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The existence and uniqueness of the 𝑅V-generalized solution for the first boundary value problem and a second order elliptic
equation with coordinated and uncoordinated degeneracy of input data and with strong singularity solution on all boundary of
a two-dimensional domain are established.

1. Introduction

The singularity of solution for boundary value problems to
two-dimensional closed domain can be due to the degen-
eration of the input data (coefficients and right-hand sides
of equations and boundary conditions), availability of the
reentrant corners, and change of the kind of the boundary
conditions or by the internal properties of the solution. A
boundary value problem is said to possess strong singularity
if its solution 𝑢(𝑥) does not belong to Sobolev space𝑊

1

2
(𝐻1)

or, in other words, the Dirichlet integral of the solution 𝑢(𝑥)

diverges. In the case if the solution belongs to the space 𝑊
1

2

(𝐻1) but does not belong to the space 𝑊
2

2
(𝐻2), a boundary

value problem is called the problem with a weak singularity.
Boundary value problems with strong singularity are

found in the physics of plasma and gas discharge, elec-
trodynamics, nuclear physics, nonlinear optics, and other
branches of physics. In particular cases, numerical methods
for problems of electrodynamics and quantum mechanics
with strong singularity were constructed, based on separation
of singular and regular components, mesh refinement near
singular points, multiplicative extraction of singularities, and
so forth, (see, e.g., [1–6]).

In [7], it was suggested to define the solution of boundary
value problem for second-order elliptic equation with sin-
gularity on a finite set of points belonging to boundary of a

two-dimensional domain as an𝑅]-generalized solution in the
weighted Sobolev space. Such a new concept of solution led
to the distinction of two classes of boundary value problems:
problems with coordinated and uncoordinated degeneracy
of input data; it also made it possible to study the existence
and uniqueness of solutions as well as its coercivity and
differential properties in the weighted Sobolev spaces (see
[8, 9]).

For boundary value problems for elliptic equations,
Maxwell equations and Lamé system, we constructed the
numerical methods with rate of convergence independent of
the singularity based on the concept of an 𝑅]-generalized
solution (see, e.g., [10–12]).

In this paper, we consider the first boundary value
problem for a second-order elliptic equation with strong
singularity solution on all boundary of a two-dimensional
domain. We distinguish two classes of the boundary value
problems: problems with coordinated and uncoordinated
degeneracy of input data. For this problem we define the
solution as an𝑅]-generalized one in aweighted Sobolev space
𝐻
1

2,]+𝛽/2(Ω) and in a weighted set𝑊1
2,]+𝛽/2(Ω, 𝛿), respectively.

We prove its existence and uniqueness in the corresponding
weighted space and weighted set. It was established that,
for all values of parameter ] for which the 𝑅]-generalized
solution exists, it is unique for all of these parameters.
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2. Notation and Auxiliary Statements

We denote the two-dimensional Euclidean space by R2 with
𝑥 = (𝑥

1
, 𝑥
2
) and 𝑑𝑥 = 𝑑𝑥

1
𝑑𝑥
2
. Let Ω ⊂ R2 be a bounded

domain with sufficiently smooth boundary 𝜕Ω, and let Ω be
the closure of Ω; that is, Ω = Ω ∪ 𝜕Ω. We denote by Ω

 the
adjoining streak of the boundary 𝜕Ω of width 𝛿 > 0 andΩ


⊂

Ω.
We introduce a weight function 𝜌(𝑥) that coincides inΩ



with the distance from point 𝑥 to the boundary 𝜕Ω and is
equal to 𝛿 for 𝑥 ∈ Ω \ Ω

.
Let 𝐻

𝑘

2,𝛼
(Ω) and 𝑊

𝑘

2,𝛼
(Ω) be the weighted spaces with

norms:

‖𝑢‖
𝐻
𝑘

2,𝛼
(Ω)

= ( ∑

|𝜆|≤𝑘

∫
Ω

𝜌
2(𝛼+|𝜆|−𝑘)

