼 = [0, 𝑏] ⊂ R.

Suppose that 𝜌 is convex and satisfies theΔ
2
-condition. Since

topologies generated by ‖ ⋅ ‖
𝜌
and 𝜌 are equivalent, then we

consider Banach space (𝐿
𝜑

, ‖ ⋅ ‖
𝜌
) and 𝐶(𝐼, 𝐿

𝜑

) denote the
space of all ‖ ⋅ ‖

𝜌
-continuous functions from 𝐼 to 𝐿𝜑 with the

modular ‖𝑥‖
𝜎
= sup

𝑡∈𝐼
‖𝑥(𝑡)‖

𝜌
; also 𝐶(𝐼, 𝐿𝜑) is a real vector

space. Consider the nonlinear integral equation

𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡))

+ 𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠,

𝑥 ∈ 𝐶 (𝐼, 𝐿
𝜑

) ,

(43)

where

(1) 𝜙 : 𝐼 × 𝐿
𝜑

→ 𝐿
𝜑 is a ‖ ⋅ ‖

𝜌
-expansive mapping; that

is, there exists constant 𝑙 ≥ 2 such that
󵄩󵄩󵄩󵄩𝜙(𝑡, 𝑥) − 𝜙(𝑡, 𝑦)

󵄩󵄩󵄩󵄩𝜌 ≥ 𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝜌, (44)
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for all 𝑥, 𝑦 ∈ 𝐿
𝜑 and 𝜙 is onto; also for 𝑡 ∈ 𝐼, 𝜙(𝑡, ⋅) :

𝐿
𝜑

→ 𝐿
𝜑 is ‖ ⋅ ‖

𝜌
-continuous;

(2) 𝜓 is function from 𝐼 × 𝐿
𝜑 into 𝐿𝜑 such that 𝜓(𝑡, ⋅) :

𝐿
𝜑

→ 𝐿
𝜑 is a ‖ ⋅ ‖

𝜌
-continuous and 𝑡 → 𝜓(𝑡, 𝑥)

is measurable for every 𝑥 ∈ 𝐿
𝜑. Also, there exist

functions 𝛽 ∈ 𝐿
1

(𝐼) and a nondecreasing continuous
function 𝛾 : [0,∞) → (0,∞) such that

󵄩󵄩󵄩󵄩𝜓(𝑡, 𝑥)
󵄩󵄩󵄩󵄩𝜌 ≤ 𝛽 (𝑡) 𝛾 (‖𝑥‖

𝜌
) , (45)

for all 𝑡 ∈ 𝐼 and 𝑥 ∈ 𝐿𝜑. Also for 𝑡 ∈ 𝐼, 𝑥 → 𝜓(𝑡, 𝑥) is
nondecreasing on 𝐿𝜑;

(3) 𝜆 is function from 𝐼 × 𝐿
𝜑 into 𝐿

𝜑 such that 𝜆(𝑡, ⋅) :

𝐿
𝜑

→ 𝐿
𝜑 is ‖ ⋅ ‖

𝜌
-continuous and there exists a 𝑎 ≥ 0

such that

󵄩󵄩󵄩󵄩𝜆(𝑡, 𝑥) − 𝜆(𝑡, 𝑦)
󵄩󵄩󵄩󵄩𝜌 ≤ 𝑎

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝜌, (46)

for all 𝑡 ∈ 𝐼 and 𝑥 ∈ 𝐿
𝜑; also for 𝑥 ∈ 𝐿

𝜑, 𝑡 → 𝜆(𝑡, 𝑥)

is nondecreasing on 𝐼 and for 𝑡 ∈ 𝐼, 𝑥 → 𝜆(𝑡, 𝑥) is
nondecreasing on 𝐿𝜑;

(4) 𝜔 is function from 𝐼×𝐼 intoR+. For each 𝑡 ∈ 𝐼, 𝜔(𝑡, 𝑠)
is measurable on [0, 𝑡]. Also 𝜔(𝑡) = esssup |𝜔(𝑡, 𝑠)| is
bounded on [0, 𝑏] and 𝑟 = sup |𝜔(𝑡)|.Themap𝜔(⋅, 𝑠) :
𝑡 → 𝜔(𝑡, 𝑠) is continuous from 𝐼 to 𝐿∞(𝐼). Also for
𝑠 ∈ 𝐼, 𝑡 → 𝜔(𝑡, 𝑠) is nondecreasing on 𝐼.

