
Research Article
Seismic Waveform Inversion Using the Finite-Difference
Contrast Source Inversion Method

Bo Han,1 Qinglong He,1 Yong Chen,1 and Yixin Dou2

1 Department of Mathematics, Harbin Institute of Technology, Harbin 150001, China
2 School of Finance, Harbin University of Commerce, Harbin 150028, China

Correspondence should be addressed to Bo Han; bohan@hit.edu.cn

Received 23 May 2014; Revised 9 August 2014; Accepted 11 August 2014; Published 26 August 2014

Academic Editor: Filomena Cianciaruso

Copyright © 2014 Bo Han et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper extends the finite-difference contrast source inversion method to reconstruct the mass density for two-dimensional
elastic wave inversion in the framework of the full-waveform inversion.The contrast source inversionmethod is a nonlinear iterative
method that alternatively reconstructs contrast sources and contrast function. One of the most outstanding advantages of this
inversionmethod is the highly computational efficiency, since it does not need to simulate a full forward problem for each inversion
iteration. Another attractive feature of the inversion method is that it is of strong capability in dealing with nonlinear inverse
problems in an inhomogeneous background medium, because a finite-difference operator is used to represent the differential
operator governing the two-dimensional elastic wave propagation. Additionally, the techniques of a multiplicative regularization
and a sequential multifrequency inversion are employed to enhance the quality of reconstructions for this inversion method.
Numerical reconstruction results show that the inversion method has an excellent performance for reconstructing the objects
embedded inside a homogeneous or an inhomogeneous background medium.

1. Introduction

Full-waveform inversion (FWI) is a powerful tool to get
high-resolution parameter models in the context of seismic
tomography. This feature of FWI makes it very suitable
for estimating subsurface parameters, which is the ultimate
goal in exploration seismology. In recent years, with the
development of computer technology and the requirement
of higher quality of seismic imaging, FWI becomes a very
promising technique for exploration seismology as acqui-
sition improves in size and density. The process of FWI
is to find an optimal parameter model by minimizing an
objective functional that measures the discrepancy between
the observed seismograms and the synthetic seismograms.
In other words, the specific implementation of FWI is an
iterative procedure that is usually based on gradient-based
optimization, either in time domain or frequency domain
(see [1–9]). In this paper, we only focus on frequency
domain case. Simulation in frequency domain has its inherent
advantages: it can obtain a relatively good reconstruction
result with only a few frequencies, which means that it
can significantly reduce the data redundancy; in addition,

a parallel computation programming can be easily imple-
mented for different frequency inversions, which results from
the independence of each frequency. Most methods in the
framework of FWI are based on gradient or Newton method.
A common feature of these gradient-based optimization
methods is the highly expensive forwarding calculation for
estimating the gradient of the object functional with respect
to the interested parameter. One special method to estimate
the gradient for a minimization problem based on gradient
method is the adjointmethod (see [10]). Additionally, seismic
inverse problems usually are nonlinear and illposed, which
make the seismic inversion difficult to handle. In short, FWI
incorporated both traveltime and amplitude information is a
highly computational process, no matter it is implemented in
time domain or frequency domain, and this feature greatly
prevents from its widespread applications in exploration
seismology.

An alternative method is proposed by van den Berg
and Kleinman (see [11]), extended by van den Berg and
Abubakar to effectively reconstruct the interested param-
eters in the field of the microwave imaging (see [12]).
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The method is referred to as the so-called contrast source
inversion (CSI) method, which has two versions: IE-CSI
based on integral equation formulation (see [11, 12]) and
FD-CSI based on the finite-difference operator (see [13]).
The IE-CSI method is very efficient for the homogeneous
or simple layered background medium inverse problems,
since the IE-CSI method needs to calculate Green function
of the background medium, while the FD-CSI method has
a good performance for solving high complex problems in
an inhomogeneous background medium. Another highly
efficient scattering inversion method called subspace-based
optimization method (SOM) shares this good property
of CSI method, which also has two variants adopted in
homogeneous and inhomogeneous background medium,
respectively (see [14, 15]). The comparisons in detail between
SOM and CSI are covered in [14], and this reference also
concludes that the CSI is close in spirit to a special case of
SOM and the SOM could be convergent for a few special
problems. The interesting advantage of CSI method is that
it does not require solving any full forward problem in each
inversion iteration; therefore, it can significantly reduce the
computational cost, and it may be very efficient for large scale
or high dimension inverse problems (see [16]). Both the IE-
CSI and FD-CSI methods incorporating with multiplicative
regularization constraint have been successfully applied in
electromagnetic wave imaging and acoustic wave imaging
(see [17–21]).

