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We are concerned with the following third-order three-point boundary value problem: 𝑢(𝑡) = 𝑓(𝑡, 𝑢(𝑡)), 𝑡 ∈ [0, 1], 𝑢(0) = 𝑢(1) =

0, 𝑢

(𝜂) + 𝛼𝑢(0) = 0, where 𝛼 ∈ [0, 2) and 𝜂 ∈ [2/3, 1). Although corresponding Green’s function is sign-changing, we still obtain

the existence of monotone positive solution under some suitable conditions on 𝑓 by applying iterative method. An example is also
included to illustrate the main results obtained.

1. Introduction

Third-order differential equations arise from a variety of dif-
ferent areas of applied mathematics and physics, for example,
in the deflection of a curved beam having a constant or
varying cross-section, a three-layer beam, electromagnetic
waves or gravity driven flows, and so on [1].

Recently, the existence of single or multiple positive
solutions to some third-order three-point boundary value
problems (BVPs) has received much attention from many
authors; see [2–7] and the references therein. However, all the
above-mentioned papers are achieved when corresponding
Green’s functions are nonnegative, which is a very important
condition. A natural question is that whether we can obtain
the existence of positive solutions to some third-order three-
point BVPs when corresponding Green’s functions are sign-
changing.

In 2008, Palamides and Smyrlis [8] studied the existence
of at least one positive solution to the singular third-order
three-point BVP with an indefinitely signed Green’s function

𝑢


(𝑡) = 𝑎 (𝑡) 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ (0, 1) ,

𝑢 (0) = 𝑢 (1) = 𝑢

(𝜂) = 0,

(1)

where 𝜂 ∈ (17/24, 1). Their technique was a combination
of the Guo-Krasnoselskii fixed point theorem [9, 10] and
properties of the corresponding vector field.

Very recently, for the third-order three-point BVP with
sign-changing Green’s function

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢


(0) = 𝑢 (1) = 𝑢

(𝜂) = 0,

(2)

Sun and Zhao proved the existence of single or multiple
positive solutions when 𝜂 ∈ (1/2, 1) by using the Guo-
Krasnoselskii and Leggett-Williams fixed point theorems in
[11, 12] and obtained the existence of a positive solution when
𝜂 ∈ [2 − √2, 1) by using iterative technique in [13].

In 2013, Li et al. [14] established the existence of at least
one positive solution to the following third-order three-point
BVP with sign-changing Green’s function:

𝑢


(𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑢


(0) = 𝑢 (1) = 0, 𝑢

(𝜂) + 𝛼𝑢 (0) = 0,

(3)

where 𝛼 ∈ [0, 2) and 𝜂 ∈ [(√121 + 24𝛼 − 5)/3(4 + 𝛼), 1).
The main tool used was the Guo-Krasnoselskii fixed point
theorem [9, 10].

It is worth mentioning that there are other types of works
on sign-changingGreen’s functionswhich prove the existence
of sign-changing solutions, positive in some cases; see Infante
and Webb’s papers [15–17].

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 541234, 6 pages
http://dx.doi.org/10.1155/2014/541234

http://dx.doi.org/10.1155/2014/541234


2 Journal of Applied Mathematics

Motivated greatly by the above-mentioned works, in
this paper, we will study the BVP (3) by applying iterative
method. Throughout this paper, we always assume that 𝛼 ∈

[0, 2) and 𝜂 ∈ [2/3, 1). Although corresponding Green’s
function is sign-changing, we still obtain the existence of
monotone positive solution for the BVP (3) under some
suitable conditions on 𝑓. Moreover, our iterative scheme
starts off with zero function, which implies that the iterative
scheme is feasible.

2. Main Results

For any 𝑦 ∈ 𝐶[0, 1], we consider the BVP

𝑢


(𝑡) = 𝑦 (𝑡) , 𝑡 ∈ [0, 1] ,

𝑢


(0) = 𝑢 (1) = 0, 𝑢

(𝜂) + 𝛼𝑢 (0) = 0.