𝐷
𝜆
𝑢


2

𝑑𝑥)

1/2

, (1)

‖𝑢‖
𝑊
𝑘

2,𝛼
(Ω)

= ( ∑

|𝜆|≤𝑘

∫
Ω

𝜌
2𝛼

𝐷
𝜆
𝑢


2

𝑑𝑥)

1/2

, (2)

where 𝐷
𝜆

= 𝜕
|𝜆|

/𝜕𝑥
𝜆1

1
𝜕𝑥
𝜆2

2
, 𝜆 = (𝜆

1
, 𝜆
2
), and |𝜆| = 𝜆

1
+

𝜆
2
; 𝜆
1
, 𝜆
2
are integer nonnegative numbers, 𝛼 is some real

nonnegative number, and 𝑘 is an integer nonnegative number.
For 𝑘 = 0 we use the notation 𝐻

0

2,𝛼
(Ω) = 𝑊

0

2,𝛼
(Ω) = 𝐿

2,𝛼
(Ω).

By 𝑊
1

2,𝛼
(Ω, 𝛿) for 𝛼 > 0, we denote a set of functions

satisfying the following conditions:

(a) |𝐷
𝑘
𝑢(𝑥)| ≤ 𝑐

1
(𝛿/𝜌(𝑥))

𝛼+𝑘 for 𝑥 ∈ Ω
, where 𝑘 = 0, 1,

𝑐
1
is positive constant independent of 𝑘,

(b) ‖𝑢‖
𝐿2,𝛼(Ω\Ω


)
≥ 𝑐
2
> 0,

and with the norm (2).
The spaces

∘

𝐻
𝑘

2,𝛼
(Ω) ⊂ 𝐻

𝑘

2,𝛼
(Ω) and

∘

𝑊
𝑘

2,𝛼
(Ω) ⊂ 𝑊

𝑘

2,𝛼
(Ω)

and the set
∘

𝑊
1

2,𝛼
(Ω, 𝛿) ⊂ 𝑊

1

2,𝛼
(Ω, 𝛿) are defined as the

closures of the set of infinitely differentiable and finite in Ω

functions in norms (1) and (2), respectively.
Let 𝐻

𝑘

∞,−𝛼
(Ω, 𝑐
3
) (𝑘 ≥ 0, 𝛼 ∈ 𝑅) be the set of functions

with the norm satisfying the inequality

‖𝑢‖
𝐻
𝑘
∞,−𝛼
(Ω,𝑐3)

= max
|𝜆|≤𝑘

ess sup
𝑥∈Ω


𝜌
−𝛼+|𝜆|

𝐷
𝜆
𝑢

≤ 𝑐
3
, (3)

with a positive constant 𝑐
3
independent of 𝑢. For 𝑘 = 0, we

have 𝐻
0

∞,−𝛼
(Ω, 𝑐
4
) = 𝐿
∞,−𝛼

(Ω, 𝑐
4
).

Lemma 1. For each function 𝑢 in the set 𝑊
1

2,𝛼
(Ω, 𝛿) and for

any 𝛼
∗

> 𝛼, the estimate

‖𝑢‖
𝐿2,𝛼∗−1(Ω


,𝛿)

≤ 𝑐
5‖𝑢‖𝐿2,𝛼∗ (Ω,𝛿) (4)

holds, where 𝑐
5
= 𝑐
6
(𝛿
𝛼
/√𝛼∗ − 𝛼), 𝑐

6
= 𝑐𝑜𝑛𝑠𝑡 > 0.