In this paper, we extend the FD-CSI method to recon-
struct the mass density based on a two-dimensional elastic
wave equation (in fact, all theories in this paper are suitable
for three-dimensional problems without any changes) in an
isotropic medium, either homogeneous or inhomogeneous
background medium, and its IE-version is presented in [22],
which is successfully employed in elastodynamics when the
backgroundmedium is homogeneous. For our forwardmod-
eling, a perfectly matched layer (PML) absorbing boundary
condition is employed to reduce the boundary reflections
(see [23, 24]), and, considering the fact that the stiffness
matrix usually is large and highly sparse, the techniques
of matrix compression store and LU decomposition of a
sparse matrix are employed to decrease the storage space
and increase the computation efficiency (see [25]). For the
inversion processing, since all the finite-difference operators
involving the FD-CSI algorithm are only dependent on the
background medium and angular frequency that both of
them are invariant throughout the inversion process, we use
a direct solver such as an LU decomposition method to solve
these finite-difference responses to improve the efficiency
of the forward modeling. We invert these finite-difference
operators only once at the start of the inversion processing,
and the results can be reused for multiple source positions
and successive iterations of the inversion.

In order to get a better reconstruction profile and some
geometrical information of an abnormality, a multiplica-
tive regularization factor called FD-MRCSI is incorporated,
which is first introduced by van den Berg et al. (see [26]).The
multiplicative regularization factor has the same function as
the total variation (TV) regularization. The most promising
advantage of the multiplicative regularization is that the

regularization parameter is automatically calculated during
each inversion. Furthermore, in order to mitigate the nonlin-
earity and enhance the reconstruction results, the sequential
multifrequency inversion approach is employed; that is, the
seismic inversion starts from low frequency and moves
upward to high frequency. To illustrate the performance
of the finite-difference contrast source inversion method in
seismic inversion problems, we present several numerical
experiments, either in a homogeneous or an inhomogeneous
background medium.

2. Forward Modeling

In this section, we present the two-dimensional forward
modeling using finite-difference method, which is of great
importance for the inversion method.The forward modeling
simulates the propagation process of the elastic wave in an
isotropic inhomogeneous medium and drives the inversion
algorithm. In time domain, the governing PDE system, called
elastodynamic system, is written as the following differential
equation system:

𝜌𝜕
2

𝑡
u = ∇ ⋅ 𝜎 + f , (1)

where u is the displacement vector, 𝜌 is the mass density, 𝜎
denotes the stress tensor of the elastic medium, ∇⋅ represents
the divergence operator with respect to spatial variables,
and the external force is denoted by the term f . In an
isotropicmedium, the stress tensor𝜎 is given by the following
formulas:

𝜎
𝑖𝑗
= 𝜆𝛿
𝑖𝑗
𝜀
𝑘𝑘

+ 2𝜇𝜀
𝑖𝑗
, (2)

𝜀
𝑖𝑗
=

1

2
(
𝜕𝑢
𝑖

𝜕𝑥
𝑗

+
𝜕𝑢
𝑗

𝜕𝑥
𝑖

) , (3)

where the indices 𝑖 and 𝑗 can be 1 or 2, 𝛿
𝑖𝑗
is the well-known

Kronecker delta symbol, 𝜀
𝑖𝑗
denotes the strain tensor, and 𝜆

and 𝜇 are the Lame parameters of the isotropic medium.
For simplicity, all physical variables in frequency domain

are also denoted by the same symbols as in time domain
unless it makes an ambiguity. For example, u also represents
the displacement vector in frequency domain. By substituting
(2) and (3) into (1) and employing the Fourier transformation
on both sides of (1), we get the Navier equations as

