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We first introduce a new class of contractive mappings in the setting of metric spaces and then we present certain Greguš type fixed
point theorems for such mappings. As an application, we derive certain Greguš type common fixed theorems. Our results extend
Greguš fixed point theorem inmetric spaces and generalize and unify some related results in the literature. An example is also given
to support our main result.

1. Introduction and Preliminaries

Let 𝑋 be a Banach space and let 𝐶 be a closed convex subset
of𝑋. In 1980 Greguš [1] proved the following result.

Theorem 1. Let 𝑇 : 𝐶 → 𝐶 be a mapping satisfying the
inequality

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑎

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 + 𝑏 ‖𝑥 − 𝑇𝑥‖ + 𝑐

󵄩󵄩󵄩󵄩𝑦 − 𝑇𝑦
󵄩󵄩󵄩󵄩 , (1)

for all 𝑥, 𝑦 ∈ 𝐶, where 0 < 𝑎 < 1, 𝑏, 𝑐 ≥ 0, and 𝑎 + 𝑏 + 𝑐 = 1.
Then 𝑇 has a unique fixed point.

Fisher and Sessa [2], Jungck [3], and Hussain et al. [4]
obtained common fixed point generalizations of Theorem 1.
In recent years, many theorems which are closely related to
Greguš’s Theorem have appeared (see [1–21]). Very recently,
Moradi and Farajzadeh [21] extended Greguš fixed point
theorem in complete metric spaces.

Theorem 2 ([21, Theorem 2.4]). Let (𝑋, 𝑑) be a complete
metric space and let 𝑇 : 𝑋 → 𝑋 be a mapping such that,
for all 𝑥, 𝑦 ∈ 𝑋,

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝑑 (𝑥, 𝑇𝑥)

+ 𝑐𝑑 (𝑦, 𝑇𝑦) + 𝑒𝑑 (𝑦, 𝑇𝑥) + 𝑓𝑑 (𝑥,T𝑦) ,
(2)

where 0 < 𝑎 < 1, 𝑏, 𝑐, 𝑒, 𝑓 ≥ 0, 𝑏 + 𝑐 > 0, 𝑒 + 𝑓 > 0, and
𝑎 + 𝑏 + 𝑐 + 𝑒 + 𝑓 = 1. Then 𝑇 has a unique fixed point.

Let 𝐼 and 𝑇 be self-maps of 𝑋. A point 𝑥 ∈ 𝑋 is a
coincidence point (resp., common fixed point) of 𝐼 and 𝑇 if
𝐼𝑥 = 𝑇𝑥 (resp., 𝑥 = I𝑥 = 𝑇𝑥). The pair {𝐼, 𝑇} is called (1)
commuting if𝑇𝐼𝑥 = 𝐼𝑇𝑥 for all𝑥 ∈ 𝑋; (2) weakly commuting
[2] if, for all 𝑥 ∈ 𝑋, 𝑑(𝐼𝑇𝑥, 𝑇𝐼𝑥) ≤ 𝑑(𝐼𝑥, 𝑇𝑥); (3) compatible
[3] if lim

𝑛
𝑑(𝑇𝐼𝑥

𝑛
, 𝐼𝑇𝑥
𝑛
) = 0 whenever {𝑥

𝑛
} is a sequence

such that lim
𝑛
𝑇𝑥
𝑛
= lim
𝑛
𝐼𝑥
𝑛
= 𝑡 for some 𝑡 in𝑋; (4) weakly

compatible if they commute at their coincidence points, that
is, if 𝐼𝑇𝑥 = 𝑇𝐼𝑥 whenever 𝐼𝑥 = 𝑇𝑥. Clearly, commuting
maps are weakly commuting, and weakly commuting maps
are compatible. References [2, 3] give examples which show
that neither implication is reversible.

The purpose of this paper is to define and to investigate a
class of new generalized contractive mappings (not necessar-
ily continuous) on metric spaces. We will prove certain fixed
point and common fixed results which are generalizations of
the above mentioned theorems.