Proof. Taking into account condition (a), one can show that,
for 𝛼
∗

> 𝛼, we have

‖𝑢‖
2

𝐿2,𝛼∗−1(Ω

,𝛿)

= ∫
Ω


𝜌
2(𝛼
∗
−1)

𝑢
2
𝑑𝑥

≤ 𝑐
2

1
𝛿
2𝛼

∫
Ω


𝜌
2(𝛼
∗
−1)

𝜌
−2𝛼

𝑑𝑥

≤
𝑐
2

1
𝛿
2𝛼

𝑐
7
𝛿
2(𝛼
∗
−𝛼)

2 (𝛼
∗ − 𝛼)

,

(5)

where 𝑐
7
is a constant dependent of mesΩ. Considering

condition (b), we write the inequality for the function 𝑢 as
follows:

‖𝑢‖
2

𝐿2,𝛼∗ (Ω)
≥ ‖𝑢‖
2

𝐿2,𝛼∗ (Ω\Ω

)

= 𝛿
2(𝛼
∗
−𝛼)

‖𝑢‖
2

𝐿2,𝛼(Ω\Ω

)
≥ 𝑐
2

2
𝛿
2(𝛼
∗
−𝛼)

.

(6)

From inequalities (5) and (6) we get the estimate (4) with 𝑐
6
=

(𝑐
1
/𝑐
2
)√𝑐
7
/2.

3. The Boundary Value Problem with
Coordinated Degeneration of the Input
Data on All Boundary of the Domain

In the domain Ω, we consider the differential equation

−

2

∑

𝑘,𝑙=1

𝑎
𝑘𝑙

(𝑥)
𝜕
2
𝑢

𝜕𝑥
𝑘
𝜕𝑥
𝑙

+

2

∑

𝑘=1

𝑎
𝑘
(𝑥)

𝜕𝑢

𝜕𝑥
𝑘

+𝑎 (𝑥) 𝑢 = 𝑓 (𝑥) , 𝑥 ∈ Ω,

(7)

with the boundary condition

𝑢 = 0, 𝑥 ∈ 𝜕Ω. (8)

Definition 2. The boundary value problem (7) and (8) is
called the Dirichlet problem with coordinated degeneration
of the input data on all boundary of the domain or Problem
A, if 𝑎

𝑘𝑙
(𝑥) = 𝑎

𝑙𝑘
(𝑥) (𝑘, 𝑙 = 1, 2) and, for some real number 𝛽,

𝑎
𝑘𝑙

∈ 𝐻
1

∞,−𝛽
(Ω, 𝑐
8
) , 𝑎

𝑘
∈ 𝐿
∞,−(𝛽−1)

(Ω, 𝑐
9
) , (𝑘, 𝑙 = 1, 2) ,

𝑎 ∈ 𝐿
∞,−(𝛽−2)

(Ω, 𝑐
10
) ,

(9)

2

∑

𝑘,𝑙=1

𝑎
𝑘𝑙

(𝑥) 𝜉
𝑘
𝜉
𝑙
≥ 𝑐
11
𝜌
𝛽
(𝑥)

2

∑

𝑘=1

𝜉
2

𝑘
, (10)

𝑎 (𝑥) > 𝑐
12
𝜌
𝛽−2

(𝑥) almost everywhere on Ω (11)

and right-hand side of (7) satisfies

𝑓 ∈ 𝐿
2,𝜇

(Ω) , (12)

where 𝑐
𝑖
(𝑖 = 8, . . . , 12) are positive constants independent of

𝑥; 𝜉
1
and 𝜉
2
are any real parameters; 𝜇 is some nonnegative

real number.



Abstract and Applied Analysis 3

Denote by

𝑎 (𝑢, V) = ∫
Ω

[

2

∑

𝑘,𝑙=1

𝑎
𝑘𝑙
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

𝜕V
𝜕𝑥
𝑙

+ 𝑎
𝑘𝑙

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑙

V

+
𝜕𝑎
𝑘𝑙

𝜕𝑥
𝑘

𝜌
2] 𝜕𝑢

𝜕𝑥
𝑙

V + 𝑎
𝑘
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

V

+𝑎𝜌
2]
𝑢V]𝑑𝑥,

𝑓 (V) = ∫
Ω

𝜌
2]
𝑓V𝑑𝑥

(13)

the bilinear and linear forms, respectively.