Theorem 19. Suppose that the conditions (1)–(4) are satisfied
and there exists a constant 𝑘 ≥ 0 such that for all 𝑡 ∈ 𝐼,

∫

𝑡

0

𝛽 (𝑠) 𝑑𝑠 <
𝑘

(𝑎𝑘 + ℎ) 𝑟𝑏
∫

𝑡

0

1

𝛾 (𝑘)
𝑑𝑠, (47)

where ℎ := sup{‖𝜆(𝑡, 𝑥)‖
𝜌
, 𝑡 ∈ 𝐼, 𝑥 ∈ 𝐿

𝜑

} and also
sup{‖𝜙(𝑡, 𝑥)‖

𝜌
, 𝑡 ∈ 𝐼, 𝑥 ∈ 𝐿

𝜑

} ≤ 𝑘. Then integral equation (43)
has at least one solution 𝑥 ∈ 𝐶(𝐼, 𝐿𝜑).

Proof. Define

𝐵 = {𝑥 ∈ 𝐶 (𝐼, 𝐿
𝜑

) ; ‖𝑥 (𝑡)‖
𝜌
≤ 𝑘 ∀𝑡 ∈ 𝐼} ; (48)

then 𝐵 is a nonempty, ‖ ⋅ ‖
𝜌
-bounded, ‖ ⋅ ‖

𝜌
-closed, and

convex subset of 𝐶(𝐼, 𝐿𝜑). Consider

𝑇𝑥 (𝑡) = 𝜙 (𝑡, 𝑥 (𝑡)) ,

𝑆𝑥 (𝑡) = 𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠.

(49)

It is easy that by the hypothesis 𝑇 and 𝑆 are well defined on
𝐶(𝐼, 𝐿

𝜑

).

For 𝑥 ∈ 𝐵, we show that 𝑆𝑥 ∈ 𝐵. Consider

‖𝑆𝑥 (𝑡)‖
𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆 (𝑡, 𝑥 (𝑡)) − 𝜆 (𝑡, 0) + 𝜆 (𝑡, 0)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤ (𝑎‖𝑥 (𝑡)‖
𝜌
+ ℎ) 𝑟∫

𝑡

0

𝛽 (𝑠) 𝛾 (‖𝑥 (𝑠)‖
𝜌
) 𝑑𝑠

≤ (𝑎𝑘 + ℎ) 𝑟 ∫

𝑡

0

𝛽 (𝑠) 𝛾 (𝑘) 𝑑𝑠

≤ (𝑎𝑘 + ℎ) 𝑟 ∫

𝑏

0

𝑘𝛾 (𝑘)

(𝑎𝑘 + ℎ) 𝑟𝑏𝛾 (𝑘)
𝑑𝑠

≤ 𝑘.

(50)

Let 𝑥 ∈ 𝐵 and assume that 𝑡 > 𝜏 ∈ 𝐼 such that |𝑡 − 𝜏| < 𝛿, for
a given positive constant 𝛿. We have

‖𝑆𝑥 (𝑡) − 𝑆𝑥 (𝜏)‖
𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−𝜆 (𝜏, 𝑥 (𝜏)) ∫

𝜏

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

± 𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

± 𝜆 (𝜏, 𝑥 (𝜏)) ∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−𝜆 (𝜏, 𝑥 (𝜏)) ∫

𝜏

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) (∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆 (𝜏, 𝑥 (𝜏)) − 𝜆 (𝜏, 𝑥 (𝜏)))

× ∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝜏, 𝑥 (𝜏)) ∫

𝑡

𝜏

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌
;

(51)
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since
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) (∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) (∫

𝑡

0

(𝜔 (𝑡, 𝑠) − 𝜔 (𝜏, 𝑠)) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝜆 (𝜏, 𝑥 (𝜏)) − 𝜆 (𝜏, 0) + 𝜆 (𝜏, 0))

× (∫

𝑡

0

(𝜔 (𝑡, 𝑠) − 𝜔 (𝜏, 𝑠)) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤ (𝑎𝑘 + ℎ) |𝜔 (𝑡, 0) − 𝜔 (𝜏, 0)|
𝐿∞

∫

𝑡

0

𝛽 (𝑠) 𝛾 (𝑘) 𝑑𝑠

≤
𝑘

𝑟
|𝜔 (𝑡, 0) − 𝜔 (𝜏, 0)|

𝐿∞
,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆 (𝑡, 𝑥 (𝑡)) − 𝜆 (𝜏, 𝑥 (𝜏))) ∫

𝑡

0

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆 (𝑡, 𝑥 (𝑡)) − 𝜆 (𝜏, 𝑥 (𝜏))) 𝑟 ∫

