
Research Article
An Approximation Algorithm for the Facility Location Problem
with Lexicographic Minimax Objective

7uboš Buzna, Michal Koháni, and Jaroslav JanáIek

Department of Transportation Networks, Faculty of Management Science and Informatics, University of Žilina,
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We present a new approximation algorithm to the discrete facility location problem providing solutions that are close to the
lexicographicminimax optimum.The lexicographicminimax optimum is a concept that allows to find equitable location of facilities
serving a large number of customers.The algorithm is independent of general purpose solvers and instead uses algorithms originally
designed to solve the 𝑝-median problem. By numerical experiments, we demonstrate that our algorithm allows increasing the size
of solvable problems and provides high-quality solutions. The algorithm found an optimal solution for all tested instances where
we could compare the results with the exact algorithm.

1. Introduction

Our study is motivated by problems faced by public author-
ities when locating facilities, such as schools, branch offices,
or libraries and ambulance, police, or fire stations. To find an
efficient spatial design of these systems, various types of loca-
tion and allocation models can be used [1–4]. Typically, these
problems are seen as an example of the resource allocation
problem with a central planner. Thus, the costs of the system
construction and its maintenance are typically “shared” by
everybody, though not all contributors to the system (tax
payers) are enjoying the same access to services. When
pursuing an economically efficient design, some customers
may end up being located close to the located service centres,
whereas others are placed far away. Self-interested customers
could understand such situation as unfair.

It is clear that in a real-world situation it is impossible to
reach completely equal access to services for all customers,
however, considering fairness criteria can help distribute the
accessibility of services among customers more evenly. The
number of existing problems related to the fair division
of scarce resources is overwhelming. We restrict our short
overview to few examples only. A recent comprehensive

overview of models, algorithms, and applications is available
in [5].

In manufacturing, the omnipresent problem is how to
allocate limited resources among many competing pro-
cesses. Solving methods for problems with the knapsack
inequality type of constraints, including multiple resource
constraints, multiperiod problems, and problems with sub-
stitutable resources, are discussed in [6]. In engineering, one
of the most profound applications of fairness is sharing of
capacities in communication networks [7–9]. The method
for solving the maximum flows [10] often generates unfair
flows in the sense of how the flows are distributed to sink
nodes. Using the principle of max-min fairness [11], the
sink- (source-) optimal flow was defined as a flow which
lexicographicallymaximizes the flow vector from the point of
view of sink (source) nodes, and an efficient algorithm to find
such flows was proposed in [12, 13].The same fairness scheme
was studied in the context of various routing mechanisms.
An overview of basic problems in communication networks,
associated with the applications of the max-min fairness
to the flow rate allocation, routing, and load balancing,
is given in [14]. For example, fixed paths were studied in
regular networks finding analytical expressions describing
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the network throughput [15]. For multicommodity flows, LP
formulation of the problem was used to represent the flexible
routing [16]. When mixed or integer decision problems are
to be solved, the basic sequential procedure is not applicable.
The ordered outcomes approach and the ordered values
approach [17] allow to overcome this difficulty. Application
of these two approaches to the bandwidth allocation problem
was demonstrated in [18].

One important element appearing in studies focusing
on fairness is the efficiency-fairness tradeoff. A well-known
limitation of the lexicographically maximal flow is the
relatively large reduction in the network throughput. A
possible solution can be found in the optimization of flows
with respect to the efficiency, provided that some level of
fairness is guaranteed. An example of such approach is (𝛼, 𝛽)
fairness introduced in [19]. A general approach, combining
optimization of the minisum and the minimax criteria with
the tunable size of the applicability area for the minimax cri-
terion, was proposed in [20]. To demonstrate the applicability
of the proposed approach, the authors analysed the problem
of how to distribute limited resources among patients to pay
for the costly medical treatments. Alternatively, one can use
different fairness schemes. One such scheme known as the
proportional fairness was generalized and presented as an
optimization problem [21]. The efficiency of the max-min
fairness and proportional fairness was studied and analyti-
cally evaluated for a general set-up, using a simple measure
[22], finding analytical expressions describing bounds for a
gap between fair and efficient solutions. Using the generalized
objective function which encompasses both these schemes as
special cases, the same authors studied the efficiency-fairness
trade-off, proposing several managerial prescriptions for the
selection of the objective [23].

The first attempts to consider equity considerations when
solving location problems on networks date back to the
influential paper [24]. In this paper, the problem of finding
the minimum number of locations was addressed, consid-
ering that no customer is farther from an existing location
than a given distance. Since then, the inclusion of equity in
location models has been a recurring topic. The equity is
usually quantified by an equity measure. The taxonomy of
equity measures proposed specifically for location problems
was given in [25]. Here the authors decided to organize
the equity measures around three dimensions: the choice of
reference distribution which represents the desired goal, the
distance metric which determines the way of how to assess
the distance to the desired goal, and the scaling function used
to take into account different importance of customers (e.g.,
by considering population, land area, demand, or income).
In addition, the authors summarize from the literature useful
criteria which should be taken into account when selecting
an equity measure. Recently, an application of the equity
measure to the equitable facility location problem in a plane
was described in [26]. The authors analysed properties of the
Gini coefficient and proposed an algorithm that finds the
optimal location of a facility in a bounded area.

The requirement of equitable distribution comes often
combined with other objectives. Noteworthy is the close rela-
tion between fairness criteria andmulticriterial optimization.

Typically, the equity is either formally represented by one
out of several criteria or the interest of each individual is
represented as a single objective function [27]. For the survey
ofmultiple criteria facility location problems, including those
considering the equity, see the recent paper by Farahani et al.
[28].

