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A continuous Nondestructive monitoring method is required to apply proper feedback controls during tissue regeneration.
Conductivity is one of valuable information to assess the physiological function and structural formation of regenerated tissues or
cultured cells. However, conductivity imaging methods suffered from inherited ill-posed characteristics in image reconstruction,
unknown boundary geometry, uncertainty in electrode position, and systematic artifacts. In order to overcome the limitation of
microscopic electrical impedance tomography (micro-EIT), we applied a 3D-specific container with a fixed boundary geometry and
electrode configuration tomaximize the performance of Graz consensus reconstruction algorithm for EIT (GREIT).The separation
of driving and sensing electrodes allows us to simplify the hardware complexity and obtain higher measurement accuracy from a
large number of small sensing electrodes. We investigated the applicability of the GREIT to 3D micro-EIT images via numerical
simulations and large-scale phantom experiments. We could reconstruct multiple objects regardless of the location.The resolution
was 5mm3 with 30 dB SNR and the position error was less than 2.54mm. This shows that the new micro-EIT system integrated
with GREIT is robust with the intended resolution. With further refinement and scaling down to a microscale container, it may be
a continuous nondestructive monitoring tool for tissue engineering applications.

1. Introduction

There are many reports that nerve or tissue regeneration is
a successful treatment modality in skin, muscle, nerve, and
periodontal reconstruction [1–5]. In order to implant a regen-
erated tissue, there must be a systematic and stable method
to cultivate. For efficient cytothesis, they extract potentially
autologous regenerative cells and expand cells in vitro before
replacing degenerated tissue. However, current monitoring
methods such as histological analysis and quantification of
various components using a microscope and chemical dye
are invasive and the examined tissue sample may be not
reused for implanting. Considering the shortage of donor

tissues, it requires the real-time, continuous nondestructive
monitoring methods for proper feedback controls inside
a bioreactor to enhance the quality of the final implant.
When we consider the monitoring of three-dimensional
(3D) tissue growth inside a 3D scaffold for bone or tissue
formation, conventional molecular imaging methods using
optical fluorescent and bioluminescent markers are difficult
to represent the functionality deep inside regenerative tissues
[6]. The micro-CT provides high-throughput images with
high spatial resolution to describe the appearance of bone
regeneration and structural changes; however, it has limita-
tions of continuous monitoring and functional imaging of
regenerative tissues [7, 8]. Simultaneous PET-MRI is a new
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Figure 1: The structure of sample container and the method used for the primary (E
𝑝±
) and secondary injection currents (E

𝑠±
).

approach with synergizing for functional and morphological
imaging [9]. However, it is too expensive and cannot be
installed inside the bioreactor.

Bioelectromagnetic phenomena are fairly correlated with
physiological functions and structural formation of cells
and tissues directly. Therefore, the distribution of electric
field generated by induced currents inside biological tissue
can be used for monitoring tissue growth and its func-
tions noninvasively [10, 11]. We would like to develop the
continuous monitoring method to find the functionality
of the ingrowth neotissue in the scaffold using bioelectric
properties. Electrical impedance tomography (EIT) can pro-
duce cross-sectional images of conductivity and permittivity
distributions inside a tissue using pairs of injection currents
and induced boundary voltages [12]. There have been sev-
eral attempts to develop EIT systems on the microscopic
scale (micro-EIT systems) with high spatial resolution using
conventional EIT approaches [13–17]. They inherited some
technical difficulties, suffering from the ill-posed problem
with limited electrode measurements, and were affected by
unknown boundary geometry, uncertainty in electrode posi-
tion, and systematic artifacts, even though EIT is uniquely
able to show conductivity time variations with high temporal
resolution, nondestructive, label-free, and multidimensional
in space, time, and frequency.