2. Fixed Point Results

We denote by R
+
the set of all nonnegative real numbers

and by U the set of all functions 𝑢 : R5
+

→ R
+
satisfying
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the following conditions:

(C
1
) 𝑢 is continuous,

(C
2
) 𝑢(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) is nondecreasing in 𝑡

1
, 𝑡
2
, 𝑡
3
, and 𝑡

5
,

(C
3
) 𝑠 < 𝑡 ⇒ 𝑢(𝑠, 𝑠, 𝑡, 0, 𝑠 + 𝑡) < 𝑡, for each 𝑠, 𝑡 > 0,

(C
4
) 𝑢(𝑡, 𝑡, 𝑡, 0, 𝑢(2𝑡, 𝑡, 𝑡, 𝑡, 3𝑡)) < 𝑡, for each 𝑡 > 0,

(C
5
) 𝑢(𝑡, 0, 0, 𝑡, 𝑡) < 𝑡 for each 𝑡 > 0.

Example 3. If 𝑢(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 𝑎𝑡

1
+ 𝑏𝑡
2
+ 𝑏𝑡
3
+ 𝑒𝑡
4
+ 𝑒𝑡
5
for

𝑡
𝑖
∈ R
+
, where 0 < 𝑎 < 1, 𝑏, 𝑒 > 0, and 𝑎 + 2𝑏 + 2𝑒 = 1, then

𝑢 ∈ U.

Example 4. If 𝑢(𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) = 𝑘max{𝑡

1
, 𝑡
2
, 𝑡
3
, (𝑡
4
+ 𝑡
5
)/2}

for 𝑡
𝑖
∈ R
+
, where 𝑘 ∈ [0, 1), then 𝑢 ∈ U.

Example 5. Let 𝑢 ∈ U.Then it is easy to see that𝑤 ∈ Uwhere

𝑤 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
)

= 𝑢 (𝑡
1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
) + 𝐿min {𝑡

1
, 𝑡
2
, 𝑡
3
, 𝑡
4
, 𝑡
5
} ,

(3)

for each 𝐿 ≥ 0.

Now we are ready to state our main result.

Theorem 6. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping satisfying

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑢 (𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦,T𝑦) , 𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)) ,

(4)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑢 ∈ U. Then 𝑇 has a unique fixed
point.

Proof. We first show that 𝛼 = inf
𝑥∈𝑋

𝑑(𝑥, 𝑇𝑥) = 0. If
𝑑(𝑥, 𝑇𝑥) = 0 for some 𝑥 ∈ 𝑋, then 𝑥 is a fixed point of 𝑇
and we are done. So, we may assume that 𝑑(𝑥, 𝑇𝑥) > 0 for
each 𝑥 ∈ 𝑋. From (4), (C

2
), and (C

3
), we have

𝑑 (𝑇𝑧, 𝑇
2

𝑧)

≤ 𝑢 (𝑑 (𝑧, 𝑇𝑧) , 𝑑 (𝑧, 𝑇𝑧) , 𝑑 (𝑇𝑧, 𝑇
2

𝑧) , 0, 𝑑 (𝑧, 𝑇
2

𝑧))

≤ 𝑢 (𝑑 (𝑧, 𝑇𝑧) , 𝑑 (𝑧, 𝑇𝑧) , 𝑑 (𝑇𝑧, 𝑇
2

𝑧) , 0,

𝑑 (𝑧, 𝑇𝑧) + 𝑑 (𝑇𝑧, 𝑇
2

𝑧)) ,

(5)

and so

𝑑 (𝑇𝑧, 𝑇
2

𝑧) ≤ 𝑑 (𝑧, 𝑇𝑧) , for each 𝑧 ∈ 𝑋. (6)

Now let {𝑥
𝑛
} be a sequence such that

𝛼 = inf
𝑥∈𝑋

𝑑 (𝑥, 𝑇𝑥) = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) . (7)

From (4), (6), and (C
2
), we get

𝑑 (𝑇𝑥
𝑛
, 𝑇
3

𝑥
𝑛
)

≤ 𝑢 (𝑑 (𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑇

2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ,

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇
3

𝑥
𝑛
))

≤ 𝑢 (𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇
2

𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) , 𝑑 (𝑇

2

𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
)

+ 𝑑 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) +𝑑 (𝑇

2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
))

≤ 𝑢 (2𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 3𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
)) ,