In the literature we do not find many attempts to suggest
algorithms for solving facility location problems considering
the lexicographic minimax objective. Specialized algorithms,
considering minimax and lexicographic minimax optimiza-
tion, were proposed when locating single facility in a plane
[29]. Another approach, applicable to planar problems simul-
taneously optimizing the equitable distribution of distances
by minimizing the radius of the serviced area and ensuring
equitable distribution of loads, is described in [30]. The
problem of how to locate facilities with equitable loads using
the minimax criterion was also studied on networks [31].
The work [32] is closely related to the issue of lexicographic
minimax optimization on networks. The authors noticed the
possibility of reducing the classical minimax to minisum for
0-1 programming problems by transforming the coefficients
in the objective function using a power function [32]. As
pointed out in [33], the concept of power functions can be
also extended to the lexicographicminimax solution concept.
However, in general, high powers may be necessary to
generate large enough differences between distances. When
solving practical problems, large differences between distance
coefficients may cause serious computational problems. To
overcome these difficulties, the ordered outcomes approach
and the ordered values approach were proposed in [17].
The latter approach was found as more efficient, but the
size of tested instances was rather small. A very convenient
technique for interactive analysis, where facilities are located
with respect to the objective function taking into account
lexicographic minimax combined with the minisum term,
was proposed in [34]. The approach is based on the reference
distribution method which can be controlled by manipulat-
ing few parameters and allows to take into account aspiration
values of assigned distances defined by the user.

The lexicographic minimax optimization problem can be
converted to a problem, where the 𝑘th term in the objective
function is the number of occurrences of the 𝑘th worst
possible unique outcome.The optimal solution is then found
by minimizing the first term followed by the minimization
of the second term without worsening the first term and
so on [5]. The approach to the facility location problem
based on this concept was developed in [33]. The initial
computational experience with this approach shows that
the lexicographic minimax approach, in comparison to the
standard minimax, selects the locations characterized by
remarkably smaller mean distance and absolute difference.
Although the algorithm requires to run a large number of
stages for the general distance matrix, it performs very well
for the cases when the matrix contains only few distinct
distance values. This makes the algorithm a very good choice
when searching for an approximate solution or when only
rough estimates of distances are considered.

Each of the above mentioned approaches to the lexico-
graphic minimax optimization [17, 33, 34] results in a specific
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form of themathematical model that is supposed to be solved
by a general purpose solver. Our initial experience with the
algorithm [33], implemented on the state of the art solver
XPRESS [35], indicated that we are able to solve problems up
to 900 customers and 900 candidate facility locations, while
restricting the distances to integers and measuring them in
kilometres. This limitation might be too tight for some real-
world applications and therefore it is of interest to elaborate
algorithmswhich can provide high-quality solutions to larger
problems. Building on the same basic concept of the unique
classes of distances [33], we propose an approximation algo-
rithm providing high-quality solutions for large instances of
solved problems. We use the resulting algorithm to perform
an extensive study using the well-known benchmarks [36–
39], and we enriched them by new benchmarks derived
from the real-world road network data [40, 41]. Our main
contribution is the set of rules which allow us (i) to take into
account the multiplicities assigned to different customers;
(ii) to detect whether for a given distance active customers
can reach higher, equal, or smaller distance to the closest
located facility; and (iii) to use methods customized for
solving the 𝑝-median problem. Customized methods can
handle larger problems than up-to-date general purpose
integer programming solvers. Therefore, the applicability of
the algorithm is enhanced, especially, when it is used to solve
large instances of real-world problems.

The remainder of the paper is organized as follows: the
lexicographicminimax approach to the facility location prob-
lem is briefly described in Section 2.1. Section 2.2 presents
our algorithm. In Section 3 the benefits of the algorithm
are demonstrated on the set of benchmarks derived from
the real-world networks. To conclude, we summarize our
findings in Section 4.

2. Materials and Methods

When solving a facility location problem, the goal is to find
suitable positions of facilities that provide services to the
set of customers distributed in a serviced area. Along the
years, many variants of the facility location problem have
been elaborated. As an archetypical example, we describe the
weighted 𝑝-median problem.

2.1. The Equitable Facility Location Problem. We consider the
set 𝐼 of potential locations for facilities and the set of locations
𝐽 representing aggregate customers. Each aggregate customer
𝑗 ∈ 𝐽 is characterized by a unique geographical position
and we associate an integer weight (multiplicity) 𝑏𝑗 with each
position. The weight 𝑏𝑗 represents the number of individual
customers situated in the location 𝑗. We denote the set of
all individual customers by 𝐽. In order to map individual
customers to aggregate customers we define the function
𝑗(𝑘) for 𝑘 ∈ 𝐽, returning the element 𝑗 ∈ 𝐽 if and only if
the individual customer 𝑘 is situated in the location 𝑗 (see
Figure 1).

The decisions to be made can be represented by a set of
binary variables.The variable 𝑦𝑖 equals 1 if the location 𝑖 ∈ 𝐼 is
used as a facility location and equals 0 otherwise. Allocation

1 2 53 4
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Figure 1: Schematic illustrating the definition of customers. The
set of aggregate customers 𝐽 is composed of two elements, that is,
𝐽 = {1, 2}, and the set of individual customers is 𝐽 = {1, 2, 3, 4, 5}.
The aggregate customer 1 includes individual customers 1 and 2,
and the aggregate customer 2 stands for individual customers 3, 4,
and 5. Thus, in this case the function 𝑗(𝑘), mapping the individual
customer 𝑘 ∈ 𝐽 to the aggregate customer, returns these values
𝑗(1) = 1, 𝑗(2) = 1, 𝑗(3) = 2, 𝑗(4) = 2, and 𝑗(5) = 2, and the
weights (multiplicities) assigned to aggregate customers are 𝑏1 = 2

and 𝑏2 = 3.

decisions are modelled by variables 𝑥𝑖𝑗 for 𝑖 ∈ 𝐼 and 𝑗 ∈ 𝐽,
whereas𝑥𝑖𝑗 = 1 if location 𝑖 is serving the customer 𝑗 and𝑥𝑖𝑗 =
0 otherwise. In order to obtain a feasible solution, the decision
variables have to satisfy the following set of constraints:

∑

𝑖∈𝐼

𝑦𝑖 = 𝑝, (1)

∑

𝑖∈𝐼

𝑥𝑖𝑗 = 1 ∀𝑗 ∈ 𝐽, (2)

𝑥𝑖𝑗 ≤ 𝑦𝑖 ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (3)

𝑥𝑖𝑗 ∈ {0, 1} ∀𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽, (4)

𝑦𝑖 ∈ {0, 1} ∀𝑖 ∈ 𝐼, (5)

where (1) specifies that the number of located facilities equals
𝑝. The constraints (2) make sure that each customer is
assigned to exactly one facility, and the constraints (3) allow
assigning a customer only to the located facilities. Following
[33], we denote the set of all feasible location patterns, which
satisfy the constraints (1)–(5), by the symbol 𝑄. For each
customer 𝑗 ∈ 𝐽we define the performance function𝑓𝑗(x) [27]
where x is a matrix representing the assignment decisions.
This function estimates how customer 𝑗 values the effect of
located facilities.There is a strong stream of literature in loca-
tion science studying measures that can be used to describe
preferences of customers [42]. Typically, a measure called
utility (disutility), 𝑢𝑖𝑗, is defined to characterize preference of
the customer 𝑗 for the candidate location 𝑖. Utility is often
defined as a function of the distance 𝑑𝑖𝑗 from the customer
𝑗 to the facility location 𝑖. The performance function 𝑓𝑗(x) is
then a composite of utilities 𝑢𝑖𝑗 representing a model of the
customer’s choice behaviour [43]. The two most frequently
used choice behavioural models are the minimum function,
when the demand of a customer is assigned to one located
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facility only (e.g., the closest one), and some kind of gravity
model when the customer’s demand is distributed among
located facilities following a givenmathematical prescription.
Although the presented approach is able to handle the
situation when 𝑢𝑖𝑗 is an arbitrary function of the distance
𝑑𝑖𝑗, to simplify the text we choose 𝑢𝑖𝑗 = 𝑑𝑖𝑗. The main
focus of this paper is to extend the size of problems solvable
by lexicographic approach, and, therefore, for simplicity
reasons, we define the performance function that represents
the distance from the customer to the closest located facility.
Consequently, individual customers will get the same value
of the performance function if they correspond to the same
aggregate customer. Using constraints (2), the performance
function for the individual customer 𝑘 ∈ 𝐽 can be formulated
as

𝑓𝑘 (x) = 𝑓𝑗 (x) = ∑
𝑖∈𝐼

𝑑𝑖,𝑗𝑥𝑖,𝑗, (6)

where 𝑗 = 𝑗(𝑘) and 𝑑𝑖𝑗 is the distance from the aggregate
customer 𝑗 ∈ 𝐽 to the facility location 𝑖 ∈ 𝐼.

The system optimum [22], frequently referred to as the
minisum optimum or the utilitarian solution, corresponding
to the 𝑝-median problem [1] is obtained when we minimize
the expression (7) subject to (x, y) ∈ 𝑄:

𝑆 (x) = ∑
𝑗∈𝐽

𝑏𝑗𝑓𝑗 (x) = ∑

𝑘∈𝐽

𝑓𝑘 (x) . (7)

The corresponding optimal solutions we denote

(xSYS, ySYS) = arg min {𝑆 (x) | (x, y) ∈ 𝑄} . (8)

The standard definition of the lexicographic minimax
optimum[33] can be adjusted to theweighted problem,where
the weights are representing the multiplicities of customers,
as follows. We enlarge the set of aggregate customers 𝐽 to the
set of individual customers 𝐽; that is, each aggregate customer
𝑗 ∈ 𝐽 is replaced by 𝑏𝑗 individual customers situated in the
same location. After this adjustment, we introduce the map
Θ : 𝑅

|𝐽|
→ 𝑅
|𝐽| which orders the values 𝑓𝑘(x) for 𝑘 ∈ 𝐽 in a

nonincreasing order. Thus, more formally,

Θ(𝑓1 (x) , 𝑓2 (x) , . . . , 𝑓|𝐽| (x))

= (𝑓1 (x) , 𝑓2 (x) , . . . , 𝑓|𝐽| (x)) ,
(9)

if and only if there is the permutation 𝜏 such that 𝑓𝑘(x) =
𝑓𝜏(𝑘)(x) for all 𝑘 ∈ 𝐽 where 𝑓1(x) ≥ 𝑓2(x) ≥ ⋅ ⋅ ⋅ ≥ 𝑓|𝐽|(x). Let
us denote

v = (𝑓1 (x
1
) , 𝑓2 (x

1
) , . . . , 𝑓|𝐽| (x

1
)) ,

u = (𝑓1 (x
2
) , 𝑓2 (x

2
) , . . . , 𝑓|𝐽| (x

2
)) ,

(10)

where (x1, y1), (x2, y2) ∈ 𝑄. We define the strong lexico-
graphic inequality <LEX by v <LEX u if and only if there is an
index 𝑚 ≤ |𝐽| such that V𝑛 = 𝑢𝑛 for all 𝑛 < 𝑚 and V𝑚 < 𝑢𝑚.
The weak lexicographic inequality ≤LEX is then defined as

v ≤LEX u, if and only if either v = u or v <LEX u. Now we can
define solution (xLEX, yLEX) to be the lexicographic minimax
optimum if

Θ(𝑓1 (x
LEX

) , 𝑓2 (x
LEX

) , . . . , 𝑓|𝐽| (x
LEX

))

≤LEX Θ(𝑓1 (x) , 𝑓2 (x) , . . . , 𝑓|𝐽| (x)) ,
(11)

for all (x, y) ∈ 𝑄.
We defined the lexicographic ordering and the lexico-

graphic optimum using the set of individual customers.
When we translate this definition to the set of aggregate
customers, we can interpret the lexicographic optimization
as two subsequent goals. Primarily, we are aiming to assign
to facilities those customers whose performance function
cannot be lowered any further; that is, the maximal distance
from the relevant customers to the closest facility is min-
imized. Secondarily, we minimize the number of relevant
customers which are assigned to a facility at the considered
stage. Please note that the number of individual customers,
having assigned a distance value, is given by the sum of 𝑏𝑗
values corresponding to those aggregate customers that are
decided upon. In the next section we present the detailed
description of the algorithm.

