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We study the Schrödinger equation: −Δ𝑢 + 𝑉 (𝑥) 𝑢 + 𝑓 (𝑥, 𝑢) = 0, 𝑢 ∈ 𝐻

1
(R𝑁

), where 𝑉 is 1-periodic and 𝑓 is 1-periodic in the
𝑥-variables; 0 is in a gap of the spectrum of the operator −Δ + 𝑉. We prove that, under some new assumptions for 𝑓, this equation
has a nontrivial solution. Our assumptions for the nonlinearity 𝑓 are very weak and greatly different from the known assumptions
in the literature.

1. Introduction and Statement of Results

In this paper, we consider the following Schrödinger equa-
tion:

−Δ𝑢 + 𝑉 (𝑥) 𝑢 + 𝑓 (𝑥, 𝑢) = 0, 𝑢 ∈ 𝐻

1
(R

𝑁
) , (1)

where𝑁 ≥ 1. For 𝑉 and 𝑓, we assume the following.

(v) 𝑉 ∈ 𝐶(R𝑁
) is 1-periodic in 𝑥

𝑗
for 𝑗 = 1, . . . , 𝑁, 0

is in a spectral gap (−𝜇
−1
, 𝜇

1
) of −Δ+𝑉, and −𝜇

−1
and

𝜇

1
lie in the essential spectrum of −Δ + 𝑉.

Denote

𝜇

0
:= min {𝜇

−1
, 𝜇

1
} . (2)

(f1)𝑓 ∈ 𝐶(R𝑁
×R) is 1-periodic in 𝑥

𝑗
for 𝑗 = 1, . . . , 𝑁.

And there exist constants 𝐶 > 0 and 2 < 𝑝 < 2

∗ such
that
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶 (1 + |𝑡|

𝑝−1
) , ∀ (𝑥, 𝑡) ∈ R

𝑁
×R, (3)

where

2

∗
:=

{

{

{

2𝑁

(𝑁 − 2)

, 𝑁 ≥ 3

∞, 𝑁 = 1, 2.

(4)

(f2) The limit lim
𝑡→0

𝑓(𝑥, 𝑡)/𝑡 = 0 holds uniformly
for 𝑥 ∈ R𝑁. And there exists𝐷 > 0 such that

inf
𝑥∈R𝑁,|𝑡|≥𝐷

𝑓 (𝑥, 𝑡)

𝑡

> max
R𝑁

𝑉

−
, (5)

where 𝑉
±
(𝑥) = max{±𝑉(𝑥), 0}, ∀𝑥 ∈ R𝑁.

(f3) For any (𝑥, 𝑡) ∈ R𝑁
×R, ̃𝐹(𝑥, 𝑡) ≥ 0, where

̃

𝐹 (𝑥, 𝑡) :=

1

2

𝑡𝑓 (𝑥, 𝑡) − 𝐹 (𝑥, 𝑡) , 𝐹 (𝑥, 𝑡) = ∫

𝑡

0

𝑓 (𝑥, 𝑠) 𝑑𝑠.

(6)

(f4) There exist 0 < 𝜅 < 𝐷 and ] ∈ (0, 𝜇

0
) such that,

for every (𝑥, 𝑡) ∈ R𝑁
×R with |𝑡| < 𝜅,

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ ] |𝑡| (7)

and, for every (𝑥, 𝑡) ∈ R𝑁
×R with 𝜅 ≤ |𝑡| ≤ 𝐷,

̃

𝐹 (𝑥, 𝑡) > 0.
(8)

Remark 1. By the definitions of 𝐹 and ̃

𝐹, it is easy to verify
that, for all (𝑥, 𝑡) ∈ R𝑁

× (R \ {0}),

𝜕

𝜕𝑡

(

𝐹 (𝑥, 𝑡)

𝑡

2
) =

2

̃

𝐹 (𝑥, 𝑡)

𝑡

3
.

(9)
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Together with 𝑓(𝑥, 𝑡) = 𝑜(𝑡) as |𝑡| → 0 and (f3), this implies
that

𝐹 (𝑥, 𝑡) ≥ 0 ∀ (𝑥, 𝑡) ∈ R
𝑁
×R. (10)

Remark 2. There are many functions satisfying (f1)–(f4). We
give several examples here.

Example 1. 𝐷 = 1+𝜇

0
/2+ 𝑒

1+max
R𝑁

𝑉− , 𝜅 = 1+𝜇

0
/2, ] = 𝜇

0
/2,

and

𝑓 (𝑥, 𝑡) = {

0, |𝑡| ≤ 1,

𝑡 ln |𝑡| , |𝑡| > 1.

(11)

Example 2. 𝐷 = 3+𝜇

0
/2+2maxR𝑁𝑉−, 𝜅 = 3/2, ] = 𝜇

0
/2, and

𝑓 (𝑥, 𝑡) =

{

{

{

{

{

0, |𝑡| ≤ 1,

𝐷 (𝑡 − 1) , 𝑡 > 1,

𝐷 (𝑡 + 1) , 𝑡 < −1.

(12)

Example 3. 𝐷 = 𝜇

0
/2 + 𝑒

1+max
R𝑁

𝑉− , 𝜅 = ] = 𝜇

0
/2, and

𝑓(𝑥, 𝑡) = 𝑡 ln(1 + |𝑡|).

A solution 𝑢 of (1) is called nontrivial if 𝑢 ̸≡ 0. Our main
results are as follows.

Theorem 3. Suppose (k) and (f1)–(f4) are satisfied. Then (1)
has a nontrivial solution.

Note that

(f󸀠
2
) the limits lim

𝑡→0
𝑓(𝑥, 𝑡)/𝑡 = 0 and lim

|𝑡|→∞
(𝑓(𝑥,

𝑡)/𝑡) = +∞ hold uniformly for 𝑥 ∈ R𝑁.

Implying (f2), we have the following corollary.

Corollary 4. Suppose (v), (f1), (f󸀠2), (f3), and (f4) are satisfied.
Then (1) has a nontrivial solution.

It is easy to verify that the condition

(f󸀠4) ̃

𝐹(𝑥, 𝑡) > 0, for every (𝑥, 𝑡) ∈ R𝑁
×R.

And the assumption that 𝑓(𝑥, 𝑡)/𝑡 → 0 as 𝑡 → 0

uniformly for 𝑥 ∈ R𝑁 imply (f3) and (f4). Therefore,
we have the following corollary.

Corollary 5. Suppose (v), (f1), (f2), and (f󸀠4) are satisfied.Then
(1) has a nontrivial solution.

Semilinear Schrödinger equations with periodic coeffi-
cients have attracted much attention in recent years due to
its numerous applications. One can see [1–24] and the ref-
erences therein. In [2], the authors used the dual variational
method to obtain a nontrivial solution of (1) with 𝑓(𝑥, 𝑡) =

±𝑊(𝑥)|𝑡|

𝑝−2
𝑡, where 𝑊 is an asymptotically periodic func-

tion. In [20], Troestler andWillem firstly obtained nontrivial

solutions for (1) with 𝑓 being a 𝐶1 function satisfying the
Ambrosetti-Rabinowitz condition:

(AR) there exists 𝛼 > 2 such that, for every 𝑢 ̸= 0, 0 <

𝛼𝐺(𝑥, 𝑢) ≤ 𝑔(𝑥, 𝑢)𝑢, where 𝑔(𝑥, 𝑢) = −𝑓(𝑥, 𝑢), 𝐺(𝑥,
𝑢) = −𝐹(𝑥, 𝑢), and

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝜕𝑓 (𝑥, 𝑢)