(4)

It follows from [14] that the expression ofGreen’s function
𝐺(𝑡, 𝑠) of the BVP (4) is as follows:

𝐺 (𝑡, 𝑠) = 𝑔
1
(𝑡, 𝑠) + 𝑔

2
(𝑡, 𝑠) + 𝑔

3
(𝜂, 𝑡, 𝑠) , (5)

where

𝑔
1
(𝑡, 𝑠) = −

(2 − 𝛼𝑡
2
) (1 − 𝑠)

2

2 (2 − 𝛼)

, (𝑡, 𝑠) ∈ [0, 1] × [0, 1] ,

𝑔
2
(𝑡, 𝑠) =

{

{

{

0, 0 ≤ 𝑡 ≤ 𝑠 ≤ 1,

(𝑡 − 𝑠)
2

2

, 0 ≤ 𝑠 ≤ 𝑡 ≤ 1,

𝑔
3
(𝜂, 𝑡, 𝑠) =

{

{

{

0, 𝑠 ≥ 𝜂,

1 − 𝑡
2

2 − 𝛼

, 𝑠 < 𝜂,

(6)

and the 𝐺(𝑡, 𝑠) has the following properties:

𝐺 (𝑡, 𝑠) ≥ 0 for 0 ≤ 𝑠 < 𝜂, 𝐺 (𝑡, 𝑠) ≤ 0 for 𝜂 ≤ 𝑠 ≤ 1.

(7)

Moreover, for 𝑠 ≥ 𝜂,

max {𝐺 (𝑡, 𝑠) : 𝑡 ∈ [0, 1]} = 𝐺 (1, 𝑠) = 0,

min {𝐺 (𝑡, 𝑠) : 𝑡 ∈ [0, 1]} = 𝐺 (0, 𝑠) = −

(1 − 𝑠)
2

2 − 𝛼

≥ −

(1 − 𝜂)
2

2 − 𝛼

,

(8)

and, for 𝑠 < 𝜂,

max {𝐺 (𝑡, 𝑠) : 𝑡 ∈ [0, 1]} = 𝐺 (0, 𝑠) =

2𝑠 − 𝑠
2

2 − 𝛼

≤

2𝜂 − 𝜂
2

2 − 𝛼

,

min {𝐺 (𝑡, 𝑠) : 𝑡 ∈ [0, 1]} = 𝐺 (1, 𝑠) = 0.

(9)

So, if we let 𝑀 = max{|𝐺(𝑡, 𝑠)| : 𝑡, 𝑠 ∈ [0, 1]}, then

𝑀 = max{

(1 − 𝜂)
2

2 − 𝛼

,

2𝜂 − 𝜂
2

2 − 𝛼

} <

1

2 − 𝛼

. (10)

Let Banach space 𝐸 = 𝐶[0, 1] be equipped with the norm
‖𝑢‖ = max

𝑡∈[0,1]
|𝑢(𝑡)| and

𝐾 = {𝑦 ∈ 𝐸 : 𝑦 (𝑡)

is nonnegative and decreasing on [0, 1]} .

(11)

Then𝐾 is a cone in𝐸. Note that this induces an order relation
“≲” in 𝐸 by defining 𝑢 ≲ V if and only if V − 𝑢 ∈ 𝐾.

In the remainder of this paper, we always assume that𝑓 ∈

𝐶([0, 1] × [0, +∞), [0, +∞)) and satisfies the following two
conditions:

(𝐻
1
) for each 𝑢 ∈ [0, +∞), the mapping 𝑡 → 𝑓(𝑡, 𝑢) is
decreasing;

(𝐻
2
) for each 𝑡 ∈ [0, 1], the mapping 𝑢 → 𝑓(𝑡, 𝑢) is
increasing.

Now, we define an operator 𝑇 as follows:

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑢 ∈ 𝐾, 𝑡 ∈ [0, 1] .