2.2. The Approximation Algorithm to the Facility Location
Problemwith the LexicographicMinimaxObjective. Similarly
to the algorithm [33], our algorithm subsequently solves opti-
mization problems corresponding to the distance values in
stages. We order the set of all feasible distance values 𝑑𝑖,𝑗 into
the descending sequence of unique distance values 𝐷𝑘, for
𝑘 = 1, . . . , 𝑘max. At each stage 𝑘 > 1we consider a partitioning
of the set 𝐽 into the system of subsets {𝐽1, . . . , 𝐽𝑘−1, 𝐶𝑘}, where
𝐶𝑘 is a set of active customers.We aim to identify theminimal
subset of customers 𝐽𝑘 ⊆ 𝐶𝑘, whose distance from the closest
facility location equals the value 𝐷𝑘. We define the minimal
subset as the set with the minimum number of individual
customers, that is, the set where the sum of multiplicities
∑𝑗∈𝐽𝑘

𝑏𝑗 is the smallest. For a given value of 𝐷𝑘, we find the
minimal set 𝐽𝑘 by solving the problem 𝑃𝑘:

Minimize 𝑔
𝑘
(x) = ∑

𝑖∈𝐼

∑

𝑗∈𝐽

𝑟
𝑘
𝑖𝑗𝑥𝑖𝑗

Subject to (x, y) ∈ 𝑄,
(12)

where 𝑟𝑘𝑖𝑗 are the costs defined for 𝑗 ∈ 𝐶𝑘 and 𝑖 ∈ 𝐼 in the
following way:

𝑟
𝑘
𝑖𝑗 =

{{{{{

{{{{{

{

0, if 𝑑𝑖𝑗 < 𝐷𝑘,
𝑏𝑗, if 𝑑𝑖𝑗 = 𝐷𝑘,

(1 + ∑

𝑢∈𝐶𝑘

𝑏𝑢) , if 𝑑𝑖𝑗 > 𝐷𝑘,
(13)
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and for 𝑗 ∈ 𝐽𝑙 where 𝑙 = 1, . . . , 𝑘 − 1 and 𝑖 ∈ 𝐼 according to the
following prescription:

𝑟
𝑘
𝑖𝑗 =

{{{

{{{

{

0, if 𝑑𝑖𝑗 ≤ 𝐷𝑙,

(1 + ∑

𝑢∈𝐶𝑘

𝑏𝑢) , otherwise.
(14)

This setting of coefficients 𝑟𝑘𝑖𝑗 allows us to effectively
distinguish three important situations, which can be directly
used in the construction of the algorithm. Knowing the
optimal solution (xk, yk) of the problem 𝑃𝑘, the following
implications denoted as cases (a), (b), and (c) can be derived.

(a) If 𝑔𝑘(xk) = 0, then each customer 𝑗 ∈ 𝐶𝑘 can be
assigned to a facility whose distance from 𝑗 is less than
𝐷𝑘, and each customer 𝑗 ∈ 𝐽𝑙 for 𝑙 = 1, . . . , 𝑘 − 1 can
be assigned to a facility whose distance from 𝑗 is less
than or equal to𝐷𝑙.

(b) If 0 < 𝑔
𝑘
(xk) < 1 + ∑𝑢∈𝐶𝑘

𝑏𝑢, then each customer 𝑗 ∈
𝐶𝑘 can be assigned to a facility whose distance from 𝑗

is less than or equal to 𝐷𝑘, and each customer 𝑗 ∈ 𝐽𝑙
for 𝑙 = 1, . . . , 𝑘 − 1 can be assigned to a facility whose
distance from 𝑗 is at most 𝐷𝑙. The minimal subset of
customers 𝐽𝑘 ⊆ 𝐶𝑘 whose distance from the closest
facility locations equals the value 𝐷𝑘 can be defined
as {𝑗 ∈ 𝐶𝑘 | ∑𝑖∈𝐼 𝑟

𝑘
𝑖𝑗𝑥
𝑘
𝑖𝑗 = 𝑏𝑗}.

(c) If 𝑔𝑘(xk) > ∑𝑢∈𝐶𝑘
𝑏𝑢, then there exists either the

customer 𝑗 ∈ 𝐶𝑘, which is farther from the allocated
facility than 𝐷𝑘 or a customer in the subset 𝐽𝑙 that is
farther from the allocated facility than 𝐷𝑙. Thus, this
case indicates nonexistence of a solution (x, y) to the
problem 𝑃𝑘, for which ∑𝑖∈𝐼 𝑑𝑖𝑗𝑥𝑖𝑗 ≤ 𝐷𝑙 for 𝑗 ∈ 𝐽𝑙,
where 𝑙 = 1, . . . , 𝑘.

We formulate the following algorithm, where we identify
the customers whose distance from the closest facility loca-
tion cannot be shorter than 𝐷𝑘, by embedding the problem
𝑃𝑘:
Algorithm A-LEX
Step 0. Initialize 𝑘 = 1 and 𝐶1 = 𝐽.
Step 1. Solve the problem 𝑃𝑘 and denote the optimal solution
by (xk, yk).

Step 2. If 𝑔𝑘(xk) = 0, set𝐶𝑘+1 = 𝐶𝑘 and go to Step 4; otherwise
if (0 < 𝑔𝑘(xk) < 1 + ∑𝑢∈𝐶𝑘 𝑏𝑢) go to Step 3.

Step 3. Set 𝐽𝑘 = {𝑗 ∈ 𝐶𝑘 | ∑𝑖∈𝐼 𝑟
𝑘
𝑖𝑗𝑥
𝑘
𝑖𝑗 = 𝑏𝑗}; 𝐶𝑘+1 = 𝐶𝑘 − 𝐽𝑘.

Step 4. If 𝐶𝑘+1 = 0, then terminate and return (xk, yk) as the
solution; otherwise set 𝑘 = 𝑘 + 1 and continue with Step 1.

Correctness and finiteness of the algorithm A-LEX are
justified by the following propositions.

Proposition 1. The optimal solution of the problem 𝑃𝑘 cannot
satisfy the inequality 𝑔𝑘(xk) > ∑𝑢∈𝐶𝑘 𝑏𝑢.

Proof. For 𝑘 = 1, the sumof all coefficients 𝑟1𝑖𝑗 does not exceed
the value ∑𝑢∈𝐶1 𝑏𝑢 and thus 𝑔1(x1) ≤ ∑𝑢∈𝐶1 𝑏𝑢.