𝜔
2
𝜌 (r) u (r, 𝜔, r𝑠) + ∇ [𝜆 (r) ∇ ⋅ u (r, 𝜔, r𝑠)]

+ ∇ ⋅ [𝜇 (r) {∇u (r, 𝜔, r𝑠) + [∇u (r, 𝜔, r𝑠)]𝑇}]

= f (r, 𝜔, r𝑠) ,

(4)

where r denotes the spatial variable, r𝑠 represents the source
position, 𝜔 is the angular frequency, the source term f is a
Ricker wavelet represented in frequency domain throughout
this paper, 𝑇 is a matrix transpose, and ∇ is a gradient
operator with respect to the spatial variable r.

System (1) and (4) defines the wave propagation in an
infinitemedium in time and frequency domains, respectively.
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However, the wave field is numerically modeled in a finite
domain. Therefore, waves will reflect from the computation
edges of the domain, and the artificial waves will be recorded.
In time domain, these reflections can be eliminated by the
time windowing; however, such reflections cannot be elimi-
nated in frequency domain. Therefore, we should attenuate
or suppress the unwanted waves to simulate a modeling
in a finite domain, and one type of absorbing boundary
conditions should be applied. For our forward modeling,
a stabilized unsplit convolutional perfectly matched layer
(PML) is employed (see [24]), and the source term f we added
is in term of p-wave incident excitation.

The parameters and wave fields are uniformly discretized
on a regular two-dimensional domain at intervals of Δ𝑥 and
Δ𝑧 by using the second-order finite-differences described in
[27, 28]. Note that the spatial sampling intervals Δ𝑥 and Δ𝑧

must be small enough so that the numerical solutions of the
discretization linear equation system of (4) are sufficiently
accurate. Generally, this five-point stencil requires about 10
grid points per shear wave wavelength in the lowest velocity
zone for an accurate modeling (see Pratt [28]). After the
unknowns at each grid point are ordered by row-major rule,
we obtain a linear equation system as

A (𝜔)U (𝜔) = F (𝜔) , (5)

where A is the finite-difference matrix, or stiffness matrix,
which is asymmetric and extremely sparse, U is the
unknowns vector, and F denotes the discrete vector of the
source term. To solve the linear equation system (5), we
choose a direct solver method based on the sparse matrix
LU decomposition rather than an iterative solver. The main
reason we employ a direct solver method is that the stiffness
matrix A is only dependent on the background medium
and an angular frequency 𝜔. Hence, we can get all solutions
for all source excitations simultaneously by factoring the
finite-difference matrix A only once. However, a new matrix
decomposition is required for another frequency.

3. Finite-Difference Contrast Source
Inversion Algorithm

3.1. Problem Formulation. We consider the two-dimensional
elastic wave inversion problem in a homogeneous or an
inhomogeneous backgroundmedium.Throughout the paper,
the inversion domain or object domain inwhich the scatterers
are embedded is denoted by symbol 𝐷, and the data domain
𝑆 is the surface where the sources and receivers are located.
We assume that both of the domains are contained within
the total domain 𝐷

1
called finite-difference computation

domain. By this configuration of this inverse problem, we can
slightly reduce the inversion domain. Assume that there are
𝑁
𝑠 sources successively illuminating the inversion domain

and the index for the 𝑗th source is denoted by subscript 𝑗.
For each source 𝑗, the total field vector u

𝑗
(r, 𝜔) and incident

field vector uinc
𝑗

(r, 𝜔) satisfy the following Navier equations,
respectively:

N [u
𝑗
(r, 𝜔)]

≡ 𝜔
2
𝜌 (r) u

𝑗
(r, 𝜔, r𝑠) + ∇ [𝜆 (r) ∇ ⋅ u

𝑗
(r, 𝜔, r𝑠)]

+ ∇ ⋅ [𝜇 (r) {∇u
𝑗
(r, 𝜔, r𝑠) + [∇u

𝑗
(r, 𝜔, r𝑠)]