(8)

for each 𝑛 ∈ N. From (4), (6), (8), and (C
2
), we have

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
)

≤ 𝑢 (𝑑 (𝑇𝑥
𝑛
, 𝑇
2

𝑥
𝑛
) , 𝑑 (𝑇𝑥

𝑛
, 𝑇
2

𝑥
𝑛
) ,

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) , 0, 𝑑 (𝑇𝑥

𝑛
, 𝑇
3

𝑥
𝑛
))

≤ 𝑢 (𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑇

2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) , 0,

𝑢 (2𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

𝑑 (𝑥
𝑛
, 𝑇𝑥
𝑛
) , 3𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
))) ,

(9)

for each 𝑛 ∈ N. From (6) and (7), we get

𝛼 ≤ 𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , (10)

and so by (7)

lim
𝑛→∞

𝑑 (𝑇
2

𝑥
𝑛
, 𝑇
3

𝑥
𝑛
) = 𝛼. (11)

From (7), (9), (11), and (C
1
), we obtain

𝛼 ≤ 𝑢 (𝛼, 𝛼, 𝛼, 0, 𝑢 (2𝛼, 𝛼, 𝛼, 𝛼, 3𝛼)) . (12)

Hence by (C
4
)

𝛼 = inf
𝑥∈𝑋

𝑑 (𝑥, 𝑇𝑥) = 0. (13)

Now, let

𝐶
𝑛
= {𝑥 ∈ 𝑋 : 𝑑 (𝑥, 𝑇𝑥) ≤

1

𝑛
} , for each 𝑛 ∈ N. (14)

Notice that, by (13), 𝐶
𝑛

̸= 0 for each 𝑛 ∈ N. We show that

lim
𝑛→∞

diam (𝐶
𝑛
) = 0. (15)

On the contrary, assume that there are sequences {𝑥
𝑛
} and

{𝑦
𝑛
} with 𝑥

𝑛
, 𝑦
𝑛
∈ 𝐶
𝑛
satisfying

𝜌 = lim
𝑛→∞

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) > 0. (16)
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From (4), (14), and (C
2
), we have

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) ≤ 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) + 𝑑 (𝑇𝑥

𝑛
, 𝑇𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑇𝑦
𝑛
)

≤
2

𝑛
+ 𝑢 (𝑑 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑦

𝑛
, 𝑇𝑦
𝑛
) ,

𝑑 (𝑦
𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑦
𝑛
))

≤
2

𝑛
+ 𝑢 (𝑑 (𝑥

𝑛
, 𝑦
𝑛
) , 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) , 𝑑 (𝑦

𝑛
, 𝑇𝑦
𝑛
) ,

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝑑 (𝑥

𝑛
, 𝑇𝑥
𝑛
) ,

𝑑 (𝑥
𝑛
, 𝑦
𝑛
) + 𝑑 (𝑦

𝑛
, 𝑇𝑦
𝑛
)) ,

(17)

for each 𝑛 ∈ N. From (14), (16), (17), and (C
1
), we get

𝜌 ≤ 𝑢 (𝜌, 0, 0, 𝜌, 𝜌) , (18)

which contradicts (C
5
). Thus (15) holds. Hence {𝐶

𝑛
}

is a decreasing sequence of closed nonempty sets with
diam(𝐶

𝑛
) → 0 and so, by Cantor’s intersection theorem,

∞

⋂

𝑛=1

𝐶
𝑛
= {𝑥} for some 𝑥 ∈ 𝑋. (19)

We show that 𝑥 is a fixed point of𝑇. Since 𝑥 ∈ 𝐶
𝑛
, there exists

𝑢
𝑛
∈ 𝐶
𝑛
such that 𝑑(𝑥, 𝑢

𝑛
) < 1/𝑛 for all 𝑛 ∈ N. Now for each

𝑛 ∈ N, we have

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑑 (𝑥, 𝑢
𝑛
) + 𝑑 (𝑢

𝑛
, 𝑇𝑢
𝑛
) + 𝑑 (𝑇𝑢

𝑛
, 𝑇𝑥)