Definition 3. A function 𝑢] from the space
∘

𝐻
1

2,]+𝛽/2(Ω) is
called an 𝑅]-generalized solution of the Dirichlet problem
with coordinated degeneration of the input data on all
boundary of the domain or Problem A, if, for any V in
∘

𝐻
1

2,]+𝛽/2(Ω), the identity

𝑎 (𝑢], V) = 𝑓 (V) (14)

holds, where ] is arbitrary but fixed and satisfies the inequality

] ≥ 𝜇 +
𝛽

2
− 1. (15)

For Problem A, we prove the main result.

Theorem 4. Let conditions (9)–(12) and (15) hold and let

2(𝑐
8
(2 |]| + 1) +

1

2
𝑐
9
)

2

< 𝑐
11
𝑐
12

(16)

be satisfied.
Then, the 𝑅]-generalized solution 𝑢] of the Dirichlet

problem with coordinated degeneration of the input data on
all boundary of the domain exists and is unique in the space
∘

𝐻
1

2,]+𝛽/2(Ω) and the following estimate is valid:

𝑢]
𝐻1
2,]+𝛽/2(Ω)

≤ 𝑐
13

𝑓
𝐿2,𝜇(Ω)

, (17)

where 𝑐
13
is a positive constant not depending on 𝑢] and 𝑓.

Proof. First, we show that the forms 𝑎(𝑢, V) and 𝑓(V) are
continuous on

∘

𝐻
1

2,]+𝛽/2(Ω). In fact, by virtue of conditions (9),
(12), and (15) and the Cauchy-Schwarz inequality, we have

|𝑎 (𝑢, V)|

≤ ∫
Ω



2

∑

𝑘,𝑙=1

𝑎
𝑘𝑙
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

𝜕V
𝜕𝑥
𝑙

+
𝜕𝑎
𝑘𝑙

𝜕𝑥
𝑘

𝜌
2] 𝜕𝑢

𝜕𝑥
𝑙

V

+𝑎
𝑘
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

V + 𝑎𝜌
2]
𝑢V



𝑑𝑥

+ ∫
Ω




𝑎
𝑘𝑙

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑙

V


𝑑𝑥

≤ 2𝑐
8
(∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥)

1/2

× (∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕V
𝜕𝑥
𝑘

)

2

𝑑𝑥)

1/2

+ 2√2𝑐
8
(∫
Ω

𝜌
2]+𝛽
2

∑

𝑙=1

(
𝜕𝑢

𝜕𝑥
𝑙

)

2

𝑑𝑥)

1/2

× (∫
Ω

𝜌
2]+𝛽−2V2𝑑𝑥)

1/2

+ √2𝑐
9
(∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥)

1/2

× (∫
Ω

𝜌
2]+𝛽−2V2𝑑𝑥)

1/2

+ 𝑐
10
(∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥)

1/2

× (∫
Ω

𝜌
2]+𝛽−2V2𝑑𝑥)

1/2

+ 4√2 |]| 𝑐8(∫
Ω


𝜌
2]+𝛽
2

∑

𝑙=1

(
𝜕𝑢

𝜕𝑥
𝑙

)

2

𝑑𝑥)

1/2

× (∫
Ω


𝜌
2]+𝛽−2V2𝑑𝑥)

1/2

≤ 2𝑐
8|𝑢|𝐻1

2,]+𝛽/2(Ω)
|V|𝐻1
2,]+𝛽/2(Ω)

+ (2√2𝑐
8
+ √2𝑐

9
) |𝑢|𝐻1

2,]+𝛽/2(Ω)
‖V‖𝐿2,]+𝛽/2−1(Ω)

+ 4√2 |]| 𝑐8|𝑢|𝐻1
2,]+𝛽/2(Ω


)‖V‖𝐿2,]+𝛽/2−1(Ω)

+ 𝑐
10‖𝑢‖𝐿2,]+𝛽/2−1(Ω)