𝑇

}]

= f (r, 𝜔, r𝑠) , r ∈ 𝐷
1
,

(6)

N
𝑏
[uinc
𝑗

(r, 𝜔)]

≡ 𝜔
2
𝜌
𝑏
(r) uinc
𝑗

(r, 𝜔, r𝑠) + ∇ [𝜆 (r) ∇ ⋅ uinc
𝑗

(r, 𝜔, r𝑠)]

+ ∇ ⋅ [𝜇 (r) {∇uinc
𝑗

(r, 𝜔, r𝑠) + [∇uinc
𝑗

(r, 𝜔, r𝑠)]
𝑇

}]

= f (r, 𝜔, r𝑠) , r ∈ 𝐷
1
.

(7)

In (7), the parameter involving the subscript 𝑏 denotes
the relative parameters when the equation is employed to
describe the seismic wave propagation in a known back-
ground medium. Subtracting (7) from (6) and using the
relationship between the total filed u

𝑗
, incident filed uinc

𝑗
, and

the scattered filed usct
𝑗
, the scattered fields satisfy

N
𝑏
[usct
𝑗

(r, 𝜔)] = −𝜔
2
𝜌
𝑏
(r)w
𝑗
(r, 𝜔) , r ∈ 𝐷

1
, (8)

where w
𝑗
(r, 𝜔) are the contrast source vectors, defined as

w
𝑗
(r, 𝜔) = 𝜒 (r) u

𝑗
(r, 𝜔) , r ∈ 𝐷, (9)

in which the contrast function 𝜒(r) is given by

𝜒 (r) =
𝜌 (r) − 𝜌

𝑏
(r)

𝜌
𝑏
(r)

=
𝜌 (r)
𝜌
𝑏
(r)

− 1, r ∈ 𝐷. (10)

According to (7), the differential operator N
𝑏
with the

known Lame parameters 𝜆 and 𝜇 only depends on the
background mass density 𝜌

𝑏
(r). The inverse of the operator

N
𝑏
is formally given by the linear operator L

𝑏
[⋅] =

N−1
𝑏
[−𝜔
2
𝜌
𝑏
(r)(⋅)]. Therefore, the solution vectors of (8) can

be symbolically denoted by the following equation:

usct
𝑗

(r, 𝜔) = N
−1

𝑏
[−𝜔
2
𝜌
𝑏
(r)w
𝑗
(r, 𝜔)]

= L
𝑏
[w
𝑗
(r, 𝜔)] , r ∈ 𝐷

1
.

(11)

By using (11), the measured scattered field data vectors at
the receiver r

𝑅
location can be formally presented by the

following equation:

d
𝑗
(r
𝑅
, 𝜔) = M

𝑆
L
𝑏
{[w
𝑗
(r, 𝜔)]} , r

𝑅
∈ 𝑆, r ∈ 𝐷

1
, (12)

and the object equation or state equation satisfies

w
𝑗
(r, 𝜔) = 𝜒 (r) uinc

𝑗
(r, 𝜔)

+ 𝜒 (r)M𝐷 {L
𝑏
[w
𝑗
(r, 𝜔)]} , r ∈ 𝐷, r ∈ 𝐷

1
,

(13)
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whereM𝑆 is an operator selecting the scattered fields on the
measurement surface 𝑆 among the scattered fields in the total
computation domain, and the operatorM𝐷 selects the fields
inside the inversion domain𝐷.

Note that (12) and (13) are the fundamental equations
for the CSI method, which are used to establish the cost
functional. From (12) and (13), the data error r𝑆

𝑗
(r, 𝜔) and the

object (or state) error r𝐷
𝑗
(r, 𝜔) are denoted by the following

equations, respectively:

r𝑆
𝑗
(r, 𝜔) = d

𝑗
(r
𝑅
, 𝜔)

−M
𝑆
L
𝑏
{[w
𝑗
(r, 𝜔)]} , r

𝑅
∈ 𝑆, r ∈ 𝐷

1
,

(14)

r𝐷
𝑗
(r, 𝜔) = 𝜒 (r) uinc

𝑗
(r, 𝜔) + 𝜒 (r)M𝐷 {L

𝑏
[w
𝑗
(r, 𝜔)]}

− w
𝑗
(r, 𝜔) , r ∈ 𝐷, r ∈ 𝐷

1
.