To solve the difficulties in developing micro-EIT, Lee
et al. [18] and Liu et al. [19] suggested a mathematical
framework and system for a new micro-EIT method with
a rectangular cuboid container that included two pairs of
current injection electrodes and numerous voltage sensing
electrodes, as shown in Figure 1. They applied a projected
image reconstruction algorithm to produce conductivity
images from the front, bottom, and back sides; they were
combined to make a 3D conductivity image using a back-
projection algorithm. Although this method showed better
resolution than that found from the conventional micro-EIT
methods, it required an automatic estimation of the position
and volume of a regenerated tissue and a fast detection for

physiological changes. In this study, we used theGraz consen-
sus reconstruction algorithm for EIT (GREIT) to reconstruct
the 3D conductivity images representing the tissue status
or morphological changes [20]. Since a specific container
has a fixed boundary geometry and electrode configurations,
electrode movement or the deformation of the boundary
shape does not need to be considered. The modified GREIT
algorithm based on the concept of the equivalent homoge-
neous complex conductivity may be able to provide real-time
3D reconstructed images without significant artifacts [21, 22].
This can be achieved through a matrix-vector multiplication
after precomputation of the reconstruction matrix R. We
investigated the applicability of the GREIT to 3D micro-EIT
images via numerical simulations and large-scale phantom
experiments using five figures of merit.

2. Methods

2.1. The Mathematical Framework. We chose the rectangular
cuboid container of Ω to maximize the performance of
GREIT. Two pairs of driving electrodes E

𝑝±
and E

𝑠±
are

assigned to the primary and secondary current injections,
respectively. Each pair of electrodes takes turns in injecting
current. After applying a low-frequency current of amplitude
𝐼, the electrical potential, 𝑢

𝑗
(𝑗 = 𝑝, 𝑠), satisfies the following:

∇ ⋅ (𝜎∇𝑢
𝑗
) = 0 in Ω

∫
E𝑗±

𝜎

𝜕𝑢
𝑗

𝜕n
= ±𝐼, ∫

E𝑘±

𝜎

𝜕𝑢
𝑗

𝜕n
= 0 for 𝑘 ̸= 𝑗 (𝑘 = 𝑝, 𝑠)

n × ∇𝑢
𝑗
= 0 on E

𝑝±
⋃E
𝑠±

𝜎

𝜕𝑢
𝑗

𝜕n
= 0 on 𝜕Ω \ (E

𝑝±
⋃E
𝑠±
) ,

(1)

where 𝜎 is the conductivity and n is the outer unit normal
vector on the boundary [18]. The container is designed for
separated current driving electrodes from voltage sensing
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electrodes, which means that the contact impedance of
the sensing electrodes can be ignored. Since we adopt the
tetrapolar measurement, we exclude the electrode proper-
ties and reduce the channel dependent characteristics. One
therefore can use the simple electrode model instead of the
complete electrode model to minimize the error induced by
inappropriate modeling and differences between channels.
The separation of the driving and sensing electrodes allows
us to simplify the hardware complexity and obtain higher
measurement accuracy from a large number of small elec-
trodes. In addition, only two driving patterns are created,
which makes for simple boundary conditions.

2.2. Image Reconstruction Algorithm. We adopted the GREIT
in order to reconstruct the conductivity distribution [20].
This linear reconstruction algorithm was developed to over-
come several issues regarding the reconstructed EIT images,
which cause a poor spatial resolution: amplitude, position
error, shape deformation, and ringing effect. Adler et al.
[20] applied the GREIT to two-dimensional (2D) EIT of the
lungs employing a single-ring electrode configuration using
adjacent current injection and measurement. In their study,
the 2D conductivity change could be obtained by the GREIT
based on a 3D forward model. For the micro-EIT system, we
use the “3D desired volume” instead of the 2D desired image
to recover the 3D volume of conductivity change.

The linear EIT image reconstruction can be represented
by computing the reconstruction matrix R, which corre-
sponds to measurement y in order to produce the recon-
structed image x̂, as follows:

x̂ = Ry. (2)

The GREIT procedure depends on the forward model, a
noise model, and the desired performance metrics. When a
𝑘th anomaly is positioned in the domain, we can compute
the EIT measurement data y(𝑘) from the change in the
conductivity distribution x(𝑘)

𝑡
= 𝜎
(𝑘)
−𝜎
(𝑘)

𝑟
, where 𝜎, 𝜎

𝑟
are the

present and reference conductivity distributions, respectively.
For a given anomaly position, a reconstructed object in the
desired image, x̃(𝑘)

𝑡
, is located at the same center of the

conductivity target in the model. However, its shape would
be circular because of the blurring effect inherent in EIT.
To tune the relative importance of the performance metrics,
image weighting factor, w(𝑘), is used for each pixel in x̃(𝑘)

𝑡
.