𝑡

0

𝛽 (𝑠) 𝛾 (𝑘) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤
𝑘

𝑎𝑘 + ℎ
(‖𝜆 (𝑡, 𝑥 (𝑡)) − 𝜆 (𝑡, 𝑥 (𝜏))‖

𝜌

+‖𝜆 (𝜏, 𝑥 (𝜏)) − 𝜆 (𝑡, 𝑥 (𝜏))‖
𝜌
)

≤
𝑘

𝑎𝑘 + ℎ
(𝑎‖𝑥 (𝑡) − 𝑥 (𝜏)‖

𝜌
+ ℎ) ,

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝜏, 𝑥 (𝜏)) ∫

𝑡

𝜏

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(𝜆 (𝜏, 𝑥 (𝜏)) − 𝜆 (𝜏, 0) + 𝜆 (𝜏, 0))

× ∫

𝑡

𝜏

𝜔 (𝜏, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤ (𝑎𝑘 + ℎ) 𝑟 ∫

𝑡

𝜏

𝛽 (𝑠) 𝛾 (𝑘) 𝑑𝑠

≤
𝑘

𝑏
|𝑡 − 𝜏| ,

(52)

then 𝑆(𝐵) is ‖ ⋅ ‖
𝜌
-equicontinuous. By using the Arzela-Ascoli

Theorem, we obtain that 𝑆 is a ‖ ⋅ ‖
𝜌
-compact mapping.

We show that 𝑆 is ‖ ⋅ ‖
𝜌
-continuous. Suppose that 𝜀 > 0 is

given. We find a 𝛿 > 0 such that ‖𝑥 − 𝑦‖
𝜎
< 𝛿. We have

󵄩󵄩󵄩󵄩𝑆𝑥 (𝑡) − 𝑆𝑦 (𝑡)
󵄩󵄩󵄩󵄩𝜌

=

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑥 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

−𝜆 (𝑡, 𝑦 (𝑡)) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑦 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
(𝜆 (𝑡, 𝑥 (𝑡)) − 𝜆 (𝑡, 𝑦 (𝑡))) ∫

𝑡

0

𝜔 (𝑡, 𝑠) 𝜓 (𝑠, 𝑥 (𝑠)) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝜆 (𝑡, 𝑦 (𝑡)) ∫

𝑡

0

(𝜓 (𝑠, 𝑥 (𝑠)) − 𝜓 (𝑠, 𝑦 (𝑠))) 𝑑𝑠

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝜌

≤
𝑘𝑎

𝑎𝑘 + ℎ

󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)
󵄩󵄩󵄩󵄩𝜌 + (𝑎𝑘 + ℎ) 𝑟 ∫

𝑡

0

󵄩󵄩󵄩󵄩𝑥 (𝑠) − 𝑦 (𝑠)
󵄩󵄩󵄩󵄩𝜌𝑑𝑠

≤
𝑘𝑎

𝑎𝑘 + ℎ

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝜎 + (𝑎𝑘 + ℎ) 𝑟𝑏

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩𝜎

≤ 𝜀.

(53)

Since 𝜙 is ‖ ⋅ ‖
𝜌
-continuous, it shows that 𝑇 transforms

𝐶(𝐼, 𝐿
𝜑

) into itself. In view of supremum ‖ ⋅ ‖
𝜌
and condition

(1), it is easy to see that 𝑇 is ‖ ⋅ ‖
𝜎
-expansive with constant

𝑙 ≥ 2.
For 𝑥, 𝑦 ∈ 𝐵,

󵄩󵄩󵄩󵄩𝑇𝑥 (𝑡) − 𝑇𝑦 (𝑡)
󵄩󵄩󵄩󵄩𝜌

≤
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩𝜌 +
󵄩󵄩󵄩󵄩(𝐼 − 𝑇) 𝑥 (𝑡) − (𝐼 − 𝑇) 𝑦 (𝑡)

󵄩󵄩󵄩󵄩𝜌;
(54)

then
󵄩󵄩󵄩󵄩(𝐼 − 𝑇)𝑥(𝑡) − (𝐼 − 𝑇)𝑦(𝑡)

󵄩󵄩󵄩󵄩𝜌 ≥ (𝑙 − 1)
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩𝜌; (55)

since 𝑙 ≥ 2, then

‖(𝐼 − 𝑇)𝑥(𝑡)‖
𝜌
≥ (𝑙 − 1) ‖𝑥(𝑡)‖

𝜌
≥ ‖𝑥(𝑡)‖

𝜌
. (56)