(15)

To establish the objective functional, we should firstly give
the specific expressions of the inner product and 𝐿

2-norm as

⟨u, k⟩Ω = ∫
Ω

u (r) ⋅ k (r)𝑑r, (16)

‖r‖2
Ω
= ∫
Ω

u (r) ⋅ u (r)𝑑r, (17)

where the overbar denotes the complex conjugate for each
component of a complex vector and symbol ⋅ represents the
product of two vectors. Ω is the integral domain, which can
be either 𝑆 or𝐷.

For simplicity, the explicit dependence of the field quan-
tities on r and r is dropped in the remainder of this paper.

3.2. Finite-Difference Contrast Source Inversion Method. In
the framework of the contrast source inversion method
(see [11]), it does not eliminate the contrast source quan-
tities w

𝑗
in (12) and (13). On the contrary, it alternatively

reconstructs contrast sources w
𝑗
and contrast function 𝜒 by

minimizing a cost functional. In order to avoid minimizing
a nonquadratic objective function caused by the presence of
contrast function 𝜒 in both numerators and denominators,
we borrow the idea from [14] and slightly modify the cost
functional of CSI method. Therefore, the modified cost
functional to be minimized at the 𝑛th step is defined as the
following form:

𝐹
𝑛
(𝜒,w
𝑗
) =

∑
𝑗


r𝑆
𝑗



2

𝑆

∑
𝑗


d𝑆
𝑗



2

𝑆

+

∑
𝑗


r𝐷
𝑗



2

𝐷

∑
𝑗


𝜒
𝑛−1

uinc
𝑗



2

𝐷

= 𝐹
𝑆
(w
𝑗
) + 𝐹
𝐷

𝑛
(𝜒,w
𝑗
) ,

(18)

where 𝐹
𝑆
(w
𝑗
) represents the data equation error and

𝐹
𝐷

𝑛
(𝜒,w
𝑗
) represents the object equation error. The scattered

field data is obtained by subtracting the simulated back-
ground field from the simulated model field. From (14),
(15), and (18), we note that the background medium does

not change throughout the inversion process; therefore, the
computation cost of the inversion of the finite-difference
operator N

𝑏
is relatively cheap for each frequency, which

results from the LU decomposition required only once.
The main idea of the CSI method is to reconstruct

two interlaced sequences, w
𝑗,𝑛

and 𝜒
𝑛
, by minimizing the

objective functional (18).Thefirst step of FD-CSImethod is to
update contrast source vectorsw

𝑗,𝑛
by the conjugate-gradient

methodwith Polak-Ribiere search directions.While updating
the contrast source, the contrast function 𝜒 is assumed to be
𝜒
𝑛−1

. At the 𝑛th step, the contrast sources w
𝑗,𝑛

are updated by
the following formula:

w
𝑗,𝑛

= w
𝑗,𝑛−1

+ 𝛼
𝜔

𝑗,𝑛
k
𝑗,𝑛
, (19)

where 𝛼𝜔
𝑗,𝑛

is an update-step size and k
𝑗,𝑛

is the Polak-Ribiere
search directions (see [29]) given by

k
𝑗,0

= 0,

k
𝑗,𝑛

= 𝑔
𝜔

𝑗,𝑛
+

∑
𝑘
⟨𝑔
𝜔

𝑗,𝑛
, 𝑔
𝜔

𝑗,𝑛
− 𝑔
𝜔

𝑗,𝑛−1
⟩

∑
𝑘


𝑔
𝜔

𝑗,𝑛−1



2

𝐷

k
𝑗,𝑛−1

,

(20)

in which 𝑔
𝜔

𝑗,𝑛
is the gradient of the cost function with respect

to w
𝑗,𝑛

evaluated at the (𝑛 − 1)th iteration. The details of
this type of the conjugate-gradient can be found in [30].
After updating the gradient 𝑔𝜔