When the transition zone is defined as the pixels in which
the conductivity change gradually converges to zero, the
weighting w(𝑘) allows us to have a small error outside the
transition zone and a large one inside. The reconstruction
matrix R can be obtained by minimizing the total weighted
sum of residual errors 𝜖2; one has

𝜖
2
= ∑

𝑘

󵄩󵄩󵄩󵄩󵄩
x̃(𝑘) − Ry(𝑘)󵄩󵄩󵄩󵄩󵄩

2

W(𝑘) , (3)

whereW(𝑘) = (diagw(𝑘))2.
The existing GREIT algorithm was restricted to the

cylinder model and mainly focused on the 2D imaging plane

at the same level as the height of the single-ring electrodes.
Therefore, a reconstruction matrix R was required for the
imaging plane. If one would obtain another image at a
different height from electrodes, the reconstruction matrix R
needs to be recomputed, corresponding to the other imaging
plane. Since we use the “3D desired volume” for the training
data set in the micro-EIT system, we do not need to calculate
R repeatedly; the R will allow us to obtain any volume inside
the container or for several slice images at different positions.
The EIT measurement data y(𝑘) is also calculated using the
3D forward model employing governing equation (1) when
the change in conductivity x(𝑘)

𝑡
= 𝜎
(𝑘)
− 𝜎
(𝑘)

𝑟
is given. Most of

the noise is introduced from electronic noise, shape change,
and electrode positioning error. However, we do not need
to consider the shape of the imaging domain and electrode
movement in the micro-EIT system due to the use of a
container with fixed dimensions and shape. Therefore, the
measurement data is only degraded by the electronic noise in
the system.The 3D desired volume z̃(𝑘)

𝑡
corresponding to x(𝑘)

𝑡

is created at the position with the same center as the center
of gravity (CoG) of x(𝑘)

𝑡
. The shape of the volume is defined

by the spherical volume due to the blurring effect inherent
in EIT. We assume that the volume weighting factor, w(𝑘),
is the same for each training data set in order to simplify
the algorithm.Therefore, the reconstruction matrix R can be
computed byminimizing ‖[Z̃t | 0] − R[Yt | Yn]‖

2
W as follows:

R = [Z̃t | 0] [Yt | Yn]
T
([Yt | Yn] [Yt | Yn]

T
)
−1
, (4)

where [⋅ | ⋅] stands for the matrix concatenation, Yt =

(1/N)[y(1)t ⋅ ⋅ ⋅ y
(N)
t ], Z̃t = (1/N)[z̃(1)t ⋅ ⋅ ⋅ z̃

(N)
t ], and Yn =

(1/N)[y(1)n ⋅ ⋅ ⋅ y
(N)
n ]. The noise y(𝑘)

𝑛
is an estimate of the noise

amplitude variance var(y(𝑘)
𝑛
) = 𝐸[‖y(𝑘)

𝑛
‖
2

]with amean of zero.

2.3. Performance Figures of Merit. In order to evaluate the
performance of the reconstructionmethod andmeasurement
configuration, we compute five figures of merit: ampli-
tude response (AR), position error (PE), resolution (RES),
shape deformation (SD), and ringing artifacts (RNG). They
are described well in the reference paper [20]. Here, we
summarized them with simple equations and the desired
characteristics. [x̂

𝑞
] is defined by the voxels in which the

absolute values of the conductivity change are bigger than
one-fourth of the maximum change as follows:

[x̂
𝑞
]
𝑖
=
{

{

{

1, if 󵄨󵄨󵄨󵄨[x̂]𝑖
󵄨󵄨󵄨󵄨 ≥
1

4
⋅max (x̂)