For 𝑘 > 1, let us assume that the solution (xk−1, yk−1) of
the problem 𝑃𝑘−1 complies either with the case (a) or with
the case (b) and 𝐶𝑘 ̸= 0. The solution (xk−1, yk−1) assigns all
customers from the set 𝐶𝑘 = 𝐶𝑘−1 − 𝐽𝑘−1 to facilities that are
distant by at most𝐷𝑘.

For 𝑙 = 1, . . . , 𝑘 − 1, the customer 𝑗 ∈ 𝐽𝑙 is assigned
to facility at the distance 𝐷𝑙 and therefore the following
inequality𝑔𝑘(xk−1) < 1+∑𝑢∈𝐶𝑘 𝑏𝑢 is valid. Solution (x

k
, yk), as

aminimizer of the problem𝑃𝑘, must fulfil inequality𝑔𝑘(xk) ≤
𝑔
𝑘
(xk−1) and consequently 𝑔𝑘(xk) ≤ ∑𝑢∈𝐶𝑘 𝑏𝑢.

To assure the consistent termination of the algorithm A-
LEX, the set 𝐶𝑘 must be emptied for 𝑘 ≤ 𝑘max + 1.

Proposition 2. If 𝐶𝑘max
̸= 0, then 𝐶𝑘max+1

= 0.

Proof. If 𝐶𝑘max
̸= 0, then the solution (xkmax , ykmax) assigns all

customers in the set 𝐶𝑘max
to facilities that are at the distance

𝐷𝑘max
. As 𝐷𝑘max

is the minimal distance value, 𝐽𝑘max
= 𝐶𝑘max

and thus 𝐶𝑘max+1
= 0.

To investigate under what circumstances the algorithm
A-LEX provides the optimal solution, we start by not-
ing that each feasible solution in the set 𝑄 is associated
with a sequence of sets [𝐽1, 𝐽2, . . . , 𝐽𝑘max

] and with a vector
[𝐵1, 𝐵2, . . . , 𝐵𝑘max

]. The distance between customers in the set
𝐽𝑘 and the assigned facility is exactly 𝐷𝑘. The component 𝐵𝑘
is a number defined as 𝐵𝑘 = ∑𝑗∈𝐽𝑘 𝑏𝑗. If a set 𝐽𝑘 is empty, then
the associated value𝐵𝑘 is zero.The lexicographically minimal
solution in the set 𝑄 corresponds to the lexicographically
minimal vector [𝐵1, 𝐵2, . . . , 𝐵𝑘max

] [5].

Proposition 3. If algorithm A-LEX does not find the lexico-
graphically minimal solution, then there must exist a problem
𝑃𝑘 having at least two optimal solutions (xA, yA) and (x∗, y∗)
associated with two different sets 𝐽𝐴𝑘 and 𝐽

∗
𝑘 , respectively.

Proof. Let us consider that the algorithm A-LEX found
solution (xA, yA), which is not lexicographically opti-
mal; then the optimal solution (x∗, y∗) induces vector
[𝐵
∗
1 , 𝐵
∗
2 , . . . , 𝐵

∗
𝑘max

] that is lexicographically smaller than the
vector [𝐵𝐴1 , 𝐵

𝐴
2 , . . . , 𝐵

𝐴
𝑘max

]. Let us denote by 𝑘0 the smallest
subscript, for which the inequality 𝐵∗𝑘0 < 𝐵

𝐴
𝑘0
holds.

Assuming that no pair [𝐽∗𝑘 , 𝐽
𝐴
𝑘 ] consists of different sets

for 𝑘 = 1, . . . , 𝑘0 − 1, then we obtain 𝐶𝐴𝑘0 = 𝐽 − ∪
𝑘0−1

𝑘=1
𝐽
𝐴
𝑘 =

𝐽 − ∪
𝑘0−1

𝑘=1
𝐽
∗
𝑘 = 𝐶

∗
𝑘0
.

As A-LEX solves 𝑃𝑘0 to optimality, the assumption of
identity for 𝐽𝐴𝑘 and 𝐽∗𝑘 for 𝑘 = 1, . . . , 𝑘0 − 1 contradicts the
inequality 𝐵∗𝑘0 < 𝐵

𝐴
𝑘0
.

Corollary 4. If there is only one optimal solution of the
problem 𝑃𝑘 concerning variables xk at each stage of the
algorithm, then the solution provided by the algorithm A-LEX
is lexicographically optimal.
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It is important to note that the algorithm A-LEX yields
an optimal solution with only minor exceptions concerning
the ambiguous determination of the set 𝐽𝑘. A necessary
condition for obtaining an approximate solution is that at
the stage 𝑘 there exist at least two optimal solutions of the
problem 𝑃𝑘. Thus, there exist at least two different sets of
customers 𝐽∗𝑘 and 𝐽

𝐴
𝑘 such that ∑𝑗∈𝐽∗

𝑘

𝑏𝑗 = ∑𝑗∈𝐽𝐴
𝑘

𝑏𝑗, and
each set of customers is assigned the distance 𝐷𝑘. Our
algorithm is able to identify only one of these sets and it
treats all such sets as being equivalent. An approximation
error may arise when the algorithm chooses the set, which
in the future steps leads to the distribution of distances that
is lexicographically less efficient than the distribution that
would be reached, when continuing with the alternative set
of customers. The size of the approximation error depends
on how likely the multiple solutions of the problem 𝑃𝑘 are
and whether multiple solutions have the tendency to appear
in the early stages of the algorithm or close to the end. Thus,
the resulting error depends on the distribution of 𝑏𝑗 and 𝑑𝑖𝑗
values. This drawback is compensated by several advantages,
which enable speeding up significantly the algorithm and
thus enable solving larger problems. As the sequence of
problems 𝑃𝑘 keeps the same size and structure of constraints,
we can easily replace the general purpose IP solver by an
algorithm customized for the 𝑝-median problem.