𝑗,𝑛
, the update-steps 𝛼𝜔

𝑗,𝑛
can be

obtained by minimizing the cost functional 𝐹
𝑛
; that is,

𝛼
𝜔

𝑗,𝑛
= argmin

𝛼
{𝐹
𝑛
(𝜒
𝑛−1

,w
𝑗,𝑛−1

+ 𝛼k
𝑗,𝑛
)} , (21)

and the explicit expression of the minimizer 𝛼𝜔
𝑗,𝑛

of (21) can
be founded by setting the derivative with respect to 𝛼 being
equal to zero; that is,

𝛼
𝜔

𝑗,𝑛
= (−⟨𝑔

𝜔

𝑗,𝑛
, k
𝑗,𝑛
⟩
𝐷
)

× (𝜂
𝑆
M
𝑆
{L
𝑏
[k
𝑗,𝑛
]}


2

𝑆

+𝜂
𝐷

𝑛


k
𝑗,𝑛

− 𝜒
𝑛−1

M
𝐷
{L
𝑏
[k
𝑗,𝑛
]}


2

𝐷
)

−1

,

(22)

where the normalization factors 𝜂𝑆 and 𝜂
𝐷

𝑛
are

𝜂
𝑆
= (∑

𝑗


d
𝑗



2

𝑆
)

−1

,

𝜂
𝐷

𝑛
= (∑

𝑗


𝜒
𝑛−1

uinc
𝑗



2

𝐷
)

−1

.

(23)

The second step of the CSI method is to update contrast
function 𝜒. Once we update the contrast source vectors w

𝑗

with conjugate gradient method, the contrast function 𝜒 is
updated by finding theminimizer of the functional𝐹𝐷

𝑛
(𝜒,w
𝑗
).

We assume the contrast source vectorsw
𝑗
are constant during
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this process. It can be shown that the updating formula has
the closed form as follows:

𝜒
𝑛
=

∑
𝑗
Re (w

𝑗,𝑛
⋅ u
𝑗,𝑛
)

∑
𝑗


u
𝑗,𝑛



2
, (24)

where

u
𝑗,𝑛

= uinc
𝑗,𝑛

+M
𝐷
{L
𝑏
[w
𝑗,𝑛
]} . (25)

In (24), the symbol Re indicates getting the real part of a
complex number. The details of finding the minimizer with
respect to 𝜒 of the objective functional (18) can be found in
[11].

To start the FD-CSI algorithm, Considering the non-
linearity and illposedness of the inverse problem, and the
local convergence of the FD-CSI method, a good initial guess
is very important to get a better reconstruction result. We
initialize the algorithm by the following way:

w
𝑗,0

=


L∗
𝑏
{M𝑆∗ [d

𝑗
]}


2

𝐷


M𝑆 (L

𝑏
[L∗
𝑏
{M𝑆∗ [d

𝑗
]}])



2

𝑆

L
∗

𝑏
{M
𝑆∗

[d
𝑗
]} ,

(26)

and the contrast function is calculated by using (24) and (25).
In (26),L∗

𝑏
is the adjoint operator of the operatorL

𝑏
, which

is defined as

L
∗

𝑏
[⋅] = (N

∗

𝑏
)
−1

[−𝜔2𝜌
𝑏
(r) (⋅)] , (27)

where

N
∗

𝑏
[⋅] ≡ 𝜔2𝜌 (r) (⋅) + ∇ [𝜆 (r)∇ ⋅ (⋅)]

+ ∇ ⋅ [𝜇 (r) {∇ (⋅) + [∇ (⋅)]
𝑇
}] ,

(28)

and the symbol M𝑆∗ has the same meaning with L∗
𝑏
, which

maps the field values on the measurement surface into
the total computation domain. This initialization method is
called back-propagation method, and it has been proved that
it can provide a good initial guess (see [8]).