0, otherwise.
(5)

(i) Amplitude response (AR): this parameter gives us a
quantitative result related to the ratio of conductivity
amplitude on pixels in the region of interest (ROI; x̂

𝑘
)

to the reference conductivity. Considering a spherical
perturbation with conductivity of 𝜎

𝑡
and volume of𝑉

𝑡
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Figure 2: (a) Tetrahedral elements for numerical simulation within the domain, (b) grid voxels for image reconstruction, and (c) an example
of simulation of sample target (red voxels) and reconstructed object (green voxels).

inside a homogenous medium with conductivity 𝜎
𝑟
,

the AR is

AR =
∑
𝑘
[x̂]𝑘

𝑉
𝑡
⋅ ((𝜎
𝑡
− 𝜎
𝑟
) /𝜎
𝑟
)
. (6)

It should be uniformwithin the region of any homog-
enous target.

(ii) Position error (PE): this quantitative parameter repre-
sents the difference of CoG between the actual posi-
tion of object, r

𝑜
, and the estimated center position, r

𝑞
,

using pixels greater than one-fourth of the maximum
amplitude, [x̂

𝑞
]. Consider

PE = 󵄨󵄨󵄨󵄨󵄨r𝑞 − r𝑜
󵄨󵄨󵄨󵄨󵄨
. (7)

Ideally, it should be zero. It provides accuracy regard-
ing the positional information for a target object. The
PE should be small and possess little variability within
the 3D domain.

(iii) Resolution (RES): it means the relative volume of the
reconstructed point target compared to the size of
total medium which is equal to the value of the point
spread function (PSF). Consider

RES = √
𝑉
𝑞

𝑉
0

, (8)

where 𝑉
𝑞
is the volume of {[x̂

𝑞
]
𝑘
= 1} and 𝑉

0
is the

volume of the whole domain,Ω. It should be uniform
and small.

(iv) Shape deformation (SD): when we consider the
spherical object in the homogenous medium, we can
define an index set S representing the indices of [x̂

𝑞
]

inside a sphere centered at the CoG of [x̂
𝑞
] with the

same volume as 𝑉
𝑞
. The SD measures the portion of

{[x̂
𝑞
]
𝑘
| 𝑘 ∉ S} over the reconstructed target as

follows:

SD =
(∑
𝑘∉S [x̂𝑞]𝑘)

(∑
𝑘
[x̂
𝑞
]
𝑘
)

. (9)

(v) Ringing artifact (RNG): it measures the portion of
voxels with the opposite sign of image amplitude
which is called undershoot or overshoot surrounding
the main reconstructed target. For an index set OV
representing the voxels as follows:

RNG =
(∑
𝑘∈OV&𝑘∉S [x̂𝑞]𝑘)

(∑
𝑘∈𝑆
[x̂
𝑞
]
𝑘
)

. (10)

3. Numerical Experiments

Weconstructed the large-scale computationalmodel to be the
same size as the container (48 × 24 × 24mm3) for phantom
experiments shown in Figure 1. The results for numerical
simulation in a container of this size are the same as ones of
microscopic container except of scaling effect, and phantom
experiments are easily performed in that size. The whole
domain was decomposed into 646,781 tetrahedral elements
in Figure 2(a). We computed the boundary voltages and
added white Gaussian noise at various levels from noise
free to 15 dB signal-to-noise ratio (SNR). In order to obtain
reconstructed images with a 1mm spatial resolution, we
defined the 27,648 (= 48 × 24 × 24) grid voxels used for
reconstruction as in Figure 2(b). When we considered the
number of grid points with the spatial resolution of 0.7mm
for each direction, we could get 80,606 possible targets for
training. 981 objects were removed because they were too
close to injection electrodes or less sensitive to contribute
to the reconstruction matrix R. We chose 79,625 training
targets for the computation of matrix R in (4). There were
a pair of electrodes fully covering the left and right sides
of the container used for the primary current injection, a
pair of thin vertical electrodes at the middle of the front
and back sides for the secondary current injection, and 360
gold-coated voltage sensing electrodes with 1mm diameter
on the front, bottom, and back sides. A planar array of 8 × 15
electrodes was placed on each of the three sides. The voltage
difference was measured between two horizontally adjacent
electrodes for each current injection pattern; the last column
of each row measured the voltage reference to the circuit
ground [19]. There were 360 measured differential voltages
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Figure 3: Single object placed at (a) (12, 12, 12), (b) (24, 12, 12), and (c) (36, 12, 12), respectively, with noise of 40 dB.