≤
2

𝑛
+ 𝑢 (𝑑 (𝑢

𝑛
, 𝑥) , 𝑑 (𝑢

𝑛
, 𝑇𝑢
𝑛
) , 𝑑 (𝑥, 𝑇𝑥) ,

𝑑 (𝑥, 𝑇𝑢
𝑛
) , 𝑑 (𝑢

𝑛
, 𝑇𝑥))

≤
2

𝑛
+ 𝑢 (𝑑 (𝑢

𝑛
, 𝑥) , 𝑑 (𝑢

𝑛
, 𝑇𝑢
𝑛
) , 𝑑 (𝑥, 𝑇𝑥) ,

𝑑 (𝑥, 𝑢
𝑛
) + 𝑑 (𝑢

𝑛
, 𝑇𝑢
𝑛
) , 𝑑 (𝑢

𝑛
, 𝑥)

+𝑑 (𝑥, 𝑇𝑥)) .

(20)

Since 𝑢 is continuous, from (20),

𝑑 (𝑥, 𝑇𝑥) ≤ 𝑢 (0, 0, 𝑑 (𝑥, 𝑇𝑥) , 0, 𝑑 (𝑥, 𝑇𝑥)) , (21)

and hence, by (C
3
), 𝑑(𝑥, 𝑇𝑥) = 0; that is, 𝑇𝑥 = 𝑥. To prove

the uniqueness, note that if 𝑦 is a fixed point of 𝑇, then 𝑦 ∈

⋂
∞

𝑛=1
𝐶
𝑛
⊆ ⋂
∞

𝑛=1
𝐶
𝑛
= {𝑥} and hence 𝑥 = 𝑦.

Remark 7. Note that, to prove Theorem 2, we may assume
that 𝑏 = 𝑐 and 𝑓 = 𝑒 (see the proof of Theorem 2.4 in
[21]). Thus, by Example 3, Theorem 6 is a generalization of
the above mentionedTheorem 2 of Moradi and Farajzadeh.

If we take 𝑢 as in Example 4, from Theorem 6 we get the
main result of Ćirić [10].

The following corollary improves Theorem 2.4 in [6].

Corollary 8. Let (𝑋, 𝑑) be a complete metric space and let 𝑇 :

𝑋 → 𝑋 be a mapping satisfying

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑦, 𝑇𝑥) + 𝑑 (𝑥, 𝑇𝑦)

2
}

+ 𝐿min {𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑦, 𝑇𝑥) , 𝑑 (𝑥, 𝑇𝑦)}

(22)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1) and 𝐿 ≥ 0. Then 𝑇 has a
unique fixed point.

As an easy consequence of the axiom of choice, [13, page
5], AC5: for every function 𝑓 : 𝑋 → 𝑋, there is a function 𝑔

such that 𝐷(𝑔) = 𝑅(𝑓) and for every 𝑥 ∈ 𝐷(𝑔), 𝑓(𝑔𝑥) = 𝑥],
we obtain the following lemma (see also [22]).

Lemma 9. Let 𝑋 be a nonempty set and let 𝑔 : 𝑋 → 𝑋 be a
mapping. Then, there exists a subset 𝐸 ⊆ 𝑋 such that 𝑔(𝐸) =

𝑔(𝑋) and 𝑔 : 𝐸 → 𝑋 is one-to-one.

As an application of Theorem 6, we now establish a
common fixed point result.

Theorem 10. Let (𝑋, 𝑑) be a metric space and let 𝑔,𝑇 : 𝑋 →

𝑋 be mappings satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑢 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) ,

𝑑 (𝑔𝑦, 𝑇𝑦) , 𝑑 (𝑔𝑦, 𝑇𝑥) , 𝑑 (𝑔𝑥, 𝑇𝑦)) ,

(23)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑢 ∈ U. Suppose that 𝑇𝑋 ⊆ 𝑔𝑋 and
𝑔𝑋 is complete subspace of 𝑋. Then 𝑔 and 𝑇 have a unique
coincidence point. Further, if 𝑔 and 𝑇 are weakly compatible,
then they have a unique common fixed point.