To improve the quality of reconstruction results, the
multiplicative regularization technique introduced by van
den Berg et al. (see [26]) is applied to this inverse problem,
which has the same effect as the total variational regularized
method. After incorporating themultiplicative regularization
factor, the cost functional is rewritten as

𝐶
𝑛
(𝜒,w
𝑗
) = [𝐹

𝑆
(w
𝑗
) + 𝐹
𝐷

𝑛
(𝜒,w
𝑗
)] 𝐹
𝑅

𝑛
(𝜒) , (29)

where the regularization cost function𝐹
𝑅

𝑛
(𝜒) for the weighted

𝐿
2-norm regularization is defined as

𝐹
𝑅

𝑛
(𝜒) = ∫

𝐷

𝑏
2

𝑛
(
∇𝜒 (r)

2

+ 𝛿
2

𝑛
) 𝑑r, (30)

where

𝑏
2

𝑛
(r) = 1

𝐴 (
∇𝜒𝑛−1 (r)


2

+ 𝛿2
𝑛
)

,

𝛿
2

𝑛
=

𝐹
𝐷

𝑛
(𝜒
𝑛−1

,w
𝑗,𝑛−1

)

Δ𝑥Δ𝑧
,

(31)

where 𝐴 is the area of the inversion domain and Δ𝑥Δ𝑧 is the
cell area.More details on finite-differencemultiplicative regu-
larization contrast source inversion (FD-MRCSI)method can
be found in Appendix A of [8].

It is very similar to minimizing functional (29) using
conjugate-gradient method. There is no change while updat-
ing the contrast source vectors w

𝑗
, since the regularization

factor 𝐹
𝑅

𝑛
(𝜒) is only dependent on contrast function 𝜒 and

𝐹
𝑅

𝑛
(𝜒
𝑛−1

) ≡ 1. Nevertheless, the contrast function 𝜒 is
updated by using the conjugate-gradient method with Polak-
Ribiere search directions.

Compared with an additive regularization method, it is
not necessary to determine the artificial weighting regular-
ization parameter because it is automatically calculated at
each iteration. As we know that selecting the regularization
parameter is a time-consuming and difficult work, especially
there is no prior information about the measurement data,
multiplicative regularizationmethod is very suitable to invert
experimental data as shown in [20].

3.3. Computational Complexity Analysis. The highest com-
putational cost part of FD-MRCSI is to calculate these
operators L

𝑏
and L∗

𝑏
to estimate the conjugate 𝑔

𝑗
and

update-steps 𝛼
𝜔

𝑗
. Hence, an efficient method to compute

the action of these operators is important to increase the
efficiency of the inversion algorithm. Considering the fact
that these operators only depend on the backgroundmedium,
which does not change throughout the inversion process for a
given frequency 𝜔, we choose an efficient direct method, that
is, the LU decomposition, and the decomposition for each of
the two discretization operatorsL

𝑏
andL∗

𝑏
is done only once

at the beginning of the inversion process and then reused
at each subsequent step. The decomposition process takes
𝑂(𝑛
1.5
) operations, where 𝑛 is the number of the unknowns

of the discrete system (𝑛 = 2𝑁, 𝑁 is the number of the
grid cells) (see [25]). The back-substitution needs 𝑂(𝑛 log 𝑛)
operations for each source position. In the framework of
FD-MRCSI, back-substitution is required twice for each of
the two operators L

𝑏
and L∗

𝑏
per iteration. Hence, the

computational complexity of FD-MRCSI for each frequency
is approximately given by

𝑇 (𝑛,𝑁
iter

, 𝑁
𝑠
) ≈ 𝑂 (2𝑛

1.5
) + 𝑁

iter
𝑂 (2𝑁

𝑠
𝑛 log 𝑛) , (32)

where𝑁iter and𝑁
𝑠 are the number of inversion iteration and

the number of sources, respectively.
For usual inversion methods (UIM), the objective func-

tional involving the scattered observed data d
𝑗
and scattered

synthetic data usct
𝑗

is given in the following formula:

𝐹 (𝜒) = ∑

𝑗


d
𝑗
− usct
𝑗

(𝜒)


2

𝑆
+ 𝛼𝑅 (𝜒) . (33)

The first term of (33) ensures that the minimizer 𝜒
𝛼
of 𝐹

will be an optimal parameter model, while the second is
the regularized term, which guarantees the stabilization of
the problem and forces the minimizer 𝜒

𝛼
of (33) to satisfy

certain regularity properties, and𝛼 denotes the regularization
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Table 1: Computational complexity for FD-MRCSI and UIM.