(12)

Obviously, if 𝑢 is a fixed point of 𝑇 in 𝐾, then 𝑢 is a
nonnegative and decreasing solution of the BVP (3).

Lemma 1. 𝑇 : 𝐾 → 𝐾 is completely continuous.

Proof. Let 𝑢 ∈ 𝐾. Then, for 𝑡 ∈ [0, 𝜂], we have

(𝑇𝑢) (𝑡) = ∫

𝑡

0

[𝑔
1
(𝑡, 𝑠) +

(𝑡 − 𝑠)
2

2

+

1 − 𝑡
2

2 − 𝛼

]𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝜂

𝑡

[𝑔
1
(𝑡, 𝑠) +

1 − 𝑡
2

2 − 𝛼

]𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

1

𝜂

𝑔
1
(𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(13)

which together with (𝐻
1
) and (𝐻

2
) implies that

(𝑇𝑢)


(𝑡) =

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

− ∫

𝑡

0

𝑠𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 − 𝑡 ∫

𝜂

𝑡

𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑑𝑠 − ∫

𝑡

0

𝑠𝑑𝑠

−𝑡 ∫

𝜂

𝑡

𝑑𝑠 +

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑑𝑠]

= 𝑡𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼 (1 − 3𝜂)

3 (2 − 𝛼)

− 𝜂 +

𝑡

2

]

≤ 𝑡𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼 (1 − 3𝜂)

3 (2 − 𝛼)

−

𝜂

2

] ≤ 0.

(14)
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For 𝑡 ∈ [𝜂, 1], we have

(𝑇𝑢) (𝑡) = ∫

𝜂

0

[𝑔
1
(𝑡, 𝑠) +

(𝑡 − 𝑠)
2

2

+

1 − 𝑡
2

2 − 𝛼

]𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝜂

[𝑔
1
(𝑡, 𝑠) +

(𝑡 − 𝑠)
2

2

]𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

1

𝑡

𝑔
1
(𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠,

(15)
which together with (𝐻

1
) and (𝐻

2
) shows that

(𝑇𝑢)


(𝑡) =

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∫

𝑡

𝜂

(𝑡 − 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 − ∫

𝜂

0

𝑠𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ 𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑑𝑠 + ∫

𝑡

𝜂

(𝑡 − 𝑠) 𝑑𝑠

−∫

𝜂

0

𝑠 𝑑𝑠 +

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑑𝑠]

= 𝑡𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼 (1 − 3𝜂)

3 (2 − 𝛼)

+

𝑡 − 2𝜂

2

]

≤ 𝑡𝑓 (𝜂, 𝑢 (𝜂)) [

𝛼 (1 − 3𝜂)

3 (2 − 𝛼)

+

1 − 2𝜂

2

] ≤ 0.

(16)
So, (𝑇𝑢)(𝑡) is decreasing on [0, 1]. At the same time, since

(𝑇𝑢)(1) = 0, we know that (𝑇𝑢)(𝑡) is nonnegative on [0, 1].
This indicates that 𝑇𝑢 ∈ 𝐾. Furthermore, although 𝐺(𝑡, 𝑠) is
not continuous, it follows from known textbook results, for
example, see [18], that 𝑇 : 𝐾 → 𝐾 is completely continuous.

Theorem 2. Assume that 𝑓(𝑡, 0) ̸≡ 0 for 𝑡 ∈ [0, 1] and there
exist two positive constants 𝑎 and 𝑏 such that the following
conditions are satisfied:

(𝐻
3
) 𝑓(0, 𝑎) ≤ (2 − 𝛼)𝑎;

(𝐻
4
) 𝑏(𝑢
2
−𝑢
1
) ≤ 𝑓(𝑡, 𝑢

2
)−𝑓(𝑡, 𝑢

1
) ≤ 2𝑏(𝑢

2
−𝑢
1
), 0 ≤ 𝑡 ≤ 1,

0 ≤ 𝑢
1
≤ 𝑢
2
≤ 𝑎.