𝜕𝑢

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝐶 (|𝑢|

𝑝−2
+ |𝑢|

𝑞−2
) (13)

with 2 < 𝑝 < 𝑞 < 2

∗. Then, in [9], Kryszewski and
Szulkin developed some infinite-dimensional link-
ing theorems. Using these theorems, they improved
Troestler andWillem’s results and obtained nontrivial
solutions for (1) with 𝑓 only satisfying (f1) and the
(AR) condition. These generalized linking theorems
were also used by Li and Szulkin to obtain nontrivial
solution for (1) under some asymptotically linear
assumptions for 𝑓 (see [11]). In [13] (see also [14]),
existence of nontrivial solutions for (1) under (f1)
and the (AR) condition was also obtained by Pankov
and Pflüger through approximating (1) by a sequence
of equations defined in bounded domains. In the
celebrated paper [17], Schechter and Zou combined
a generalized linking theorem with the monotonic-
ity methods of Jeanjean (see [8]). They obtained a
nontrivial solution of (1) when 𝑓 exhibits the critical
growth. A similar approach was applied by Szulkin
andZou to obtain homoclinic orbits of asymptotically
linear Hamiltonian systems (see [19]). Moreover, in
[5] (see also [6]), Ding and Lee obtained nontriv-
ial solutions for (1) under some new superlinear
assumptions on 𝑓 different from the classical (AR)
conditions.

Our assumptions on 𝑓 are very weak and greatly dif-
ferent from the assumptions mentioned above. In fact, our
assumptions (f1)–(f4) do not involve the properties of 𝑓 at
infinity. It may be asymptotically linear growth at infinity,
that is, lim sup

|𝑡|→∞
(𝑓(𝑥, 𝑡)/𝑡) < +∞, or superlinear growth

at infinity as well, that is, lim inf
|𝑡|→∞

(𝑓(𝑥, 𝑡)/𝑡) = +∞.
Moreover, the assumptions (f1)–(f4) allow 𝑓(𝑥, 𝑡) ≡ 0 in a
neighborhood of 𝑡 = 0 (see Remark 2).

In this paper, we use the generalized linking theorem
for a class of parameter-dependent functionals (see [17,
Theorem 2.1] or Proposition 8 in the present paper) to obtain
a sequence of approximate solutions for (1). Then, we prove
that these approximate solutions are bounded in 𝐿

∞
(R𝑁

)

and 𝐻

1
(R𝑁

) (see Lemmas 13 and 14). Finally, using the
concentration-compactness principle, we obtain a nontrivial
solution of (1).

Notation. 𝐵
𝑟
(𝑎) denotes the open ball of radius 𝑟 and center

𝑎. For a Banach space 𝐸, we denote the dual space of 𝐸 by
𝐸

󸀠 and denote strong and weak convergence in 𝐸 by → and
⇀, respectively. For 𝜑 ∈ 𝐶

1
(𝐸;R), we denote the Fréchet

derivative of 𝜑 at 𝑢 by 𝜑

󸀠
(𝑢). The Gateaux derivative of 𝜑

is denoted by ⟨𝜑

󸀠
(𝑢), V⟩, ∀𝑢, V ∈ 𝐸. 𝐿𝑝(R𝑁

) denotes the
standard 𝐿

𝑝 space (1 ≤ 𝑝 ≤ ∞), and 𝐻

1
(R𝑁

) denotes
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the standard Sobolev space with norm ‖𝑢‖

𝐻
1 = (∫

R𝑁
(|∇𝑢|

2
+

𝑢

2
)𝑑𝑥)

1/2. We use 𝑂(ℎ), 𝑜(ℎ) to mean |𝑂(ℎ)| ≤ 𝐶|ℎ|,
𝑜(ℎ)/|ℎ| → 0.

2. Existence of Approximate Solutions for (1)
Under the assumptions (v), (f1), and (f2), the functional

Φ (𝑢) =

1

2

∫

R𝑁
|∇𝑢|

2
𝑑𝑥 +

1

2

∫

R𝑁
𝑉 (𝑥) 𝑢

2
𝑑𝑥

+ ∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥

(14)

is of class𝐶1 on𝑋 := 𝐻

1
(R𝑁

), and the critical points ofΦ are
weak solutions of (1).

There is a standard variational setting for the quadratic
form ∫

R𝑁
(|∇𝑢|

2
+ 𝑉(𝑥)𝑢

2
)𝑑𝑥. For the reader’s convenience,

we state it here. One can consult [5] or [6] for more details.
Assume that (v) holds, and let 𝑆 = −Δ + 𝑉 be

the self-adjoint operator acting on 𝐿

2
(R𝑁

) with domain
𝐷(𝑆) = 𝐻

2
(R𝑁

). By virtue of (v), we have the orthogonal
decomposition

𝐿

2
= 𝐿

2
(R

𝑁
) = 𝐿

+
+ 𝐿

− (15)

such that 𝑆 is negative (resp., positive) in 𝐿− (resp., in 𝐿+). As
in [5, Section 2] (see also [6, Chapter 6.2]), let 𝑋 = 𝐷(|𝑆|

1/2
)

be equipped with the inner product

(𝑢, V) = (|𝑆|

1/2
𝑢, |𝑆|

1/2V)
𝐿
2

(16)

and norm ‖𝑢‖ = ‖|𝑆|

1/2
𝑢‖

𝐿
2 , where (⋅, ⋅)

𝐿
2 denotes the inner

product of 𝐿2. From (v),

𝑋 = 𝐻

1
(R

𝑁
) (17)

with equivalent norms.Therefore,𝑋 continuously embeds in
𝐿

𝑞
(R𝑁

) for all 2 ≤ 𝑞 ≤ 2𝑁/(𝑁 − 2) if𝑁 ≥ 3 and for all 𝑞 ≥ 2

if𝑁 = 1, 2. In addition, we have the decomposition

𝑋 = 𝑋

+
+ 𝑋

−
, (18)

where 𝑋

±
= 𝑋 ∩ 𝐿

± is orthogonal with respect to both
(⋅, ⋅)

𝐿
2 and (⋅, ⋅). Therefore, for every 𝑢 ∈ 𝑋, there is a unique

decomposition

𝑢 = 𝑢

+
+ 𝑢

−
, 𝑢

±
∈ 𝑋

± (19)

with (𝑢+, 𝑢−) = 0 and

∫

R𝑁
|∇𝑢|

2
𝑑𝑥 + ∫

R𝑁
𝑉 (𝑥) 𝑢

2
𝑑𝑥 =

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

, 𝑢 ∈ 𝑋.

(20)

Moreover,

𝜇

−1

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

𝐿
2 ≤

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

, ∀𝑢 ∈ 𝑋,

(21)

𝜇

1

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

𝐿
2 ≤

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

, ∀𝑢 ∈ 𝑋.

(22)

The functionalΦ defined by (14) can be rewritten as

Φ (𝑢) =

1

2

(

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

) + 𝜓 (𝑢) ,
(23)

where

𝜓 (𝑢) = ∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥. (24)

The above variational setting for the functional (14) is
standard. One can consult [5] or [6] for more details.

Let {𝑒±
𝑘
} be the total orthonormal sequence in𝑋±. Let 𝑃 :

𝑋 → 𝑋

−, 𝑄 : 𝑋 → 𝑋

+ be the orthogonal projections. We
define

|||𝑢||| = max{‖𝑃𝑢‖ ,
∞

∑

𝑘=1

1

2

𝑘+1

󵄨

󵄨

󵄨

󵄨

(𝑄𝑢, 𝑒

+

𝑘
)

󵄨

󵄨

󵄨

󵄨

} (25)

on 𝑋. The topology generated by ||| ⋅ ||| is denoted by 𝜏, and
all topological notation related to it will include this symbol.