‖V‖𝐿2,]+𝛽/2−1(Ω),

(18)

or

|𝑎 (𝑢, V)|

≤ 𝑐
14‖𝑢‖𝐻1

2,]+𝛽/2(Ω)
‖V‖𝐻1

2,]+𝛽/2(Ω)
, ∀𝑢, V ∈

∘

𝐻
1

2,]+𝛽/2 (Ω)

(19)
𝑓 (V)

≤ (max
𝑥∈Ω

𝜌
2]−2𝜇−𝛽+2

)

1/2

(∫
Ω

𝜌
2𝜇

𝑓
2
𝑑𝑥)

1/2

× (∫
Ω

𝜌
2]+𝛽−2V2𝑑𝑥)

1/2

≤ 𝑐
15

𝑓
𝐿2,𝜇(Ω)

‖V‖𝐻1
2,]+𝛽/2(Ω)

,

∀V ∈
∘

𝐻
1

2,]+𝛽/2 (Ω) , ∀𝑓 ∈ 𝐿
2,𝜇

(Ω) .

(20)
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Let us now prove the
∘

𝐻
1

2,]+𝛽/2(Ω) ellipticity of the bilinear
form 𝑎(𝑢, V); that is,

∃𝑐
16

> 0, ∀𝑢 ∈
∘

𝐻
1

2,]+𝛽/2 (Ω) , 𝑎 (𝑢, 𝑢) ≥ 𝑐
16‖𝑢‖
2

𝐻
1

2,]+𝛽/2(Ω)
.

(21)

We substitute V by 𝑢 in (13), and by means of the Cauchy-
Schwarz inequality, 𝜀-inequality, and conditions (9), we
estimate the absolute values of the second, third, and fourth
terms of the form 𝑎(𝑢, 𝑢):



2

∑

𝑘,𝑙=1

∫
Ω

𝑎
𝑘𝑙

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑙

𝑢𝑑𝑥



≤



2

∑

𝑘,𝑙=1

∫
Ω

𝑎
𝑘𝑙
2]𝜌2]−1

𝜕𝑢

𝜕𝑥
𝑙

𝑢 𝑑𝑥



≤ 2√2𝑐
8 |]| (𝜀

1

2

∑

𝑙=1

∫
Ω


𝜌
2]+𝛽

(
𝜕𝑢

𝜕𝑥
𝑙

)

2

𝑑𝑥

+
1

𝜀
1

∫
Ω


𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥) ,

(22)



2

∑

𝑘,𝑙=1

∫
Ω

𝜕𝑎
𝑘𝑙

𝜕𝑥
𝑘

𝜌
2] 𝜕𝑢

𝜕𝑥
𝑙

𝑢𝑑𝑥



≤ √2𝑐
8
(𝜀
2

2

∑

𝑙=1

∫
Ω

𝜌
2]+𝛽

(
𝜕𝑢

𝜕𝑥
𝑙

)

2

𝑑𝑥

+
1

𝜀
2

∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥) ,

(23)



2

∑

𝑘=1

∫
Ω

𝑎
𝑘
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

𝑢𝑑𝑥



≤ √2𝑐
9
(

𝜀
3

2

2

∑

𝑘=1

∫
Ω

𝜌
2]+𝛽

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

+
1

2𝜀
3

∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥) .

(24)

Here, 𝜀
1
, 𝜀
2
, and 𝜀

3
are any positive numbers.

Using (10) and (11), we have

2

∑

𝑘,𝑙=1

∫
Ω

𝑎
𝑘𝑙
𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑙

𝑑𝑥 ≥ 𝑐
11

∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥, (25)

∫
Ω

𝑎𝜌
2]
𝑢
2
𝑑𝑥 ≥ 𝑐

12
∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥. (26)

Then, from (22)–(26), we obtain

𝑎 (𝑢, 𝑢)

≥ (𝑐
11

− √2(𝑐
8
2 |]| 𝜀1 + 𝑐

8
𝜀
2
+

1

2
𝑐
9
𝜀
3
))

× ∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

+ (𝑐
12

− √2(𝑐
8
2 |]| 𝜀−1
1

+ 𝑐
8
𝜀
−1

2
+

1

2
𝑐
9
𝜀
−1

3
))

× ∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥.