If we construct an iterative sequence V
𝑛+1

= 𝑇V
𝑛
, 𝑛 =

0, 1, 2, . . ., where V
0
(𝑡) ≡ 0 for 𝑡 ∈ [0, 1], then {V

𝑛
}
∞

𝑛=1
converges

to V∗ in 𝐸 and V∗ is a decreasing and positive solution of the
BVP (3).

Proof. Let 𝐾
𝑎
= {𝑢 ∈ 𝐾 : ‖𝑢‖ ≤ 𝑎}. Then we may assert that

𝑇 : 𝐾
𝑎

→ 𝐾
𝑎
.

In fact, if 𝑢 ∈ 𝐾
𝑎
, then it follows from (𝐻

3
) that

0 ≤ (𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

≤ ∫

1

0

|𝐺 (𝑡, 𝑠)| 𝑓 (0, 𝑎) 𝑑𝑠

≤ (2 − 𝛼) 𝑎𝑀 < 𝑎, 𝑡 ∈ [0, 1] ,

(17)

which shows that ‖𝑇𝑢‖ ≤ 𝑎. So, 𝑇 : 𝐾
𝑎

→ 𝐾
𝑎
.

Now, we prove that {V
𝑛
}
∞

𝑛=1
converges to V∗ in 𝐸 and V∗ is

a decreasing and positive solution of the BVP (3).
Indeed, in view of V

0
∈ 𝐾
𝑎
and 𝑇 : 𝐾

𝑎
→ 𝐾
𝑎
, we have

V
𝑛

∈ 𝐾
𝑎
, 𝑛 = 1, 2, . . .. Since the set {V

𝑛
}
∞

𝑛=0
is bounded and

𝑇 is completely continuous, we know that the set {V
𝑛
}
∞

𝑛=1
is

relatively compact. In what follows, we prove that {V
𝑛
}
∞

𝑛=0
is

monotone by induction. First, it is obvious that V
1
− V
0
= V
1
∈

𝐾, which shows that V
0
≲ V
1
. Next, we assume that V

𝑘−1
≲ V
𝑘
.

Then V
𝑘
− V
𝑘−1

is decreasing and 0 ≤ V
𝑘−1

(𝑡) ≤ V
𝑘
(𝑡) ≤ 𝑎,

𝑡 ∈ [0, 1]. So, it follows from (𝐻
4
) that

V
𝑘+1

(𝑡) − V
𝑘
(𝑡)

=

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) [𝑓 (𝑠, V

𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

− ∫

𝑡

0

𝑠 [𝑓 (𝑠, V
𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

− 𝑡 ∫

𝜂

𝑡

[𝑓 (𝑠, V
𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

+

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
[𝑓 (𝑠, V

𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

≤

𝑏𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) [V

𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

− 𝑏∫

𝑡

0

𝑠 [V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

− 𝑏𝑡 ∫

𝜂

𝑡

[V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

+

2𝑏𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
[V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)]

× {

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑑𝑠

− ∫

𝑡

0

𝑠 𝑑𝑠 − 𝑡 ∫

𝜂

𝑡

𝑑𝑠 +

2𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑑𝑠}

= 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)] 𝑡

× [

𝛼 (−𝜂
3
+ 3𝜂
2
− 6𝜂 + 2)

3 (2 − 𝛼)

− 𝜂 +

𝑡

2

]

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)] 𝑡 [

𝛼 (−𝜂
3
+ 3𝜂
2
− 6𝜂 + 2)

3 (2 − 𝛼)

−

𝜂

2

]

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)] 𝑡 [

𝛼 (−3𝜂 + 2)

3 (2 − 𝛼)

−

𝜂

2

]

≤ 0, 𝑡 ∈ [0, 𝜂] ,

V
𝑘+1

(𝑡) − V
𝑘
(𝑡)