along the horizontal direction for each injection current.
We generated the vertically measured voltage data using the
last measurement channel in each row. The total number of
measured voltages was 1,410 including 690 additional vertical
measurements. Figure 2(c) shows an example of target object
(red voxels) and reconstructed object (green voxels). For the
numerical experiments, we considered the following cases:
(1) a single object at different positions, (2) two objects to the
left and right, and (3)multiple objects.

3.1. Case 1: Single Object. A single object was located at
(12, 12, 12) (left), (24, 12, 12) (center), and (36, 12, 12) (right)
(unit: mm) in the container, as shown in Figure 3. The con-
ductivity of the object was ten times greater than that of the
background. Figure 3 shows the real position of each object,
the reconstructed volume above one-fourth amplitude ([x̂

𝑞
]),

and the cross-sectional images at the height passing through
the object. Here, we defined the reconstructed volume as
where the absolute values of the conductivity change were

greater than one-fourth of the maximum change. The center
of the reconstructed anomaly ranged within 1 to 2mm from
the original center.The shape of the one-fourth amplitude set
was ellipsoid with a longer radius along the 𝑧-axis. Since the
primary and secondary currents were parallel to the 𝑥- and
𝑦-axes, information along the 𝑧-axis was lacking. Therefore,
the shapes along the 𝑥- and 𝑦-directions were relatively exact;
however, the shape along the 𝑧-direction was blurred.

We computed five figures of merit explained in Section
2.3 to evaluate the performance of the algorithm and mea-
surement configuration. We moved a single 5mm radius
object from 6 to 42mmwith 3mm intervals along the 𝑥-axis.
Lee et al. [18] and Liu et al. [19] used horizontally measured
boundary voltages (H-data) in their studies. However, we
found that the method using H-data only did not yield an
image with high quality when using the GREIT. We thus
decided to use vertically measured boundary voltage data
(V-data) as well as H-data since V-data was independent
on H-data. The strategy using both H-data and V-data can
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increase the rank of the reconstruction matrix R; therefore,
the solution of matrix inversion was closer to the desired
one.This method was compared with one using only H-data.
When the additional V-data was used, we obtained a flatter
AR, a smaller PE with slight variations, and a more uniform
and smaller RES, SD, and RNG in Figure 4. We examined
these figures of merit for SNR of 60 dB to 15 dB and found a
significant deviation began to appear PE, RES, and SD when
the SNR degraded to 30 dB. Further, with the SNR set at
40 dB we simulated the case where there was a 1%mismatch
between the 360 channels and found that all figures of merit
did not deviate more than 2.5%.

3.2. Case 2: Two Objects. Two objects that had ten times
higher conductivity than the background conductivity and
the same 5mm radius were simultaneously located on the
left and the right, as shown in Figure 5(a). The radius of
the right object was altered to 3.75 and 2.5mm in order
to observe the distinguishability of two objects of different
sizes in Figures 5(b)-5(c). We also assigned two different
conductivity values to two objects having the same size: one
was ten times greater than the background conductivity; the
other was ten times less than the background conductivity, as
shown in Figure 5(d).

As the right object became smaller, the amplitude of
the reconstructed image also decreased. In the case of the
smallest object of 2.5mm radius, the reconstructed amplitude
of the right object was so small that it was beneath the similar
level of undershoot of large left object. However, we can
make a distinction of small object in the profile. The GREIT
reconstructed the two objects even for the case when the two
objects had opposite conductivity values. Overall, the GREIT
was able to distinguish two separated objects and reconstruct
them, but it had difficulties in reconstructing an object with
a 2.5mm radius, which was roughly 1/20 of the largest edge
length of the container.