Lemma 6. Suppose that (v) holds. Then

(a) maxR𝑁𝑉− ≥ 𝜇

−1
, where 𝜇

−1
is defined in (v);

(b) for any 𝐶 > 𝜇

−1
, there exists 𝑢

0
∈ 𝑋

− with ‖𝑢
0
‖ = 1

such that 𝐶‖𝑢
0
‖

𝐿
2 > 1.

Proof. (a) We apply an indirect argument, and assume by
contradiction that

max
R𝑁

𝑉

−
< 𝜇

−1
. (26)

From assumption (v), −𝜇
−1

is in the essential spectrum of the
operator (with domain𝐷(𝐿) = 𝐻

2
(R𝑁

)):

𝐿 = −Δ + 𝑉 : 𝐿

2
(R

𝑁
) 󳨀→ 𝐿

2
(R

𝑁
) . (27)

Then, by Weyl’s criterion (see, e.g., [25, Theorem VII.12] or
[26, Theorem 7.2]), there exists a sequence {𝑢

𝑛
} ⊂ 𝐻

2
(R𝑁

)

with the properties that ‖𝑢
𝑛
‖

𝐿
2 = 1, ∀𝑛 and ‖ − Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+

𝜇

−1
𝑢

𝑛
‖

𝐿
2 → 0.

Since 𝜇
−1

> maxR𝑁𝑉 , we deduce that −𝑉
−
(𝑥) + 𝜇

−1
> 0

for all 𝑥 ∈ R𝑁. Together with the facts that 𝑉 is a continuous
periodic function and 𝑉 = 𝑉

+
− 𝑉

−
, this implies

inf
𝑥∈R𝑁

(𝑉 (𝑥) + 𝜇

−1
) > 0. (28)

It follows that there exists a constant 𝐶󸀠
> 0 such that

∫

R𝑁
(|∇𝑢|

2
+ (𝑉 (𝑥) + 𝜇

−1
) 𝑢

2
) 𝑑𝑥 ≥ 𝐶

󸀠
‖𝑢‖

2
, ∀𝑢 ∈ 𝑋.

(29)

Note that

∫

R𝑁
(−Δ𝑢

𝑛
+ 𝑉 (𝑥) 𝑢

𝑛
+ 𝜇

−1
𝑢

𝑛
) 𝑢

𝑛
𝑑𝑥

= ∫

R𝑁
(

󵄨

󵄨

󵄨

󵄨

∇𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

2

+ (𝑉 (𝑥) + 𝜇

−1
) 𝑢

2

𝑛
) 𝑑𝑥.

(30)

Together with (29) and the fact that ‖ − Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+

𝜇

−1
𝑢

𝑛
‖

𝐿
2 → 0 and ‖𝑢

𝑛
‖

𝐿
2 = 1, this implies ‖𝑢

𝑛
‖ → 0. It

contradicts ‖𝑢
𝑛
‖

𝐿
2 = 1, ∀𝑛. Therefore, maxR𝑁 𝑉− ≥ 𝜇

−1
.
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(b) It suffices to prove that

𝜇

−1
= 𝐶

−
:= inf {‖𝑢‖2 | 𝑢 ∈ 𝑋−

, ‖𝑢‖𝐿
2 = 1} . (31)

From (21), we deduce that 𝜇
−1

≤ 𝐶

−
. From assumption (v),

−𝜇

−1
is in the essential spectrum of 𝐿. By Weyl’s criterion,

there exists {𝑢
𝑛
} ⊂ 𝐻

2
(R𝑁

) such that ‖𝑢
𝑛
‖

𝐿
2 = 1 and

‖ − Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+ 𝜇

−1
𝑢

𝑛
‖

𝐿
2 → 0. Multiplying −Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+

𝜇

−1
𝑢

𝑛
by 𝑢+

𝑛
and then integrating it intoR𝑁, by (20) and (22),

we get that

(𝜇

1
+ 𝜇

−1
)

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

𝐿
2

≤ ∫

R𝑁
(

󵄨

󵄨

󵄨

󵄨

∇𝑢

+

𝑛

󵄨

󵄨

󵄨

󵄨

2

+ 𝑉 (𝑥) (𝑢

+

𝑛
)

2

+ 𝜇

−1
(𝑢

+

𝑛
)

2

) 𝑑𝑥

= ∫

R𝑁
(−Δ𝑢

𝑛
+ 𝑉 (𝑥) 𝑢

𝑛
+ 𝜇

−1
𝑢

𝑛
) 𝑢

+

𝑛
𝑑𝑥 󳨀→ 0.

(32)

It follows that ‖𝑢−
𝑛
‖

𝐿
2 → 1. Multiplying −Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+ 𝜇

−1
𝑢

𝑛

by 𝑢−
𝑛
and then integrating it intoR𝑁, we get that

−

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+ 𝜇

−1

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

𝐿
2

= ∫

R𝑁
(

󵄨

󵄨

󵄨

󵄨

∇𝑢

−

𝑛

󵄨

󵄨

󵄨

󵄨

2

+ 𝑉 (𝑥) (𝑢

−

𝑛
)

2

+ 𝜇

−1
(𝑢

−

𝑛
)

2

) 𝑑𝑥

= ∫

R𝑁
(−Δ𝑢

𝑛
+ 𝑉𝑢

𝑛
+ 𝜇

−1
𝑢

𝑛
) 𝑢

−

𝑛
𝑑𝑥 󳨀→ 0.

(33)

It implies that 𝜇
−1
≥ 𝐶

−
. This together with 𝜇

−1
≤ 𝐶

−
implies

𝜇

−1
= 𝐶

−
.

Let 𝑅 > 𝑟 > 0 and

𝐴 := inf
𝑥∈R𝑁,|𝑡|≥𝐷

𝑓 (𝑥, 𝑡)

𝑡

. (34)

From assumption (5), we have 𝐴 > maxR𝑁𝑉−. Together with
the result (a) of Lemma 6, this implies that (1/2)(𝐴 + 𝜇

−1
) >

𝜇

−1
. Choose

𝛾 ∈ (𝜇

−1
,

(𝐴 + 𝜇

−1
)

2

) . (35)

Then by the result (b) of Lemma 6, there exists 𝑢
0
∈ 𝑋

− with
‖𝑢

0
‖ = 1 such that

𝛾

󵄩

󵄩

󵄩

󵄩

𝑢

0

󵄩

󵄩

󵄩

󵄩𝐿
2 > 1. (36)

Set

𝑁 = {𝑢 ∈ 𝑋

−
| ‖𝑢‖ = 𝑟} ,

𝑀 = {𝑢 ∈ 𝑋

+
⊕R

+
𝑢

0
| ‖𝑢‖ ≤ 𝑅} .

(37)

Then,𝑀 is a submanifold of𝑋+
⊕R+

𝑢

0
with boundary

𝜕𝑀 = {𝑢 ∈ 𝑋

−
| ‖𝑢‖ ≤ 𝑅}

∪ {𝑢

−
+ 𝑡𝑢

0
| 𝑢

−
∈ 𝑋

−
, 𝑡 > 0,

󵄩

󵄩

󵄩

󵄩

𝑢

−
+ 𝑡𝑢

0

󵄩

󵄩

󵄩

󵄩

= 𝑅} .

(38)

Definition 7. Let 𝜙 ∈ 𝐶

1
(𝑋;R). A sequence {𝑢

𝑛
} ⊂ 𝑋 is called

a Palais-Smale sequence at level 𝑐 ((𝑃𝑆)
𝑐
-sequence for short)

for 𝜙, if 𝜙(𝑢
𝑛
) → 𝑐 and ‖𝜙󸀠(𝑢

𝑛
)‖

𝑋
󸀠 → 0 as 𝑛 → ∞.

The following proposition is proved in [17] (see [17,
Theorem 2.1]).