=

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) [𝑓 (𝑠, V

𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

+ ∫

𝑡

𝜂

(𝑡 − 𝑠) [𝑓 (𝑠, V
𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

− ∫

𝜂

0

𝑠 [𝑓 (𝑠, V
𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠

+

𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
[𝑓 (𝑠, V

𝑘
(𝑠)) − 𝑓 (𝑠, V

𝑘−1
(𝑠))] 𝑑𝑠



4 Journal of Applied Mathematics

≤

𝑏𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) [V

𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

+ 2𝑏∫

𝑡

𝜂

(𝑡 − 𝑠) [V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

− 𝑏∫

𝜂

0

𝑠 [V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

+

2𝑏𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
[V
𝑘
(𝑠) − V

𝑘−1
(𝑠)] 𝑑𝑠

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)]

× [

𝛼𝑡

2 − 𝛼

∫

𝜂

0

(𝑠
2
− 2𝑠) 𝑑𝑠 + 2∫

𝑡

𝜂

(𝑡 − 𝑠) 𝑑𝑠

− ∫

𝜂

0

𝑠 𝑑𝑠 +

2𝛼𝑡

2 − 𝛼

∫

1

𝜂

(1 − 𝑠)
2
𝑑𝑠]

= 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)]

× [

𝛼𝑡 (−𝜂
3
+ 3𝜂
2
− 6𝜂 + 2)

3 (2 − 𝛼)

+ 𝑡
2
− 2𝜂𝑡 +

𝜂
2

2

]

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)] 𝑡

× [

𝛼 (−𝜂
3
+ 3𝜂
2
− 6𝜂 + 2)

3 (2 − 𝛼)

+ 𝑡 −

3𝜂

2

]

≤ 𝑏 [V
𝑘
(𝜂) − V

𝑘−1
(𝜂)] 𝑡 [

𝛼 (−3𝜂 + 2)

3 (2 − 𝛼)

+

2 − 3𝜂

2

]

≤ 0, 𝑡 ∈ [𝜂, 1] .

(18)

So,

V
𝑘+1

(𝑡) − V
𝑘
(𝑡) ≤ 0, 𝑡 ∈ [0, 1] . (19)

This together with V
𝑘+1

(1) − V
𝑘
(1) = ∫

1

0
𝐺(1, 𝑠)[𝑓(𝑠, V

𝑘
(𝑠)) −

𝑓(𝑠, V
𝑘−1

(𝑠))]𝑑𝑠 = 0 implies that

V
𝑘+1

(𝑡) − V
𝑘
(𝑡) ≥ 0, 𝑡 ∈ [0, 1] . (20)

In view of (19) and (20), we know that V
𝑘+1

− V
𝑘
∈ 𝐾, which

indicates that V
𝑘

≲ V
𝑘+1

. Thus, we have shown that V
𝑛

≲

V
𝑛+1

, 𝑛 = 0, 1, 2 . . .. Since {V
𝑛
}
∞

𝑛=1
is relatively compact and

monotone, there exists V∗ ∈ 𝐾
𝑎
such that lim

𝑛→∞
V
𝑛

= V∗,
which together with the continuity of 𝑇 and the fact that
V
𝑛+1

= 𝑇V
𝑛
implies that V∗ = 𝑇V∗. This indicates that V∗

is a decreasing and nonnegative solution of the BVP (3).
Moreover, since 𝑓(𝑡, 0) ̸≡ 0 for 𝑡 ∈ [0, 1], we know that zero
function is not a solution of the BVP (3), which shows that V∗
is a positive solution of the BVP (3).

3. An Example

Consider the BVP

𝑢


(𝑡) =

1

16

𝑢
2

(𝑡) +

1

4

𝑢 (𝑡) + (1 − 𝑡) , 𝑡 ∈ [0, 1] ,

𝑢


(0) = 𝑢 (1) = 0, 𝑢

(𝜂) + 𝑢 (0) = 0.