Now, assume that 𝑥 = 𝑇𝑥 + 𝑆𝑦 for some 𝑦 ∈ 𝐵. Then

‖𝑥(𝑡)‖
𝜌
≤ ‖(𝐼 − 𝑇)𝑥(𝑡)‖

𝜌
=
󵄩󵄩󵄩󵄩𝑆𝑦(𝑡)

󵄩󵄩󵄩󵄩𝜌 ≤ 𝑘, (57)

which shows that 𝑥 ∈ 𝐵. Now for each 𝑧 ∈ 𝐶(𝐼, 𝐿𝜑) we define
a map 𝑇

𝑧
as follows:

𝑇
𝑧
: 𝐶 (𝐼, 𝐿

𝜑

) 󳨀→ 𝐶 (𝐼, 𝐿
𝜑

) ; (58)

by

𝑇
𝑧
𝑥 (𝑡) = 𝑇𝑥 (𝑡) + 𝑧 (𝑡) ; (59)

for all 𝑥, 𝑦 ∈ 𝐶(𝐼, 𝐿
𝜑

),
󵄩󵄩󵄩󵄩𝑇𝑧𝑥(𝑡) − 𝑇𝑧𝑦(𝑡)

󵄩󵄩󵄩󵄩𝜌 =
󵄩󵄩󵄩󵄩𝑇𝑥(𝑡) − 𝑇𝑦(𝑡)

󵄩󵄩󵄩󵄩𝜌 ≥ 𝑙
󵄩󵄩󵄩󵄩𝑥 (𝑡) − 𝑦 (𝑡)

󵄩󵄩󵄩󵄩𝜌;

(60)

therefore
󵄩󵄩󵄩󵄩𝑇𝑧𝑥 − 𝑇𝑧𝑦

󵄩󵄩󵄩󵄩𝜎 ≥ 𝑙
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩𝜎; (61)

then 𝑇
𝑧
is ‖ ⋅ ‖

𝜎
-expansive with constant 𝑙 ≥ 2 and 𝑇

𝑧
is onto.

By Theorem 9, there exists 𝑤 ∈ 𝐶(𝐼, 𝐿
𝜑

) such that 𝑇
𝑧
𝑤 = 𝑤;

that is, (𝐼 − 𝑇)𝑤 = 𝑧. Hence 𝑆(𝐵) ⊂ (𝐼 − 𝑇)(𝐿
𝜑

). Therefore by
Theorem 12, 𝑆 + 𝑇 has a fixed point 𝑧 ∈ 𝐵 with 𝑇𝑧 + 𝑆𝑧 = 𝑧;
that is, 𝑧 is a solution of (43).

Finally, some examples are presented to guarantee Theo-
rems 18 and 19.
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Example 20. Consider the following integral equation:

𝑥 (𝑡) =
9𝑥 (𝑡)

1 + 𝑡2
+ ∫

𝑡

0

arctan( 5𝑡 (1 + 𝑠)√𝑥 (𝑠)

(1 + 𝑡)
3

(1 + √𝑥 (𝑠))
)𝑑𝑠,

(62)

where 𝐿𝜑 = R+, 𝐼 = [0, 1].
For 𝑥, 𝑦 ∈ R+ and 𝑡 ∈ 𝐼, we have

󵄨󵄨󵄨󵄨𝜙 (𝑡, 𝑥) − 𝜙 (𝑡, 𝑦)
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

9𝑥

1 + 𝑡2
−

9𝑦

1 + 𝑡2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨
≥
9

2

󵄨󵄨󵄨󵄨𝑥 − 𝑦
󵄨󵄨󵄨󵄨 .

(63)

Therefore by Theorem 18, the integral equation (62) has at
least one solution.

Example 21. Consider the following integral equation:

𝑥 (𝑡) =
9𝑥 (𝑡)

1 + 𝑡2
+
1

8
arcsin𝑥 (𝑡) ∫

𝑡

0

𝑡

𝑡 + 𝑠
𝑥 (𝑠) 𝑑𝑠, (64)

where𝜙(𝑡, 𝑥) = (9𝑥/(1+𝑡
2

)),𝜆(𝑡, 𝑥) = (1/8) arcsin𝑥,𝜔(𝑡, 𝑠) =
𝑡/(𝑡 + 𝑠), and 𝜓(𝑡, 𝑥) = 𝑥. Also 𝐿𝜑 = R+, 𝐼 = [0, 1]. Therefore
by Theorem 19, the integral equation (64) has at least one
solution.
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