Proposition 8. Let 0 < 𝐾 < 1. The family of 𝐶1-functional
{𝐻

𝜆
} has the form

𝐻

𝜆
(𝑢) = 𝜆𝐼 (𝑢) − 𝐽 (𝑢) , 𝑢 ∈ 𝑋, 𝜆 ∈ [𝐾, 1] . (39)

Assume

(a) 𝐽(𝑢) ≥ 0, ∀𝑢 ∈ 𝑋;
(b) |𝐼(𝑢)| + 𝐽(𝑢) → +∞ as ‖𝑢‖ → +∞;
(c) for all 𝜆 ∈ [𝐾, 1],𝐻

𝜆
is 𝜏-sequentially upper semicon-

tinuous; that is, if |||𝑢
𝑛
− 𝑢||| → 0, then

lim sup
𝑛→∞

𝐻

𝜆
(𝑢

𝑛
) ≤ 𝐻

𝜆
(𝑢) , (40)

and 𝐻

󸀠

𝜆
is weakly sequentially continuous. Moreover,

𝐻

𝜆
maps bounded sets to bounded sets;

(d) there exist 𝑢
0
∈ 𝑋

−
\ {0} with ‖𝑢

0
‖ = 1 and 𝑅 > 𝑟 > 0

such that, for all 𝜆 ∈ [𝐾, 1],

inf
𝑁

𝐻

𝜆
> sup

𝜕𝑀

𝐻

𝜆
. (41)

Then there exists 𝐸 ⊂ [𝐾, 1] such that the Lebesgue measure
of [𝐾, 1] \ 𝐸 is zero and, for every 𝜆 ∈ 𝐸, there exist 𝑐

𝜆
and a

bounded (𝑃𝑆)
𝑐𝜆
-sequence for𝐻

𝜆
, where 𝑐

𝜆
satisfies

sup
𝑀

𝐻

𝜆
≥ 𝑐

𝜆
≥ inf

𝑁

𝐻

𝜆
. (42)

For 0 < 𝐾 < 1 and 𝜆 ∈ [𝐾, 1], let

Ψ

𝜆
(𝑢) =

𝜆

2

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2
𝑑𝑥

− (

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉

+
(𝑥) 𝑢

2
) 𝑑𝑥 + 𝜓 (𝑢)) , 𝑢 ∈ 𝑋.

(43)

Then

Ψ

1
= −Φ (44)

and it is easy to verify that a critical point 𝑢 of Ψ
𝜆
is a weak

solution of

−Δ𝑢 + 𝑉

𝜆
(𝑥) 𝑢 + 𝑓 (𝑥, 𝑢) = 0, 𝑢 ∈ 𝑋, (45)

where

𝑉

𝜆
= 𝑉

+
− 𝜆𝑉

−
. (46)

Lemma 9. Suppose that (v) and (f1)–(f3) hold. Then, there
exist 0 < 𝐾

∗
< 1 and 𝐸 ⊂ [𝐾

∗
, 1] such that the Lebesgue

measure of [𝐾
∗
, 1] \ 𝐸 is zero and, for every 𝜆 ∈ 𝐸, there exist

𝑐

𝜆
and a bounded (𝑃𝑆)

𝑐𝜆
-sequence for Ψ

𝜆
, where 𝑐

𝜆
satisfies

+∞ > sup
𝜆∈𝐸

𝑐

𝜆
≥ inf

𝜆∈𝐸

𝑐

𝜆
> 0. (47)
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Proof. For 𝑢 ∈ 𝑋, let

𝐼 (𝑢) =

1

2

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2
𝑑𝑥,

𝐽 (𝑢) =

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉

+
(𝑥) 𝑢

2
) 𝑑𝑥 + 𝜓 (𝑢) .

(48)

Then, 𝐼 and 𝐽 satisfy assumptions (a) and (b) in Proposition 8,
and, by (43), Ψ

𝜆
(𝑢) = 𝜆𝐼(𝑢) − 𝐽(𝑢).

From (43) and (20), for any 𝑢 ∈ 𝑋 and 𝜆 ∈ [𝐾, 1], we have

Ψ

𝜆
(𝑢) =

𝜆 − 1

2

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2
𝑑𝑥

− (

1

2

∫

R𝑁
(|∇𝑢|

2
+ 𝑉 (𝑥) 𝑢

2
) 𝑑𝑥 +∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥)

=

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

1 − 𝜆

2

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2
𝑑𝑥 − ∫

R𝑁
𝐹 (𝑥, 𝑢) 𝑑𝑥.

(49)

Let 𝑢
∗
∈ 𝑋 and {𝑢

𝑛
} ⊂ 𝑋 be such that |||𝑢

𝑛
− 𝑢

∗
||| → 0. It

follows that 𝑢−
𝑛
→ 𝑢

−

∗
, 𝑢+

𝑛
⇀ 𝑢

+

∗
, and 𝑢

𝑛
⇀ 𝑢

∗
. In addition,

up to a subsequence, we can assume that 𝑢
𝑛
→ 𝑢

∗
a.e. inR𝑁.

Then, we have

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

󳨀→

󵄩

󵄩

󵄩

󵄩

𝑢

−

∗

󵄩

󵄩

󵄩

󵄩

2

,

(50)

lim inf
𝑛→∞

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2

𝑛
𝑑𝑥

≥ ∫

R𝑁
𝑉

−
(𝑥) 𝑢

2

∗
𝑑𝑥 (by Fatou,s lemma) ,

lim inf
𝑛→∞

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

≥

󵄩

󵄩

󵄩

󵄩

𝑢

+

∗

󵄩

󵄩

󵄩

󵄩

2

.

(51)

By Remark 1, 𝐹(𝑥, 𝑡) ≥ 0 for all 𝑥 and 𝑡. This together with
Fatou’s lemma implies

lim inf
𝑛→∞

∫

R𝑁
𝐹 (𝑥, 𝑢

𝑛
) 𝑑𝑥 ≥ ∫

R𝑁
𝐹 (𝑥, 𝑢

∗
) 𝑑𝑥. (52)

Then, by (49), we obtain

lim sup
𝑛→∞

Ψ

𝜆
(𝑢

𝑛
) ≤ Ψ

𝜆
(𝑢

∗
) . (53)

This implies that Ψ
𝜆
is 𝜏-sequentially upper semicontinuous.

If 𝑢
𝑛
⇀ 𝑢

∗
in𝑋, then, for any fixed 𝜑 ∈ 𝑋, as 𝑛 → ∞,

⟨−Ψ

󸀠

𝜆
(𝑢

𝑛
) , 𝜑⟩

= ∫

R𝑁
(∇𝑢

𝑛
∇𝜑 + 𝑉

𝜆
𝑢

𝑛
𝜑) 𝑑𝑥 + ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝜑𝑑𝑥

󳨀→ ∫

R𝑁
(∇𝑢

∗
∇𝜑 + 𝑉

𝜆
𝑢

∗
𝜑) 𝑑𝑥 + ∫

R𝑁
𝑓 (𝑥, 𝑢

∗
) 𝜑𝑑𝑥

= ⟨−Ψ

󸀠

𝜆
(𝑢

∗
) , 𝜑⟩ .

(54)

This implies thatΨ󸀠

𝜆
is weakly sequentially continuous.More-

over, it is easy to see that Ψ
𝜆
maps bounded sets to bounded

sets. Therefore, Ψ
𝜆
satisfies assumption (c) in Proposition 8.