3.3. Case 3: Multiple Objects. We used the modified Shepp-
Logan model to implement more than eight objects. All of
the objects had the same conductivity, which was ten times
higher than the background conductivity. Figure 6 shows
that the different sized multiple objects were reasonably
reconstructed by the GREIT. However, it was not possible
to reconstruct three small objects with diameters less than
5mm, and this was a similar result found in Figure 5(c).
According to the profile along line (b) in Figure 6 for the
middle cross section of the container, three small objects were
detected; however, their amplitudes were as lower than the
undershoot threshold level. They were not visible directly
in the images due to high amplitude contrast of the larger
objects.

4. Phantom Experiments

We used a container with the same size as that laid out in the
numerical experiments. The container was filled with saline
having 0.2 S/m conductivity. We tested the new method in
two different configurations.

(i) A biological object of 0.02 S/m size 10 × 10 × 10mm3
was placed at (12, 12, 12) (left), (24, 12, 12) (center), and
(36, 12, 12) (right), respectively (unit: mm), as shown
in Figure 7.

(ii) One biological object was positioned on the left side
and another biological object was simultaneously
placed on the right side. The object on the left side
was 6 × 6 × 6mm3 and the object on the right was
10 × 10 × 10mm3, as shown in Figure 8.

We measured the voltages from the container without any
object in it subjected to the primary and secondary current,
separately, as a baseline. We compared the measurements of
voltage data to the simulated data with different gains in each
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Figure 5: Two objects placed at (12, 12, 12) and (36, 12, 12).The radius of the left object was 5mm.The radius of the right object was (a) 5mm,
(b) 3.75mm, (c) 2.5mm, and (d) 5mm, respectively. The two objects had the same conductivity for (a)–(c) and a different conductivity for
(d).

voltmeter.This allowed us to perform a calibration to remove
the channel characteristics of the micro-EIT system.

As shown in Figure 7, the single object was clearly recon-
structed at the expected location.We evaluated reconstructed
images using five figures of merit. They tended to have
similar results as the simulation except for the case of the
right position. The magnitude of the reconstructed images
gradually decreased as the location moved to the right.
Figure 8 shows two reconstructed objects when the left
object was smaller than the other. The left object with
216mm3 volume was reconstructed as one with 337.05mm3,
whereas the right one with 1,000mm3 was reconstructed
as 545.94mm3. The position dependent volume variation
may be caused by the measurement system which used
same ground for both current source and voltmeters. The
common mode voltage can produce the gradient of voltage
measurements. Also, there was a large artifact (overshoot)
on the left side when positioning an object close to the
current injection electrode. Artifacts around the objects were
ringing effects of the reconstructed anomaly combined with

current injection method. We observed small artifacts near
the secondary electrodes, which were not observed in the
numerical simulations. These may be caused by the highly
conductive voltage sensing electrode array and secondary
current injection electrodes used to produce the equipotential
region.

5. Discussions and Conclusions

The new method for the micro-EIT system is focused on
generating a uniform parallel current density inside the
container when we apply the primary injection current in
order to improve the image quality and achieve a high spatial
resolution. The system is useful to measure the boundary
voltage following the current flow because the equipotential
lines are perpendicular to the current streamlines. The
secondary current is used for finding a unique solution
from the measurement data. It has advantages when we use
dedicated current injection electrodes and a large number of
separated voltage sensing electrodes. This configuration may
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Figure 6: The reconstructed multiple objects from the modified Shepp-Logan model.

also provide better spatial resolution and simplified system
design. The distance between two adjacent electrodes and
the number of electrodes are limited by the system noise
level. Since a container has a fixed boundary geometry and
electrode configuration, the developed micro-EIT system is
best suited for applying 3D GREIT algorithm. Therefore, we
can generate the computational forward model as precisely
as possible to obtain a training data set. In addition, one can
create a suitable amount of synthetic training data and use
it to construct the reconstruction matrix R before the 3D
reconstruction of conductivity distributions. After obtaining
the reconstruction matrix, one can create the reconstructed
image by performing the simplematrix-vectormultiplication
of R and the boundary voltage data. This will be advanta-
geous to detect fast physiological changes in tissue with a
high temporal and spatial resolution.The spatial resolution is
determined by the number and spacing of the voltage sensing
electrodes.