(27)

Note that if condition (16) is satisfied, then there exists a
positive constant 𝜀 such that

𝑐
11

− √2(𝑐
8
(2 |]| + 1) +

1

2
𝑐
9
) 𝜀 > 0,

𝑐
12

− √2(𝑐
8
(2 |]| + 1) +

1

2
𝑐
9
) 𝜀
−1

> 0.

(28)

Supposing that 𝜀
1
= 𝜀
2
= 𝜀
3
= 𝜀 in (27), we get

𝑎 (𝑢, 𝑢)

≥ 𝑐
16

(∫
Ω

𝜌
2]+𝛽
2

∑

𝑘=1

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

+∫
Ω

𝜌
2]+𝛽−2

𝑢
2
𝑑𝑥) = 𝑐

16‖𝑢‖𝐻1
2,]+𝛽/2(Ω)

(29)

with constant

𝑐
16

= min(𝑐
11

− √2(𝑐
8
(2 |]| + 1) +

1

2
𝑐
9
) 𝜀,

𝑐
12

− √2(𝑐
8
(2 |]| + 1) +

1

2
𝑐
9
) 𝜀
−1

) .

(30)

According to (19), (21), and (20), the bilinear form 𝑎(𝑢, V)
is continuous and

∘

𝐻
1

2,]+𝛽/2(Ω)-elliptical, and the linear form

𝑓(V) is continuous on
∘

𝐻
1

2,]+𝛽/2(Ω); then, the existence and
uniqueness of an𝑅]-generalized solution of ProblemA follow
from the Lax-Milgram theorem (see [13]).

Taking into account that

𝑐
16

𝑢]


2

𝐻
1

2,]+𝛽/2(Ω)
≤ 𝑎 (𝑢], 𝑢])

= 𝑓 (V) ≤ 𝑐
15

𝑓
𝐿2,𝜇(Ω)

‖𝑢‖𝐻1
2,]+𝛽/2(Ω)

,

(31)

we get estimate (17).

Corollary 5. If there exists at least one ] forwhich there exists a
unique 𝑅]-generalized solution of the Problem A, then one can
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always define a half-open interval []
1
, ]
2
) such that, for each

] ∈ []
1
, ]
2
), there exists a unique𝑅]-generalized solution.Here,

]
1
= max{𝜇 +

𝛽

2
− 1; (1 −

(𝑐
11
𝑐
12
)
1/2

− 𝑐
9
/2

𝑐
8

) + 𝜀} ,

]
2
=

(𝑐
11
𝑐
12
)
1/2

− 𝑐
9
/2

𝑐
8

− 1,

(32)

where 𝜀 is a given sufficiently small positive number.

Corollary follows from the proof of Theorem 4.

Theorem 6. If the assumptions of Theorem 4 are valid, then,
for all ] in the interval []

1
, ]
2
), the 𝑅]-generalized solution of

the Problem A is unique.

Theproof of this statement is similar to that ofTheorem 2
in [14].

4. The Boundary Value Problem with
Uncoordinated Degeneration of the Input
Data on All Boundary of the Domain

We consider the boundary value problem

−

2

∑

𝑘=1

𝜕

𝜕𝑥
𝑘

(𝑎
𝑘𝑘

(𝑥)
𝜕𝑢

𝜕𝑥
𝑘

) + 𝑎 (𝑥) 𝑢 = 𝑓 (𝑥) , 𝑥 ∈ Ω, (33)

𝑢 = 0, 𝑥 ∈ 𝜕Ω. (34)

Definition 7. The boundary value problem (33) and (34) is
called the Dirichlet problem with uncoordinated degener-
ation of the input data on all boundary of the domain or
Problem B, if, for some real number 𝛽,