Finally, we will verify assumption (d) in Proposition 8 for
Ψ

𝜆
.
From assumption (f1) and 𝑓(𝑥, 𝑡)/𝑡 → 0 as 𝑡 → 0

uniformly for 𝑥 ∈ R𝑁, we deduce that, for any 𝜖 > 0, there
exists 𝐶

𝜖
> 0 such that

𝐹 (𝑥, 𝑡) ≤ 𝜖𝑡

2
+ 𝐶

𝜖|
𝑡|

𝑝
, ∀ (𝑥, 𝑡) ∈ R

𝑁
×R. (55)

From (49) and (55), we have, for 𝑢 ∈ 𝑁,

Ψ

𝜆
(𝑢) ≥

1

2

‖𝑢‖

2
−

1 − 𝜆

2

∫

R𝑁
𝑉

−
(𝑥) 𝑢

2
𝑑𝑥

− 𝜖∫

R𝑁
𝑢

2
𝑑𝑥 − 𝐶

𝜖
∫

R𝑁
|𝑢|

𝑝
𝑑𝑥.

(56)

Then by the Sobolev inequality ‖𝑢‖
𝐿
𝑝
(R𝑁) ≤ 𝐶‖𝑢‖ and ‖𝑢‖

𝐿
2 ≤

𝐶‖𝑢‖ (by (21) and (22)), we deduce that there exists a constant
𝐶 > 0 such that

Ψ

𝜆
(𝑢) ≥

1

2

‖𝑢‖

2
− 𝐶 (1 − 𝜆)max

R𝑁
𝑉

−
(𝑥) ‖𝑢‖

2

− 𝜖𝐶‖𝑢‖

2
− 𝐶𝐶

𝜖‖
𝑢‖

𝑝
.

(57)

Choose 0 < 𝐾

∗
< 1 and 𝜖 > 0 such that 𝐶(1 − 𝐾

∗
)

maxR𝑁𝑉−(𝑥) < 1/4 and𝐶
𝜖
= 1/8.Then, for every 𝜆 ∈ [𝐾

∗
, 1],

we have

Ψ

𝜆
(𝑢) ≥

1

8

‖𝑢‖

2
− 𝐶𝐶

𝜖‖
𝑢‖

𝑝
.

(58)

Let 𝑟 > 0 be such that 𝑟𝑝−2𝐶𝐶
𝜖
= 1/16 and 𝛽 = 𝑟

2
/16. Then,

from (58), we deduce that, for𝑁 = {𝑢 ∈ 𝑋

−
| ‖𝑢‖ = 𝑟},

inf
𝑁

Ψ

𝜆
≥ 𝛽, ∀𝜆 ∈ [𝐾

∗
, 1] . (59)

We will prove that sup
𝐾∗≤𝜆≤1

Ψ

𝜆
(𝑢) → −∞ as ‖𝑢‖ → ∞

and 𝑢 ∈ 𝑋

+
⊕ R+

𝑢

0
. Arguing indirectly, assume that, for

some sequences 𝜆
𝑛
∈ [𝐾

∗
, 1] and 𝑢

𝑛
∈ 𝑋

+
⊕ R+

𝑢

0
with

‖𝑢

𝑛
‖ → +∞, there isL > 0 such that Ψ

𝜆𝑛
(𝑢

𝑛
) ≥ −L for all

𝑛. Then, setting𝑤
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖, we have ‖𝑤

𝑛
‖ = 1, and, up to a

subsequence,𝑤
𝑛
⇀ 𝑤,𝑤−

𝑛
→ 𝑤

−
∈ 𝑋

− and𝑤+

𝑛
⇀ 𝑤

+
∈ 𝑋

+.
First, we consider the case 𝑤 ̸= 0. Dividing both sides of

(49) by ‖𝑢
𝑛
‖

2, we get that

−

L
󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
≤

Ψ

𝜆𝑛
(𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

=

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1 − 𝜆

𝑛

2

∫

R𝑁
𝑉

−
(𝑥)𝑤

2

𝑛
𝑑𝑥 − ∫

R𝑁

𝐹 (𝑥, 𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
𝑑𝑥.

(60)

From (5) and the result (a) of Lemma 6, we deduce that

lim inf
|𝑡|→∞

𝐹 (𝑥, 𝑡)

𝑡

2
≥

𝐴

2

>

1

2

max
R𝑁

𝑉

−
≥

1

2

𝜇

−1
, (61)
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where 𝐴 is defined by (34). Note that, for 𝑥 ∈ {𝑥 ∈ R𝑁
|

𝑤 ̸= 0}, we have |𝑢
𝑛
(𝑥)| → +∞. This implies that, when 𝑛 is

large enough,

∫

{𝑥∈R𝑁|𝑤 ̸= 0}

𝐹 (𝑥, 𝑢

𝑛
)

𝑢

2

𝑛

𝑤

2

𝑛
𝑑𝑥 ≥

𝐴 + 𝜇

−1

4

∫

{𝑥∈R𝑁|𝑤 ̸= 0}

𝑤

2

𝑛
𝑑𝑥.

(62)

By (10), we have, when 𝑛 is large enough,

∫

R𝑁

𝐹 (𝑥, 𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
𝑑𝑥 = ∫

R𝑁

𝐹 (𝑥, 𝑢

𝑛
)

𝑢

2

𝑛

𝑤

2

𝑛
𝑑𝑥

≥ ∫

{𝑥∈R𝑁|𝑤 ̸= 0}

𝐹 (𝑥, 𝑢

𝑛
)

𝑢

2

𝑛

𝑤

2

𝑛
𝑑𝑥.

(63)

Combining the above two inequalities yields

lim inf
𝑛→∞

(

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1 − 𝜆

𝑛

2

∫

R𝑁
𝑉

−
(𝑥) 𝑤

2

𝑛
𝑑𝑥 −∫

R𝑁

𝐹 (𝑥, 𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
𝑑𝑥)

≤ lim inf
𝑛→∞

(

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

𝐴 + 𝜇

−1

4

∫

{𝑥∈R𝑁|𝑤 ̸= 0}

𝑤

2

𝑛
𝑑𝑥)

≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+󵄩
󵄩

󵄩

󵄩

2

−

𝐴 + 𝜇

−1

4

∫

R𝑁
𝑤

2
𝑑𝑥

≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+󵄩
󵄩

󵄩

󵄩

2

−

𝐴 + 𝜇

−1

4

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

𝐿
2 .

(64)

We used the inequalities

lim
𝑛→∞

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

=

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

,

lim inf
𝑛→∞

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

≥

󵄩

󵄩

󵄩

󵄩

𝑤

+󵄩
󵄩

󵄩

󵄩

2

,

lim inf
𝑛→∞

∫

{𝑥∈R𝑁|𝑤 ̸= 0}

𝑤

2

𝑛
𝑑𝑥 ≥ ∫

R𝑁
𝑤

2
𝑑𝑥

(65)

in the second inequality of (64).
Since 𝑤−

= 𝑡𝑢

0
for some 𝑡 ∈ R, by (36), we get that

𝐴 + 𝜇

−1

4

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

𝐿
2 ≥

𝐴 + 𝜇

−1

4𝛾

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

. (66)

Note that, by the choice of 𝛾 (see (35)), we have ((𝐴 +

𝜇

−1
)/4𝛾) > 1/2. Then by (64) and the fact that𝑤 ̸= 0, we have

that

lim inf
𝑛→∞

(

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

−

1 − 𝜆

𝑛

2

∫

R𝑁
𝑉

−
(𝑥)𝑤

2

𝑛
𝑑𝑥 − ∫

R𝑁

𝐹 (𝑥, 𝑢

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2
𝑑𝑥)

≤ −(

𝐴 + 𝜇

−1

4𝛾

−

1

2

)

󵄩

󵄩

󵄩

󵄩

𝑤

−󵄩
󵄩

󵄩

󵄩

2

−

1

2

󵄩

󵄩

󵄩

󵄩

𝑤

+󵄩
󵄩

󵄩

󵄩

2

< 0.

(67)

It contradicts (60), since −L/‖𝑢

𝑛
‖

2
→ 0 as 𝑛 → ∞.