(21)

If we let 𝛼 = 1, 𝜂 = 7/9, and 𝑓(𝑡, 𝑢) = (1/16)𝑢
2
+

(1/4)𝑢 + (1 − 𝑡), (𝑡, 𝑢) ∈ [0, 1] × [0, +∞), then all the

hypotheses ofTheorem 2 are fulfilled with 𝑎 = 2 and 𝑏 = 1/4.
Therefore, it follows from Theorem 2 that the BVP (21) has
a decreasing and positive solution. Moreover, the iterative
scheme is V

0
(𝑡) ≡ 0 for 𝑡 ∈ [0, 1] and

V
𝑛+1

(𝑡) =

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{
{

{

∫

𝑡

0

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

+

(𝑡 − 𝑠)
2

2

+ 1 − 𝑡
2
]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠

+∫

7/9

𝑡

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

+ 1 − 𝑡
2
]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠

+∫

1

7/9

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠,

𝑡 ∈ [0,

7

9

] , 𝑛 = 0, 1, 2, . . . ,

∫

7/9

0

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

+

(𝑡 − 𝑠)
2

2

+ 1 − 𝑡
2
]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠

+∫

𝑡

7/9

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

+

(𝑡 − 𝑠)
2

2

]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠

+∫

1

𝑡

[−

(2 − 𝑡
2
) (1 − 𝑠)

2

2

]

× [

1

16

(V
𝑛
(𝑠))
2

+

1

4

V
𝑛
(𝑠) + (1 − 𝑠)] 𝑑𝑠,

𝑡 ∈ [

7

9

, 1] , 𝑛 = 0, 1, 2, . . . .

(22)

The first, second, third, and fourth terms of this scheme are
as follows:

V
0
(𝑡) ≡ 0,

V
1
(𝑡) = −

1

24

𝑡
4
+

1

6

𝑡
3
−

227

648

𝑡
2
+

73

324

,
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V
2
(𝑡) =

1

55296

𝑡
11

−

35

165888

𝑡
10

+

839

746496

𝑡
9
−

7489

2239488

𝑡
8

+

137893

40310784

𝑡
7
+

1415521

120932352

𝑡
6
−

481871

10077696

𝑡
5

+

162649

10077696

𝑡
4
+

1987201

10077696

𝑡
3
−

481465

1119744

𝑡
2

+

951409

3779136

,

V
3
(𝑡) =

1

293534171136

𝑡
25

−

1

10871635968

𝑡
24

+

9341

7925422620672

𝑡
23

−

24949

2641807540224

𝑡
22

+

1842703

35664401793024

𝑡
21

−

20695715

106993205379072

𝑡
20

+

1261406617

2888816545234944

𝑡
19

−

131313793

962938848411648

𝑡
18

−

463466345483

155996093442686976

𝑡
17

+

20201622953

1925877696823296

𝑡
16

−

4124079293903

467988280328060928

𝑡
15

−

213831233807699

4211894522952548352

𝑡
14

+

1890940354637

9749755840167936

𝑡
13

−

86168085379277

526486815369068544

𝑡
12

−

14488536542111

19499511680335872

𝑡
11

+

436989616007405

175495605123022848

𝑡
10

−

42359864609123

29249267520503808

𝑡
9

−

2156592823827731

263243407684534272

𝑡
8

+

186526068980179

9749755840167936

𝑡
7

+

413727883674101

263243407684534272

𝑡
6

−

13158305753867

203119913336832

𝑡
5

+

432683614811977

10968475320188928

𝑡
4

+

92539330261825

457019805007872

𝑡
3
−

1830285163670609

4113178245070848

𝑡
2

+

1148605916775291

4503599627370496

.

(23)

4. Conclusion

In [14], only the existence of at least one positive solution
to the BVP (3) was obtained when 𝛼 ∈ [0, 2) and 𝜂 ∈

[(√121 + 24𝛼 − 5)/3(4 + 𝛼), 1). In this paper, when 𝛼 ∈ [0, 2)

and 𝜂 ∈ [2/3, 1), we have successfully constructed an iterative
sequence, whose limit is just a desired monotone positive
solution of the BVP (3). Moreover, our iterative scheme starts
offwith zero function, which implies that the iterative scheme
is feasible.
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