𝑎
𝑘𝑘

∈ 𝐻
1

∞,−𝛽
(Ω, 𝑐
16
) , 𝑎 ∈ 𝐿

∞,−𝛽
(Ω, 𝑐
17
) , (35)

2

∑

𝑘=1

𝑎
𝑘𝑘

(𝑥) 𝜉
2

𝑘
≥ 𝑐
18
𝜌
𝛽
(𝑥)

2

∑

𝑘=1

𝜉
2

𝑘
, (36)

𝑎 (𝑥) ≥ 𝑐
19
𝜌
𝛽
(𝑥) almost everywhere on Ω, (37)

and the right-hand side of the equation satisfies the condition

𝑓 ∈ 𝐿
2,𝜇

(Ω, 𝛿) (38)

for some nonnegative real number 𝜇. Here, 𝑐
𝑖
, 𝑖 = 16, . . . , 19,

are positive constants not depending on 𝑥; 𝜉
1
and 𝜉

2
are

arbitrary real parameters.

Set

𝑏 (𝑢, V) = ∫
Ω

[

2

∑

𝑘=1

𝑎
𝑘𝑘

𝜌
2] 𝜕𝑢

𝜕𝑥
𝑘

𝜕V
𝜕𝑥
𝑘

+𝑎
𝑘𝑘

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑘

V + 𝑎𝜌
2]
𝑢V]𝑑𝑥,

𝑙 (V) = ∫
Ω

𝜌
2]
𝑓V𝑑𝑥.

(39)

Definition 8. A function 𝑢] from the set
∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿) is
called an 𝑅]-generalized solution of the Problem B if the
identity 𝑏(𝑢], V) = 𝑙(V) holds for all V ∈

∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿) and
for any given value of ] satisfying the inequality

] ≥ 𝜇 +
𝛽

2
. (40)

Theorem 9. Let conditions (35)–(40) hold and

] +
𝛽

2
> 0. (41)

Then, for any ] satisfying conditions (40) and (41), there always
exists parameter 𝛿 such that 𝑅]-generalized solution 𝑢] of
the Dirichlet problem with uncoordinated degeneration of the
input data on all boundary of the domain exists and is unique
in the set

∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿). In this case, the following estimate is
valid:

𝑢]
𝑊1
2,]+𝛽/2(Ω,𝛿)

≤ 𝑐
20

𝑓
𝐿2,𝜇(Ω,𝛿)

, (42)

where 𝑐
20
is a positive constant independent of 𝑓 and 𝑢].

Proof. First of all, we note that the bilinear and linear forms
are continuous on the set

∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿) and the inequalities

𝑏 (𝑢, V) ≤ 𝑐
21‖𝑢‖𝑊1

2,]+𝛽/2(Ω,𝛿)
‖V‖𝑊1

2,]+𝛽/2(Ω,𝛿)
, (43)

𝑙 (V) ≤ 𝑐
22

𝑓
𝐿2,𝜇(Ω,𝛿)

‖V‖𝑊1
2,]+𝛽/2(Ω,𝛿)

(44)

hold. The proofs of estimates (43) and (44) are established
by analogy with (19) and (20), which we obtain by using
conditions (35), (38), and (40) and Lemma 1.

Let us show that the bilinear form is
∘

𝑊
1

2,]+𝛽/2-elliptical in
Ω. We have

𝑏 (𝑢, 𝑢)

=

2

∑

𝑘=1

∫
Ω

[𝑎
𝑘𝑘

𝜌
2]
(

𝜕𝑢

𝜕𝑥
𝑘

)

2

+ 𝑎
𝑘𝑘

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑘

𝑢]𝑑𝑥

+ ∫
Ω

𝑎𝜌
2]
𝑢
2
𝑑𝑥

(45)

for any 𝑢 from
∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿). Bymeans of condition (35), we
estimate the absolute value of the second term on the right-
hand side in (45):



2

∑

𝑘=1

∫
Ω

𝑎
𝑘𝑘

𝜕𝜌
2]

𝜕𝑥
𝑘

𝜕𝑢

𝜕𝑥
𝑘

𝑢𝑑𝑥



≤



2

∑

𝑘=1

∫
Ω


𝑎
𝑘𝑘

2]𝜌2]−1
𝜕𝑢

𝜕𝑥
𝑘

𝑢𝑑𝑥



≤ 𝜀

2

∑

𝑘=1

∫
Ω


𝜌
2]+𝛽

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

+
2𝑐
2

16
]2

𝜀
∫
Ω


𝜌
2]+𝛽−1

𝑢
2
𝑑𝑥.