Second, we consider the case 𝑤 = 0. In this case,
lim

𝑛→∞
‖𝑤

−

𝑛
‖ = 0. It follows that

lim inf
𝑛→∞

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛

󵄩

󵄩

󵄩

󵄩

≥ 1, (68)

since ‖𝑤
𝑛
‖ = 1 and 𝑤

𝑛
= 𝑤

+

𝑛
+ 𝑤

−

𝑛
. Therefore, the right hand

side of (60) is less than−1/4when 𝑛 is large enough.However,
as 𝑛 → ∞, the left hand side of (60) converges to zero. It
induces a contradiction.

Therefore, there exists 𝑅 > 𝑟 such that

sup
𝜆∈[𝐾∗ ,1]

sup
𝜕𝑀

Ψ

𝜆
≤ 0. (69)

This implies thatΨ
𝜆
satisfies assumption (d) in Proposition 8

if 𝜆 ∈ [𝐾
∗
, 1]. Finally, it is easy to see that

sup
𝜆∈[𝐾∗ ,1]

sup
𝑀

Ψ

𝜆
< +∞. (70)

Then, the results of this lemma follow immediately from
Proposition 8.

Lemma10. Suppose that (v) and (f1)–(f3) are satisfied. Let𝜆 ∈

[𝐾

∗
, 1] be fixed, where 𝐾

∗
is the constant in Lemma 9. If {V

𝑛
}

is a bounded (𝑃𝑆)
𝑐
-sequence for Ψ

𝜆
with 𝑐 ̸= 0, then, for every

𝑛 ∈ N, there exists 𝑎
𝑛
∈ Z𝑁 such that, up to a subsequence,

𝑢

𝑛
:= V

𝑛
(⋅ + 𝑎

𝑛
) satisfies

𝑢

𝑛
⇀ 𝑢

𝜆
̸= 0, Ψ

𝜆
(𝑢

𝜆
) ≤ 𝑐, Ψ

󸀠

𝜆
(𝑢

𝜆
) = 0.

(71)

Proof. The proof of this lemma is inspired by the proof of
Lemma 3.7 in [19]. Because {V

𝑛
} is a bounded sequence in𝑋,

up to a subsequence, either

(a) lim
𝑛→∞

sup
𝑦∈R𝑁 ∫𝐵1(𝑦)

|V
𝑛
|

2
𝑑𝑥 = 0 or

(b) there exist 󰜚 > 0 and 𝑎

𝑛
∈ Z𝑁 such that

∫

𝐵1(𝑎𝑛)
|V
𝑛
|

2
𝑑𝑥 ≥ 󰜚.

If (a) occurs, using the Lions lemma (see, e.g., [21, Lemma
1.21]), a similar argument as for the proof of [19, Lemma 3.6]
shows that

lim
𝑛→∞

∫

R𝑁
𝐹 (𝑥, V

𝑛
) 𝑑𝑥 = 0, lim

𝑛→∞
∫

R𝑁
𝑓 (𝑥, V

𝑛
) V±

𝑛
𝑑𝑥 = 0.

(72)
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It follows that

lim
𝑛→∞

∫

R𝑁
(2𝐹 (𝑥, V

𝑛
) − 𝑓 (𝑥, V

𝑛
) V

𝑛
) 𝑑𝑥 = 0. (73)

On the other hand, as {V
𝑛
} is a (𝑃𝑆)

𝑐
-sequence ofΨ

𝜆
, we have

⟨Ψ

󸀠

𝜆
(V
𝑛
), V

𝑛
⟩ → 0 and Ψ

𝜆
(V
𝑛
) → 𝑐 ̸= 0. It follows that

∫

R𝑁
(𝑓 (𝑥, V

𝑛
) V

𝑛
− 2𝐹 (𝑥, V

𝑛
)) 𝑑𝑥

= 2Ψ

𝜆
(V

𝑛
) − ⟨Ψ

󸀠

𝜆
(V

𝑛
) , V

𝑛
⟩ 󳨀→ 2𝑐 ̸= 0, 𝑛 󳨀→ ∞.

(74)

This contradicts (73). Therefore, case (a) cannot occur.
If case (b) occurs, let 𝑢

𝑛
= V

𝑛
(⋅ + 𝑎

𝑛
). For every 𝑛,

∫

𝐵1(0)

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 ≥ 󰜚. (75)

Because 𝑉 and 𝐹(𝑥, 𝑡) are 1-periodic in every 𝑥
𝑗
, {𝑢

𝑛
} is still

bounded in𝑋,

lim
𝑛→∞

Ψ

𝜆
(𝑢

𝑛
) ≤ 𝑐, Ψ

󸀠

𝜆
(𝑢

𝑛
) ⇀ 0, 𝑛 󳨀→ ∞. (76)

Up to a subsequence, we assume that 𝑢
𝑛

⇀ 𝑢

𝜆
in 𝑋 as

𝑛 → ∞. Since𝑢
𝑛
→ 𝑢

𝜆
in𝐿2loc(R

𝑁
), it follows from (75) that

𝑢

𝜆
̸= 0. Recall that Ψ󸀠

𝜆
(𝑢

𝑛
) is weakly sequentially continuous.

Therefore, Ψ󸀠

𝜆
(𝑢

𝑛
) ⇀ Ψ

󸀠

𝜆
(𝑢

𝜆
) and, by (76), Ψ󸀠

𝜆
(𝑢

𝜆
) = 0.

Finally, by (f3) and Fatou’s lemma

𝑐 = lim
𝑛→∞

(Ψ

𝜆
(𝑢

𝑛
) −

1

2

⟨Ψ

󸀠

𝜆
(𝑢

𝑛
) , 𝑢

𝑛
⟩)

= lim
𝑛→∞

∫

R𝑁
̃

𝐹 (𝑥, 𝑢

𝑛
) ≥ ∫

R𝑁
̃

𝐹 (𝑥, 𝑢

𝜆
) = Ψ

𝜆
(𝑢

𝜆
) .

(77)

Lemma 11. There exist 0 < 𝐾

∗∗
< 1 and 𝜂 > 0 such that, for

any 𝜆 ∈ [𝐾
∗∗
, 1], if 𝑢 ̸= 0 satisfies Ψ󸀠

𝜆
(𝑢) = 0, then ‖𝑢‖ ≥ 𝜂.

Proof. We adapt the arguments of Yang [23, p. 2626] and Liu
[12, Lemma 2.2]. Note that, by (f1) and (f2), for any 𝜖 > 0,
there exists 𝐶

𝜖
> 0 such that

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝜖 |𝑡| + 𝐶

𝜖|
𝑡|

𝑝−1
.

(78)

Let 𝑢 ̸= 0 be a critical point of Ψ
𝜆
. Then 𝑢 is a solution of

−Δ𝑢 + 𝑉

𝜆
𝑢 + 𝑓 (𝑥, 𝑢) = 0, 𝑢 ∈ 𝑋. (79)

Multiplying both sides of this equation by 𝑢±, respectively,
and then integrating into R𝑁, we get that

0 = ±

󵄩

󵄩

󵄩

󵄩

𝑢

±󵄩
󵄩

󵄩

󵄩

2

+ (1 − 𝜆)∫

R𝑁
𝑉

−
(𝑥) 𝑢

𝑛
𝑢

±
𝑑𝑥

+ ∫

R𝑁
𝑓 (𝑥, 𝑢) 𝑢

±
𝑑𝑥.