We need to consider a few issues related to the optimal
number of training data and the determination of the image
voxel weighting matrix W. Adler et al. [20] discussed that
the number of training sets was limited to the number of
independent measurements. In order to generate conduc-
tivity values for all voxels, we needed more training targets
than the number of voxel grid points to yield a sufficiently
accurate spatial resolution for the reconstructed image. In
this study, we used three-times more target positions than

voxel grid points on the reconstructed images. The image
weightingWmay play an important role in deciding the error
level of the voxels. The allowable error could be suppressed
on the outside and inside of the desired target and alleviated
on the transition zone, which is the boundary area near the
target. We applied a uniform weight in this study; however,
seeking the optimal weight W may result in improving the
performance. In the numerical experiments, we used 1,410
boundary voltage values. From the observations regarding
the five figures of merit, we infer that the strategy using the
combined H-data and V-data may yield better images in the
micro-EIT system. The differential voltage between the 15th
electrode in each row and the ground was easily saturated
in the phantom experiments. Therefore, we need to apply
different gains for each voltmeter channel.

When the object was located on the right side near
the ground electrode, there was a 50% underestimation
regarding the original volume. This might stem from the
common circuit ground for current source and voltmeter,
the highly conductive voltage sensing electrode array, and
secondary current injection electrode used to produce the
equipotential region. This produced significant artifacts in
the phantom experimental data. We did not consider the
electrode effects and system characteristics in the numerical
experiments. To diminish this effect, we may use a float-
ing current injection method without employing a pair of
secondary current injection electrodes and reduce the size
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Figure 7: Carrot object placed at (a) (12, 12, 12), (b) (24, 12, 12), and (c) (36, 12, 12) in the saline container, respectively.
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Figure 8:The two objects were placed at (12, 12, 12) and (36, 12, 12) at the same time.The edge length of the bigger object was 10mm and that
of the smaller object was 6mm.

of the voltage sensing electrodes. Even though the phantom
experiments did not produce enough performance, we veri-
fied that the three-dimensional GREIT using a well-trained
reconstruction matrix was able to reconstruct micro-EIT

conductivity images and found the practical consideration for
the improvements of system.

When the object was placed near the sensing electrodes,
the resolution was 5mm3 and position error was less than
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2.54mm. The SNR was 63 dB when using a biological object
of 10 × 10 × 10mm3. Considering both simulation and
experimental results, we may find the specification of the
micro-EIT system to detect conductivity changes during
tissue culture. Total volume of a container was 27,648 𝜇L in
the large scale model. It will be reduced below 256 𝜇L under
the reasonable amount for cell growth. Therefore, the size
and distance of sensing electrodes will be smaller and closer.
From the pilot test using the developed micro-EIT system,
the contact impedance of sensing electrode was increased
from 38 kΩ to 553 kΩ measured at 10Hz when the diameter
of electrode was reduced from 1mm to 0.4mm. Noise will
be increased from 48𝜇V to 134 𝜇V. We need to overcome
the thermal noise due to the small size of electrodes. It can
be studied more using the developed micro-EIT system. We
might detect the continuous conductivity changes in the
region when we reduced the size of container below 2mm
length including the same number of measuring electrodes.

By applying an optimal weighting matrix, we may expect
further improvement in the image quality. In our subsequent
work, their performance will be compared with regards to
computation time and image quality under the same config-
urations. Several tissue experiments using the same method
and aminiaturized container are in progress.Thismonitoring
system can be applied to evaluate the quality of the in
vitro grown cartilage tissue since the conductivity greatly
depends on the extracellular matrix composition, structure,
and functionality during the tissue formation process [23].
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