When processing 𝐷𝑘 values in the descending order one
by one, we may observe that sets 𝐽𝑘 are empty for a range of
𝑘 values, especially at the beginning of the solving process
(for large𝐷𝑘 values). Such “empty” iterations do not have any
impact on the resulting solutions and could be skipped.As the
processing of the problem 𝑃𝑘 allows us to identify situations
in which there are customers that require to be assigned
larger distance value than 𝐷𝑘, values 𝐷𝑘 do not have to be
processed sequentially.We can use various searching schemes
(e.g., bisectionmethod) to find the next value𝐷𝑘where 𝐽𝑘 ̸= 0.
This can help reduce the number of times the problem 𝑃𝑘 is
solved and thus reduce the overall computational time.

To initialize the algorithm, we do not need to consider
the entire sequence of values 𝐷𝑘 for 𝑘 = 1, . . . , 𝑘max. Instead,
we can start the solving process by finding the optimum
corresponding to the objective function (7).Then it is enough
to initialize the variable 𝑘 in Step 0 to the value 𝑚 that is
determined by the equality 𝐷𝑚 = max{𝑑𝑖𝑗 | 𝑥

SYS
𝑖𝑗 = 1}.

This typically allows to skip many processing steps when
no customer is assigned a distance value. Another useful
operation (for 𝑘 > 1) is to check whether 𝑔𝑘(xk−1) = 0

in Step 1 before the problem 𝑃𝑘 is solved. If that is the case,
we can use xk−1 as the optimal solution of the problem 𝑃𝑘
[33].

3. Results and Discussion

To study the efficiency of the algorithmA-LEX,we performed
a computational study. Our two main goals were to evaluate
the quality of the solutions by comparing them to the exact
algorithm [33] (algorithm O-LEX hereafter) and to test the
limits of the algorithm regarding the size of the solvable
problems. The algorithm O-LEX adds new constraints to

the solved problem. Consequently, the use of algorithms cus-
tomized for the 𝑝-median problem is impossible. Therefore
we used a general purpose IP solver to implement it. To be
able to compare the algorithm A-LEX with the algorithm O-
LEX, we implemented them in the XPRESS-Mosel language
(version 3.4.0) and we executed them using the XPRESS-
Optimizer (version 23.01.05) [35]. To keep both algorithms
comparable, we did not use any searching scheme to process
values 𝐷𝑘 in the algorithm A-LEX, and thus we processed
all values 𝐷𝑘 sequentially. To explore the properties of the
algorithm A-LEX beyond the limits of the general purpose
integer solvers, we implemented the algorithm A-LEX in the
Microsoft Visual C++ 2010. To solve the problem (12) we
used the exact algorithm ZEBRA, the state of the art solver
for the 𝑝-median problem [44]. The implementation of the
algorithm ZEBRA is publicly available on the author’s web
page [45]. To distinguish both versions of the algorithm A-
LEX, we denote the version based on the XPRESS by A-LEX𝑋

and the versionwhich uses the algorithmZEBRAbyA-LEX𝑍.
The computational study was carried out on an Intel (R)

Core TM i7-3610 QM CPU with four 2.3 GHz cores each
composed of two threads (although C++ code used just one
thread) and 8GB RAM.

3.1. Benchmarks. Three sets of testing problems organized by
the size were used to perform the computational study. In
all cases, customers’ sites are considered to be also possible
facility locations; that is, the sets 𝐼 and 𝐽 are identical.
As there are no standard test problems for the facility
location problem with the lexicographic minimax objective,
we used the problems originally proposed for the capacitated
𝑝-median problem while interpreting the demands as 𝑏𝑗
values (multiplicities of customers). Twenty small instances
pmedcap1–pmedcap20 were taken from the OR-library [36].
We also included into this set the smallest testing problem
𝑆𝐽𝐶1 used in [37]. Three larger problems taken from the
same source, 𝑆𝐽𝐶2, 𝑆𝐽𝐶3, and 𝑆𝐽𝐶4, together with two
instances derived from the network of 737 Spanish cities
[38] constitute the medium-sized instances. The largest test
problems include the problem 𝑝3038 originally proposed for
the TSP [39] and later adjusted to the capacitated 𝑝-median
problem [37]. Furthermore, considering the population data
as 𝑏𝑗 values, we created large-sized benchmarks from the road
network of the Slovak Republic [40] and the road network
of six southeastern US states [41] (for more details see the
caption in Figure 2). All the benchmarks and the source
code are available for download as a supplemental material
(http://frdsa.uniza.sk/∼buzna/).

3.2. Numerical Experiments. We summarized the computa-
tional results in Tables 1, 2, and 3.The abbreviations in Tables
1–3 have the following meanings:

instance: the problem name,
|𝐼|: number of facility/customer locations,
𝑝: number of facilities to be located,
𝑘max: number of𝐷𝑘 values,
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Table 1: Computational results for the algorithm A-LEX: small instances.

Instance |𝐼| 𝑝 𝑘max
O-LEX A-LEX𝑋

Time [s] 𝑘𝑠 Time [s] 𝑘𝑠 Δ

𝑝𝑚𝑒𝑑𝑐𝑎𝑝1 50 5 30 1.88 11 0.64 11 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝2 50 5 42 3.23 8 0.67 7 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝3 50 5 28 1.60 9 0.46 7 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝4 50 5 43 2.97 15 0.91 15 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝5 50 5 33 2.11 13 0.74 10 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝6 50 5 38 2.51 11 1.21 12 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝7 50 5 40 3.15 13 0.98 13 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝8 50 5 39 2.75 7 0.80 6 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝9 50 5 36 2.80 9 0.80 8 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝10 100 10 30 1.98 10 0.59 10 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝11 100 10 21 4.29 2 1.04 1 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝12 100 10 26 5.21 4 1.74 3 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝13 100 10 30 5.65 2 1.76 1 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝14 100 10 24 4.89 3 1.91 2 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝15 100 10 27 6.21 2 1.89 1 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝16 100 10 23 4.59 1 1.20 0 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝17 100 10 25 6.83 2 1.50 1 2
𝑝𝑚𝑒𝑑𝑐𝑎𝑝18 100 10 25 4.67 2 1.70 1 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝19 100 10 30 6.83 2 2.46 1 0
𝑝𝑚𝑒𝑑𝑐𝑎𝑝20 100 10 20 5.95 3 0.90 2 0
𝑆𝐽𝐶1 100 5 732 47.90 588 28.54 569 0
𝑆𝐽𝐶1 100 10 426 22.99 283 10.82 282 0
𝑆𝐽𝐶1 100 15 427 24.51 261 10.65 269 0
𝑆𝐽𝐶1 100 20 150 5.31 64 2.91 65 0

Table 2: Computational results for the algorithm A-LEX: medium instances.