(80)

It follows that

󵄩

󵄩

󵄩

󵄩

𝑢

±󵄩
󵄩

󵄩

󵄩

2

= ∓ (1 − 𝜆)∫

R𝑁
𝑉

−
(𝑥) 𝑢𝑢

±
𝑑𝑥 ∓ ∫

R𝑁
𝑓 (𝑥, 𝑢) 𝑢

±
𝑑𝑥

≤ (1 − 𝜆) sup
R𝑁

𝑉

−
∫

R𝑁
|𝑢| ⋅

󵄨

󵄨

󵄨

󵄨

𝑢

±󵄨
󵄨

󵄨

󵄨

𝑑𝑥

+ 𝜖∫

R𝑁
|𝑢| ⋅

󵄨

󵄨

󵄨

󵄨

𝑢

±󵄨
󵄨

󵄨

󵄨

𝑑𝑥 + 𝐶

𝜖
∫

R𝑁
|𝑢|

𝑝−1 󵄨
󵄨

󵄨

󵄨

𝑢

±󵄨
󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶

1
((1 − 𝜆) + 𝜖) ‖𝑢‖ ⋅

󵄩

󵄩

󵄩

󵄩

𝑢

±󵄩
󵄩

󵄩

󵄩

+ 𝐶

2‖
𝑢‖

𝑝−1 󵄩
󵄩

󵄩

󵄩

𝑢

±󵄩
󵄩

󵄩

󵄩

,

(81)

where 𝐶
1
and 𝐶

2
are positive constants related to the Sobolev

inequalities and supR𝑁𝑉−. From the above two inequalities,
we obtain

‖𝑢‖

2
=

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

≤ 2𝐶

1
((1 − 𝜆) + 𝜖) ‖𝑢‖

2
+ 2𝐶

2‖
𝑢‖

𝑝
.

(82)

Because 𝑝 > 2, this implies that ‖𝑢‖ ≥ 𝜂 for some 𝜂 > 0 if
𝜖 > 0 and 1−𝐾

∗∗
> 0 are small enough and 𝜆 ∈ [𝐾

∗∗
, 1]. The

desired result follows.

Let 𝐾 = max{𝐾
∗
, 𝐾

∗∗
}, where 𝐾

∗
and 𝐾

∗∗
are the

constants that appeared in Lemmas 9 and 11, respectively.
Combining Lemmas 9–11, we obtain the following lemma.

Lemma 12. Suppose (v) and (f1)–(f3) are satisfied.Then, there
exist 𝜂 > 0, {𝜆

𝑛
} ⊂ [𝐾, 1], and {𝑢

𝑛
} ⊂ 𝑋 such that 𝜆

𝑛
→ 1,

sup
𝑛

Ψ

𝜆𝑛
(𝑢

𝑛
) < +∞,

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

≥ 𝜂, Ψ

󸀠

𝜆𝑛
(𝑢

𝑛
) = 0. (83)

3. A Priori Bound of Approximate Solutions
and Proof of the Main Theorem

In this section, we give a priori bound for the sequence of
approximate solutions {𝑢

𝑛
} obtained in Lemma 12. We then

give the proofs of Theorem 3.

Lemma 13. Suppose (v) and (f1)–(f3) are satisfied. Let {𝑢𝑛} be
the sequence obtained in Lemma 12.Then, {𝑢

𝑛
} ⊂ 𝐿

∞
(R𝑁

) and

sup
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩𝐿
∞
(R𝑁)

≤ 𝐷. (84)

Proof. FromΨ

󸀠

𝜆𝑛
(𝑢

𝑛
) = 0, we deduce that𝑢

𝑛
is aweak solution

of (45) with 𝜆 = 𝜆

𝑛
; that is,

−Δ𝑢

𝑛
+ 𝑉

𝜆𝑛
(𝑥) 𝑢

𝑛
+ 𝑓 (𝑥, 𝑢

𝑛
) = 0 in R

𝑁
. (85)

By assumption (f1) and the bootstrap argument of elliptic
equations, we deduce that 𝑢

𝑛
∈ 𝐿

∞
(R𝑁

).
Multiplying both sides of (85) by V

𝑛
= (𝑢

𝑛
− 𝐷)

+
:=

max{𝑢
𝑛
− 𝐷, 0} and integrating into R𝑁, we get that

∫

R𝑁

󵄨

󵄨

󵄨

󵄨

∇V
𝑛

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑥 + ∫

𝑢𝑛≥𝐷

(𝑉

𝜆𝑛
(𝑥) 𝑢

𝑛
+ 𝑓 (𝑥, 𝑢

𝑛
)) V

𝑛
𝑑𝑥 = 0.

(86)
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Recall that 𝑉
𝜆𝑛

= 𝑉

+
− 𝜆

𝑛
𝑉

−
and 𝜆

𝑛
≤ 1. Then by (5), we get

that

∫

𝑢𝑛≥𝐷

(𝑉

𝜆𝑛
(𝑥) 𝑢

𝑛
+ 𝑓 (𝑥, 𝑢

𝑛
)) V

𝑛
𝑑𝑥

= ∫

𝑢𝑛≥𝐷

(𝑉

𝜆𝑛
(𝑥) +

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

)𝑢

𝑛
V
𝑛
𝑑𝑥 ≥ 0.

(87)

This together with (86) yields V
𝑛
= 0. It follows that 𝑢

𝑛
(𝑥) ≤ 𝐷

on R𝑁.
Similarly, multiplying both sides of (85) by 𝑤

𝑛
= (𝑢

𝑛
+

𝐷)

−
:= max{−(𝑢

𝑛
+𝐷), 0} and integrating intoR𝑁, we can get

that 𝑢
𝑛
≥ −𝐷 onR𝑁.Therefore, for all 𝑛, ‖𝑢

𝑛
‖

𝐿
∞
(R𝑁) ≤ 𝐷.

Lemma 14. Suppose that (v), (f1), (f2), (f3), and (f4) are
satisfied. Let {𝑢

𝑛
} be the sequence obtained in Lemma 12. Then

0 < inf
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

≤ sup
𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

< +∞. (88)

Proof. As Ψ󸀠

𝜆𝑛
(𝑢

𝑛
) = 0 and 𝑢

𝑛
̸= 0, Lemma 11 implies that

inf
𝑛
‖𝑢

𝑛
‖ > 0.

To prove sup
𝑛
‖𝑢

𝑛
‖ < +∞, we apply an indirect argument

and assume by contradiction that ‖𝑢
𝑛
‖ → +∞.

Since Ψ󸀠

𝜆𝑛
(𝑢

𝑛
) = 0, by (81), we get that

󵄩

󵄩

󵄩

󵄩

𝑢

±

𝑛

󵄩

󵄩

󵄩

󵄩

2

= ∓ (1 − 𝜆

𝑛
) ∫

R𝑁
𝑉

−
(𝑥) 𝑢

𝑛
𝑢

±

𝑛
𝑑𝑥 ∓ ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢

±

𝑛
𝑑𝑥

= ∓ ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢

±

𝑛
𝑑𝑥 + (1 − 𝜆

𝑛
) 𝑂 (

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

) .

(89)

It follows that

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

+ ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

=

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+ ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) (𝑢

+

𝑛
− 𝑢

−

𝑛
) 𝑑𝑥

= (1 − 𝜆

𝑛
) 𝑂 (

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

) .

(90)

Set 𝑤
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖. Then, by (90),

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

(1 + ∫

R𝑁

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛
𝑑𝑥)

= (1 − 𝜆

𝑛
) 𝑂 (

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

) .

(91)

Then, by 𝜆
𝑛
→ 1 as 𝑛 → ∞, we have that

∫

R𝑁

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛
𝑑𝑥 󳨀→ −1, 𝑛 󳨀→ ∞.