Proof. ByLemma 9, there exists𝐸 ⊆ 𝑋 such that𝑔(𝐸) = 𝑔(𝑋)

and 𝑔 : 𝐸 → 𝑋 is one-to-one. We define a mapping 𝐺 :

𝑔(𝐸) → 𝑔(𝐸) by

𝐺 (𝑔𝑥) = 𝑇 (𝑥) , (24)

for all 𝑔𝑥 ∈ 𝑔(𝐸). As 𝑔 is one-to-one on 𝑔(𝐸) and 𝑇(𝑋) ⊆

𝑔(𝑋), 𝐺 is well defined. Thus, it follows from (23) and (24)
that

𝑑 (𝐺 (𝑔𝑥) , 𝐺 (𝑔𝑦)) = 𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑢 (𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦) ,

𝑑 (𝑔𝑦, 𝑇𝑥) , 𝑑 (𝑔𝑥, 𝑇𝑦)) ,

(25)

for all 𝑔𝑥, 𝑔𝑦 ∈ 𝑔(𝑋) = 𝑔(𝐸). Thus the function 𝐺 : 𝑔(𝐸) →

𝑔(𝐸) satisfies all conditions of Theorem 6, so 𝐺 has a unique
fixed point 𝑧 ∈ 𝑔(𝑋). As 𝑧 ∈ 𝑔(𝑋), there exists 𝑤 ∈ 𝑋 such
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that 𝑧 = 𝑔(𝑤). Thus 𝑇(𝑤) = 𝐺(𝑔𝑤) = 𝐺(𝑧) = 𝑧 = 𝑔(𝑤)

which implies that 𝑔 and 𝑇 have a unique coincidence point.
Further if 𝑔 and 𝑇 are weakly compatible, then they have a
unique common fixed point.

If we take 𝑢 as in Example 5, then from Theorem 10 we
obtain the following result which extendsmany related results
in the literature (see [16, 17]).

Theorem 11. Let (𝑋, 𝑑) be a metric space and let 𝑔,𝑇 : 𝑋 →

𝑋 be mappings satisfying

𝑑 (𝑇𝑥, 𝑇𝑦)

≤ 𝑘max{𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦) ,

𝑑 (𝑔𝑦, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑦)

2
}

+ 𝐿min {𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦) ,

𝑑 (𝑔𝑦, 𝑇𝑥) , 𝑑 (𝑔𝑥, 𝑇𝑦)}

(26)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1) and 𝐿 ≥ 0. Suppose that
𝑇𝑋 ⊆ 𝑔𝑋 and 𝑔𝑋 is a complete subspace of 𝑋. Then 𝑔 and 𝑇

have a unique coincidence point. Further, if 𝑔 and𝑇 are weakly
compatible, then they have a unique common fixed point.

Corollary 12. Let (𝑋, 𝑑) be a metric space and let 𝑔,𝑇 : 𝑋 →

𝑋 be mappings satisfying

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑘max{𝑑 (𝑔𝑥, 𝑔𝑦) , 𝑑 (𝑔𝑥, 𝑇𝑥) , 𝑑 (𝑔𝑦, 𝑇𝑦) ,

𝑑 (𝑔𝑦, 𝑇𝑥) + 𝑑 (𝑔𝑥, 𝑇𝑦)

2
} ,

(27)

for each 𝑥, 𝑦 ∈ 𝑋, where 𝑘 ∈ [0, 1). Suppose that𝑇𝑋 ⊆ 𝑔𝑋 and
𝑔𝑋 is a complete subspace of 𝑋. Then 𝑔 and 𝑇 have a unique
coincidence point. Further if 𝑔 and 𝑇 are weakly compatible,
then they have a unique common fixed point.

As a linear continuous operator defined on a closed subset
of a normed space is closed operator, we obtain the following
new common fixed point results as corollaries toTheorem 11.