Instance |𝐼| 𝑝 𝑘max
O-LEX A-LEX𝑋

Time [s] 𝑘𝑠 Time [s] 𝑘𝑠 Δ

𝑆𝐽𝐶2 200 10 426 131.4 238 50.9 237 0
𝑆𝐽𝐶2 200 20 306 64.4 132 37.4 128 0
𝑆𝐽𝐶2 200 30 218 32.2 79 17.4 71 0
𝑆𝐽𝐶2 200 40 169 20.3 39 9.7 40 0
𝑆𝐽𝐶3 300 15 445 461.6 207 357.7 189 0
𝑆𝐽𝐶3 300 30 267 145.1 70 68.8 58 0
𝑆𝐽𝐶3 300 45 226 71.1 46 37.9 41 0
𝑆𝐽𝐶3 300 60 215 53.3 50 29.8 42 0
𝑆𝐽𝐶4 402 20 461 1371.2 161 1205.8 140 0
𝑆𝐽𝐶4 402 40 342 1207.5 74 1052.5 58 0
𝑆𝐽𝐶4 402 60 229 158.7 33 87.2 29 0
𝑆𝐽𝐶4 402 80 193 144.9 25 56.2 24 0
𝑆𝑝𝑎𝑖𝑛 737 1 737 37 467 116838.0 92 81185.1 65 0
𝑆𝑝𝑎𝑖𝑛 737 1 737 50 348 196000.0 53 27296.2 49 0
𝑆𝑝𝑎𝑖𝑛 737 1 737 185 108 12367.4 5 279.5 5 0
𝑆𝑝𝑎𝑖𝑛 737 1 737 259 59 430.4 2 32.2 2 0
𝑆𝑝𝑎𝑖𝑛 737 2 737 37 467 35590.7 88 29185.6 65 0
𝑆𝑝𝑎𝑖𝑛 737 2 737 50 348 64005.7 59 27806.1 38 0
𝑆𝑝𝑎𝑖𝑛 737 2 737 185 108 3182.3 5 232.4 5 0
𝑆𝑝𝑎𝑖𝑛 737 2 737 259 59 72.5 1 43.2 1 2
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(a) (b)

Figure 2: Road networks used to test the algorithm A-LEX. All inhabited nodes (marked red) are considered as aggregate customers and
possible locations of facilities. The diameter of nodes is scaled proportionally to the population. (a) The road network of the Slovak Republic
consists of |𝐽| = 2928 aggregate customers representing the locations of |𝐽| = 5 384 909 individuals. (b) The joined road network of six
southeastern US states (Tennessee, North Carolina, South Carolina, Georgia, Alabama, and Mississippi). All inhabitants included in the
dataset are considered to be customers (|𝐽| = 2398, |𝐽| = 14 830 101).

Table 3: Computational results for the algorithm A-LEX: large instances.

Instance |𝐼| 𝑝 𝑘max
A-LEX𝑍

Time [s] 𝑘𝑠

𝑝3038 3038 2500 33 2520.8 1
𝑝3038 3038 2000 35 4204.3 2
𝑝3038 3038 1500 38 8915.9 2
𝑝3038 3038 900 73 190092.9 7
𝑝3038 3038 700 110 17902.9 8
𝑝3038 3038 100 ∗ ∗ ∗

𝑝3038 3038 50 ∗ ∗ ∗

𝑝3038 3038 10 1188 201165.3 36
𝑆𝑅 2928 2500 3 786.8 0
𝑆𝑅 2928 2000 4 1021.6 0
𝑆𝑅 2928 1500 5 1083.4 0
𝑆𝑅 2928 1000 8 1622.9 0
𝑆𝑅 2928 900 9 1988.5 0
𝑆𝑅 2928 700 11 2954.2 0
𝑆𝑅 2928 100 48 9624.7 0
𝑆𝑅 2928 50 65 10509.8 0
𝑆𝑅 2928 10 92 11888.4 0
𝑈𝑆 2398 2000 10 1006.6 0
𝑈𝑆 2398 1500 15 1203.7 0
𝑈𝑆 2398 1000 22 1702.7 0
𝑈𝑆 2398 900 25 1694.7 0
𝑈𝑆 2398 700 33 11022.5 0
𝑈𝑆 2398 100 ∗ ∗ ∗

𝑈𝑆 2398 50 ∗ ∗ ∗

𝑈𝑆 2398 10 219 9038.2 0
Table cells filled with the symbol “∗” indicate the instances when the algorithm did not terminate within 3 days.

time: CPU time (in seconds) used to solve the prob-
lem,
𝑘𝑠: number of skipped 𝑘 values for which we did not
solve the problem 𝑃𝑘 because 𝑔

𝑘
(xk−1) = 0,

Δ: number of facilities that the algorithms placed
differently, calculated using the formula:

Δ = ∑

𝑖∈𝐼

󵄨󵄨󵄨󵄨󵄨󵄨
𝑦
O-LEX
𝑖 − 𝑦

A-LEX𝑋
𝑖

󵄨󵄨󵄨󵄨󵄨󵄨
. (15)

Due to problems with the computer memory, XPRESS
solver was not able to solve large instances successfully.
Therefore, in Table 3 we show the results obtained by the
solver ZEBRA only. Comparison of results reveals that the
algorithm A-LEX𝑋 outperforms the algorithm O-LEX on all
tested instances. A-LEX𝑋 computed all small instances in
time which accounts for 42.5% and all medium instances
for 47.6% of the time needed by the algorithm O-LEX. In
order to compare the quality of the solution, we evaluate
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Figure 3: Computational time in seconds and the number of fixed aggregate customers |𝐽𝑘| as a function of the iteration step 𝑘. The results
were obtained for the benchmark 𝑆𝐽𝐶4 in (a) 𝑝 = 20 and in (b) 𝑝 = 80. The values |𝐽𝑘| are identical for both algorithms, and the datasets are
overlapping.

the Manhattan distance (15) between the location vectors
y. Occasionally, we find small differences in the location of
facilities. However, we checked and we found that customers
have the same distance to the closest located facility in all
tested instances.Thus, the algorithmA-LEX found an optimal
solution in all cases where we were able to compare it with the
algorithm O-LEX.