(46)
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From (45) and the last inequality we get

𝑏 (𝑢, 𝑢) ≥

2

∑

𝑘=1

∫
Ω

𝑎
𝑘𝑘

𝜌
2]
(

𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

− 𝜀

2

∑

𝑘=1

∫
Ω


𝜌
2]+𝛽

(
𝜕𝑢

𝜕𝑥
𝑘

)

2

𝑑𝑥

+ ∫
Ω

𝑎𝜌
2]
𝑢
2
𝑑𝑥 −

2𝑐
2

16
]2

𝜀
∫
Ω


𝜌
2]+𝛽−1

𝑢
2
𝑑𝑥.

(47)

Supposing that 𝛼
∗ and 𝛼 equal ] and ]/2 in Lemma 1,

respectively, we have

‖𝑢‖
2

𝐿2,]+𝛽/2−1(Ω

,𝛿)

≤
2𝑐
2

6
𝛿
]

]
‖𝑢‖
2

𝐿2,]+𝛽/2(Ω,𝛿)
,

𝑐
6
= const > 0.

(48)

Taking into account (36), (37), and (48), from estimate (47)
we get

𝑏 (𝑢, 𝑢) ≥ (𝑐
18

− 𝜀) |𝑢|
2

𝑊
1

2,]+𝛽/2(Ω,𝛿)
+ (𝑐
19

−
4𝑐
2

16
𝑐
2

6
]𝛿]

𝜀
)

× ‖𝑢‖
2

𝐿2,]+𝛽/2(Ω,𝛿)
.

(49)

Obviously, we can always choose 𝜀 and 𝛿 such that the
constants 𝑐

18
> 𝜀, 𝑐
19

> 4𝑐
2

16
𝑐
2

6
]𝛿]/𝜀 and the inequality

𝑏 (𝑢, 𝑢) ≥ 𝑐
23‖𝑢‖
2

𝑊
1

2,]+𝛽/2(Ω,𝛿)
(50)

are valid with constant 𝑐
23

= min(𝑐
18

− 𝜀, 𝑐
19

− 4𝑐
2

16
𝑐
2

6
]𝛿]/𝜀).

Therefore, bilinear form 𝑏(𝑢, 𝑢) is
∘

𝑊
1

2,]+𝛽/2-elliptical.
According to (43), (44), and (50), the bilinear form 𝑏(𝑢, 𝑢)

is continuous and
∘

𝑊
1

2,]+𝛽/2-elliptical, and the linear form

𝑙(V) is continuous on
∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿); then, the existence and
uniqueness of an𝑅]-generalized solution of ProblemB follow
from the Lax-Milgram theorem (see [13]).

Taking into account that

𝑐
23

𝑢]


2

𝑊
1

2,]+𝛽/2(Ω,𝛿)
≤ 𝑏 (𝑢], 𝑢])

= 𝑙 (𝑢]) ≤ 𝑐
22

𝑢]
𝑊1
2,]+𝛽/2(Ω,𝛿)

𝑓
𝐿2,𝜇(Ω,𝛿)

,

(51)

we get estimate (42).

Theorem 10. If for some 𝛿 there is a set of values ] such that
an 𝑅]-generalized solution of the Problem B exists in the set
∘

𝑊
1

2,]+𝛽/2(Ω, 𝛿), then this solution is unique for all such ].

The proof of this statement is similar to that of Theorem
2 in [14].
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