Corollary 13 (see Fisher and Sessa [2]). Let 𝑇 and 𝑔 be two
weakly commuting mappings on a closed convex subset 𝐶 of a
Banach space𝑋 into itself satisfying the inequality
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑇𝑦

󵄩󵄩󵄩󵄩 ≤ 𝑎max {󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑔𝑥
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑔𝑦
󵄩󵄩󵄩󵄩}

+ 𝐿min {
󵄩󵄩󵄩󵄩𝑔𝑥 − 𝑔𝑦

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑔𝑥

󵄩󵄩󵄩󵄩 ,
󵄩󵄩󵄩󵄩𝑇𝑦 − 𝑔𝑦

󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑔𝑦 − 𝑇𝑥
󵄩󵄩󵄩󵄩 ,

󵄩󵄩󵄩󵄩𝑔𝑥 − 𝑇𝑦
󵄩󵄩󵄩󵄩} ,

(28)

for all 𝑥, 𝑦 ∈ 𝐶, where 𝑎 ∈ (0, 1) and 𝐿 ≥ 0. If 𝑔 is linear and
nonexpansive on 𝐶 and 𝑇(𝐶) ⊆ 𝑔(𝐶), then 𝑇 and 𝑔 have a
unique common fixed point in 𝐶.

Corollary 14 (see Jungck [3]). Let 𝑇 and 𝑔 be compatible self-
maps of a closed convex subset 𝐶 of a Banach space𝑋. Suppose
that 𝑔 is continuous and linear and that 𝑇(𝐶) ⊂ 𝑔(𝐶). If 𝑇 and
𝑔 satisfy inequality (28), then 𝑇 and 𝑔 have a unique common
fixed point in 𝐶.

Now, we illustrate our main result by the following
example.

Example 15. Let𝑋 = {1, 2, 3, 4} and let𝑑(1, 2) = 5/4,𝑑(1, 3) =
1, 𝑑(1, 4) = 7/4, and 𝑑(2, 3) = 𝑑(2, 4) = 𝑑(3, 4) = 2. Then
(𝑋, 𝑑) is a complete metric space. Let𝑇 : 𝑋 → 𝑋 be given by
𝑇1 = 1,𝑇2 = 4,𝑇3 = 4, and𝑇4 = 1.Then it is straightforward
to show that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤
7

8
max{𝑑 (𝑥, 𝑦) , 𝑑 (𝑥, 𝑇𝑥) , 𝑑 (𝑦, 𝑇𝑦) ,

𝑑 (𝑥, 𝑇𝑦) + 𝑑 (𝑦, 𝑇𝑥)

2
}

(29)

for each 𝑥, 𝑦 ∈ 𝑋. Then by Corollary 8, 𝑇 has a unique fixed
point (𝑥 = 1 is the unique fixed point of 𝑇).

Now, we show that 𝑇 does not satisfy the condition
of Theorem 2 of Moradi and Farajzadeh. On the contrary,
assume that there exist nonnegative numbers 0 < 𝑎 < 1,
𝑏, 𝑐, 𝑒, 𝑓 ≥ 0, 𝑏 + 𝑐 > 0, 𝑒 + 𝑓 > 0 such that

𝑑 (𝑇𝑥, 𝑇𝑦) ≤ 𝑎𝑑 (𝑥, 𝑦) + 𝑏𝑑 (𝑥, 𝑇𝑥) + 𝑐𝑑 (𝑦, 𝑇𝑦)

+ 𝑒𝑑 (𝑦, 𝑇𝑥) + 𝑓𝑑 (𝑥, 𝑇𝑦)

(30)

for all 𝑥, 𝑦 ∈ 𝑋. Let (𝑥
1
, 𝑦
1
) = (1, 2) and (𝑥

2
, 𝑦
2
) = (2, 1).

Then from (30), we have

7

4
≤

5

4
𝑎 + 2𝑐 +

5

4
𝑒 +

7

4
𝑓,

7

4
≤

5

4
𝑎 + 2𝑏 +

7

4
𝑒 +

5

4
𝑓,

(31)

which yield

7 ≤ 5𝑎 + 4𝑏 + 4𝑐 + 6𝑒 + 6𝑓 ≤ 6 (𝑎 + 𝑏 + 𝑐 + 𝑒 + 𝑓) ≤ 6,

(32)

a contradiction.Thus we cannot invoke the above mentioned
theorem of Moradi and Farajzadeh (Theorem 2), to show the
existence of a fixed point of 𝑇.

Remark 16. The technique of proof of Theorem 6 is in
line with the proof of Theorem 2.4 in [23]. Therefore
the reader interested in fixed point results for generalized
contractions/nonexpansive mappings in the general setup of
uniformly convex metric spaces is referred to [23].
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