To explain why the algorithm A-LEX𝑋 is faster than the
algorithm O-LEX, we need to take more detailed view on
both algorithms. In the algorithm A-LEX𝑋, the structure of
constraints in 𝑃𝑘 is independent on 𝑘 and only the structure
of coefficients 𝑟𝑘𝑖𝑗 varies with the step 𝑘. These coefficients
may take three possible values for a given customer (see
the expression (13)). On the contrary, the algorithm O-LEX
has simpler structure of the objective function but a new
constraint is added at each iteration. New constraints make
sure that the objective function values reached in the previous
iterations cannot deteriorate in the following iterations [33].
Thus, the algorithm A-LEX𝑋 outperforms O-LEX if IP solver
can handle more easily the constant set of constraints with
a more complex objective function and, vice versa, the
algorithm O-LEX is faster if the IP solver can process faster
simpler structure of the objective function with the growing
set of constraints.

In Figure 3, we show the computational time needed to
solve the individual instances of the problem 𝑃𝑘. For small
values of 𝑘, where no customers are fixed (i.e., 𝐽𝑘 = 0),
both algorithms perform comparably well. For larger values
of 𝑘, the algorithm A-LEX𝑋 systematically outperforms

the algorithm O-LEX. To gain more insights into the solving
process, we plotted in Figure 4 the number of branch-and-
bound nodes processed by the IP solver and the number of
simplex iterations required to solve the optimization problem
in the root node of the branch-and-bound method. We
found that the algorithm A-LEX𝑋 needs a much smaller
number of simplex iterations than the algorithmO-LEX𝑋.We
conjecture that the number of simplex iterations is smaller in
the algorithmA-LEX𝑋 because the large values of coefficients
𝑟
𝑘
𝑖𝑗 for 𝑑𝑖𝑗 > 𝐷𝑘 allow excluding the variables taking zero
values in the optimal solution faster from the basic feasible
solution.

In Figure 3, we can also see that few iterations preceding
and few iterations following the value 𝑘, where the first cus-
tomer is fixed, take the largest portion of the computational
time. This increase can be explained by the need to search
through a larger number of nodes in the searching tree before
the optimal integer solution is found (see Figure 4). From this
point of view it could be beneficial to use a searching scheme
in the algorithm A-LEX to find the value of 𝑘 when the
first customer is fixed and then to continue by incrementing
𝑘 sequentially. This could reduce the number of iterations
and could avoid processing some time-demanding iterations.
In Figures 3 and 4, we showed the results obtained for
the selected benchmark 𝑆𝐽𝐶4. However, it should be noted
that we found qualitatively similar results with all other
benchmarks.

As the algorithm A-LEX preserves the problem 𝑃𝑘 in the
form of the 𝑝-median problem, we can replace the general
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Figure 4: The number of nodes processed by the branch-and-bound method and the number of simplex iterations needed to process the
root node as a function of the iteration step 𝑘. The results were obtained for the benchmark 𝑆𝐽𝐶4 in (a) 𝑝 = 20 and in (b) 𝑝 = 80.

purpose IP solver by the customized 𝑝-median solver. To
solve the 𝑝-median problem, we used the algorithm ZEBRA
[44]. The size of instances in Table 3 approaches the size
of large 𝑝-median instances used to test the performance
of the algorithm ZEBRA [44]. Due to the problems with
the computer memory, the algorithms O-LEX and A-LEX𝑋
could not be used to solve this set of problems. Facility
location problems are strategic planning problems and the
computational time is not necessarily a core issue. Therefore
we set the time limit for all computations to 3 days. The
problems, where 𝑝 is large, can be solved relatively fast. The
computational time rapidly grows by lowering the value 𝑝.
We were not able to solve the problems 𝑝3038 and𝑈𝑆 for the
intermediate 𝑝 values (50 and 100) within the time limit of
3 days. Please note that similar limitations of the algorithm
ZEBRA are also reported in [44].

4. Conclusions

The algorithm A-LEX, proposed in this paper, preserves
the structure of constraints in the form of the 𝑝-median
problem, which allows solving larger instances of problems
than can be solved by the algorithm O-LEX. Moreover, the
computational experiments showed that the algorithm A-
LEX provides high-quality solutions. Therefore, it can be
concluded that A-LEX is competitive with the existing state
of the art algorithm O-LEX for solving the facility location
problem with the lexicographic minimax objective function.

The proposed approximation approach is also applicable
to other types of similar combinatorial optimization prob-
lems with lexicographic minimax objective. Values assigned

to individual customers at different stages of the algorithm
need to be included in the objective function so that we
can construct rules which allow detecting whether customers
can be assigned equal, smaller, or larger value than the
outcome value tested on a given stage of the algorithm. To
gain a computational advantage compared to all purpose IP
solvers, it is needed that, for a given problem, we can use
a customized exact algorithm to find the system optimum.
Concrete example where this approach could be used is the
maximum generalized assignment problem.

We compared the approximation algorithmA-LEX to the
exact algorithm O-LEX. We are aware of the fact that it is
not a standard practice to compare exact algorithms with
heuristics in terms of the computational time. However, we
believe that this decision can be well justified by the similarity
of both algorithms, and such comparisonhighlights better the
advantages of our approach. To our best knowledge there are
no attempts in the literature to construct (meta) heuristics for
the facility location problem with the lexicographic minimax
objective, and such comparison could be considered as a topic
for future research.

Moreover, the algorithm A-LEX can be directly applied
to an arbitrary utility function dependent on the distance;
therefore, it allows comparing different measures expressing
how customers perceive the suitability of facility locations.
The more challenging task consists of finding out how the
algorithm could be extended to the composite measures
representing the customer’s choice behavioural model, for
example, how to compute the lexicographic optimum when
customers are not assigned to the closest facility, but their
demand is distributed within a subset of 𝑘-nearest located
facilities.
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