(92)

From Lemma 12,

𝐶

0
:= sup

𝑛

Ψ

𝜆𝑛
(𝑢

𝑛
) < +∞. (93)

Then, by Ψ󸀠

𝜆𝑛
(𝑢

𝑛
) = 0, we obtain

2𝐶

0
≥ 2Ψ

𝜆𝑛
(𝑢

𝑛
) − ⟨Ψ

󸀠

𝜆𝑛
(𝑢

𝑛
) , 𝑢

𝑛
⟩ = 2∫

R𝑁
̃

𝐹 (𝑥, 𝑢

𝑛
) 𝑑𝑥.

(94)

From (f3), we have

2𝐶

0
≥ 2∫

R𝑁
̃

𝐹 (𝑥, 𝑢

𝑛
) 𝑑𝑥 ≥ 2∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

̃

𝐹 (𝑥, 𝑢

𝑛
) 𝑑𝑥,

(95)

where 𝜅 is the constant in (f4). As the continuous function
̃

𝐹 is 1-periodic in every 𝑥
𝑗
variable, we deduce from (8) that

there exists a constant 𝐶󸀠
> 0 such that

̃

𝐹 (𝑥, 𝑡) ≥ 𝐶

󸀠
𝑡

2
,

for every (𝑥, 𝑡) ∈ R
𝑁
×R with 𝜅 ≤ |𝑡| ≤ 𝐷.

(96)

Combining (95) and (96) leads to

𝐶

0
≥ 𝐶

󸀠
∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

𝑢

2

𝑛
𝑑𝑥. (97)

Dividing both sides of this inequality by ‖𝑢
𝑛
‖

2 and sending
𝑛 → ∞, we obtain

lim
𝑛→∞

∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

𝑤

2

𝑛
𝑑𝑥 = 0. (98)

From (7), (21), and (22), we have that

∫

{𝑥||𝑢𝑛(𝑥)|<𝜅}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ ]∫
{𝑥||𝑢𝑛(𝑥)|<𝜅}

󵄨

󵄨

󵄨

󵄨

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ ]∫
R𝑁

󵄨

󵄨

󵄨

󵄨

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ ]󵄩󵄩
󵄩

󵄩

𝑤

𝑛

󵄩

󵄩

󵄩

󵄩

2

𝐿
2 ≤

]
𝜇

0

󵄩

󵄩

󵄩

󵄩

𝑤

𝑛

󵄩

󵄩

󵄩

󵄩

2

=

]
𝜇

0

< 1,

(99)

where 𝜇
0
is the constant defined in (v).

Since𝑓 ∈ 𝐶(R𝑁
×R) and lim

𝑡→0
𝑓(𝑥, 𝑡)/𝑡 = 0, we deduce

that there exists 𝐶 > 0 such that, for every (𝑥, 𝑡) ∈ R𝑁
× R

with |𝑡| ≤ 𝐷,
󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑡)

󵄨

󵄨

󵄨

󵄨

≤ 𝐶 |𝑡| . (100)

This together with (98) gives

∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

󵄨

󵄨

󵄨

󵄨

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ 𝐶

󵄩

󵄩

󵄩

󵄩

𝑤

+

𝑛
− 𝑤

−

𝑛

󵄩

󵄩

󵄩

󵄩𝐿
2(∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

𝑤

2

𝑛
𝑑𝑥)

1/2

≤ 2𝐶

󵄩

󵄩

󵄩

󵄩

𝑤

𝑛

󵄩

󵄩

󵄩

󵄩𝐿
2(∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

𝑤

2

𝑛
𝑑𝑥)

1/2

󳨀→ 0, 𝑛 󳨀→ ∞.

(101)
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Combining (99) and (101) yields

lim sup
𝑛→∞

∫

R𝑁

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

≤ lim sup
𝑛→∞

∫

{𝑥||𝑢𝑛(𝑥)|<𝜅}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥

+ lim sup
𝑛→∞

∫

{𝑥|𝐷≥|𝑢𝑛(𝑥)|≥𝜅}

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑥, 𝑢

𝑛
)

𝑢

𝑛

(𝑤

+

𝑛
− 𝑤

−

𝑛
) 𝑤

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

𝑑𝑥 < 1.

(102)

This contradicts (92). Therefore, {𝑢
𝑛
} is bounded in𝑋.

Proof of Theorem 3. Let {𝑢
𝑛
} be the sequence obtained in

Lemma 12. From Lemma 14, {𝑢
𝑛
} is bounded in𝑋. Therefore,

up to a subsequence, either

(a) lim
𝑛→∞

sup
𝑦∈R𝑁 ∫𝐵1(𝑦)

|𝑢

𝑛
|

2
𝑑𝑥 = 0 or

(b) there exist 󰜚 > 0 and 𝑦

𝑛
∈ Z𝑁 such that

∫

𝐵1(𝑦𝑛)
|𝑢

𝑛
|

2
𝑑𝑥 ≥ 󰜚.

According to (72), if case (a) occurs,

lim
𝑛→∞

∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢

±

𝑛
𝑑𝑥 = 0. (103)

Then, by (81) and 𝜆
𝑛
→ 1, we have

󵄩

󵄩

󵄩

󵄩

𝑢

±

𝑛

󵄩

󵄩

󵄩

󵄩

2

= ∓ (1 − 𝜆

𝑛
) ∫

R𝑁
𝑉

−
(𝑥) 𝑢

𝑛
𝑢

±

𝑛
𝑑𝑥

∓ ∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢

±

𝑛
𝑑𝑥

≤ 𝐶 (1 − 𝜆

𝑛
)

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

𝐿
2 +

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

∫

R𝑁
𝑓 (𝑥, 𝑢

𝑛
) 𝑢

±

𝑛
𝑑𝑥

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󵄨

󳨀→ 0.

(104)

This contradicts inf
𝑛
‖𝑢

𝑛
‖ > 0 (see (88)). Therefore, case (a)

cannot occur. As case (b) therefore occurs, 𝑤
𝑛
= 𝑢

𝑛
(⋅ + 𝑦

𝑛
)

satisfies 𝑤
𝑛
⇀ 𝑢

0
̸= 0. From (14) and (43), we have that

Ψ

𝜆
(𝑢) = −Φ (𝑢) +

𝜆 − 1

2

∫

R𝑁
𝑉

−
𝑢

2
𝑑𝑥, ∀𝑢 ∈ 𝑋. (105)

It follows that

⟨Ψ

󸀠

𝜆
(𝑢) , 𝜑⟩ = −⟨Φ

󸀠
(𝑢) , 𝜑⟩ + (𝜆 − 1) ∫

R𝑁
𝑉

−
𝑢𝜑𝑑𝑥,

∀𝑢, 𝜑 ∈ 𝑋.

(106)

By Ψ󸀠

𝜆𝑛
(𝑢

𝑛
) = 0 (see Lemma 12), we have Ψ󸀠

𝜆𝑛
(𝑤

𝑛
) = 0. From

(106), we have that, for any 𝜑 ∈ 𝑋,

⟨Ψ

󸀠

𝜆𝑛
(𝑤

𝑛
) , 𝜑⟩ = − ⟨Φ

󸀠
(𝑤

𝑛
) , 𝜑⟩ + (𝜆

𝑛
− 1)

× ∫

R𝑁
𝑉

−
(𝑥) 𝑤

𝑛
𝜑𝑑𝑥.

(107)

Together with Ψ󸀠

𝜆𝑛
(𝑤

𝑛
) = 0 and 𝜆

𝑛
→ 1, this yields

⟨Φ

󸀠
(𝑤

𝑛
) , 𝜑⟩ 󳨀→ 0, ∀𝜑 ∈ 𝑋. (108)

Finally, by 𝑤
𝑛
⇀ 𝑢

0
̸= 0 and the weakly sequential continuity

of Φ󸀠, we have that Φ󸀠
(𝑢

0
) = 0. Therefore, 𝑢

0
is a nontrivial

solution of (1). This completes the proof.
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