Method LU decomposition Back-substitution Total cost
UIM 𝑁

iter
𝑂(2𝑛
1.5
) 𝑁

iter
𝑂(2𝑁

S
𝑛 log 𝑛) 𝑁

iter
{𝑂(2𝑛

1.5
) + 𝑂(2𝑁

S
𝑛 log 𝑛)}

FD-MRCSI 𝑂(2𝑛
1.5
) 𝑁

iter
𝑂(2𝑁

S
𝑛 log 𝑛) 𝑂(2𝑛

1.5
) + 𝑁

iter
𝑂(2𝑁

S
𝑛 log 𝑛)

𝑁
iter is the iteration number,𝑁S presents the number of source, and 𝑛 denotes the number of the grid cells.

parameter that balances the data error and regularized term.
If functional (33) is also minimized by using a nonlinear
conjugate gradient method, then the computational com-
plexity of this algorithm for this inverse problem can be
approximately estimated in analogy to FD-MRCSImethod as
follows:

𝑇
1
(𝑛,𝑁

iter
, 𝑁
𝑠
) ≈ 𝑁

iter
{𝑂 (2𝑛

1.5
) + 𝑂 [(2𝑁

𝑆
) 𝑛 log 𝑛]} ,

(34)

in which 𝑂(𝑛
1.5
) represents the LU decomposition compu-

tational cost for forward modeling and 𝑂(𝑛 log 𝑛) denotes
the back-substitution computation for each source during
each iteration process. Table 1 indicates the details of com-
putational complexity for FD-MRCSI and usual inversion
methods.

From Table 1, we observe that the FD-MRCSI method
does not need to do an LU decomposition for each iteration,
while usual methods require it, and this is the highest
computational cost part. Therefore, the FD-MRCSI method
is a greatly efficient method.

4. Numerical Results

In this section, we present some numerical examples based
on the FD-MRCSI algorithm. All inversion domains of these
tests are inside a square with side length 𝐿. In order to
measure the discrepancy between the exact profile and recon-
structed profile, the relative error with respect to contrast
quantity 𝜒 is introduced, which is given by the following
formula:

Err =
𝜒𝑛 (r) − 𝜒exact (r)

𝐷
𝜒exact (r)

𝐷

× 100%, (35)

where 𝜒
𝑛
is the reconstructed result after 𝑛 iterations and

𝜒exact is the exact solution in which we are interested.
Since the “inverse crime” phenomenon may happen,

the synthetic data are generated by using a finite-difference
time-domain forward method. A Ricker wavelet f with a
dominant frequency 30Hz is employed for generating the
synthetic data. However, the inversion algorithm is carried
out in frequency domain, and hence the datasets generated
by using time-domain forward method are transformed into
frequency domain using a fast Fourier transform (FFT) (see
[31]). After that, we select some frequencies for the FD-
MRCSI algorithm. Once we get the synthetic data, a random
noise is added to each frequency synthetic data using this
formula as follows:

dnoise
𝑗

= d
𝑗
+max
𝑗

(

d
𝑗


)
𝜂

2
(𝜉

ReI + 𝑖𝜉
ImI) , (36)

where dnoise
𝑗

and d
𝑗
are the field data vectors with noise and

the noiseless data, respectively, 𝜉Re and 𝜉
Im are uniformly

distributed random numbers on the interval (−1, 1), I is a
two- dimensional vector whose components are equal to one,
and 𝜂 is the desired fraction of the noise.

4.1. Reconstruction in a Homogeneous Background Medium.
The first example is concerned with recovering a square
scatterer from noise observed data dnoise

𝑗
in a homogeneous

background medium, and the exact model is given by
Figure 1(a). The inversion domain 𝐷 is set as a square with
side length 6 km, which does not include PML thickness. For
this square scatterer, the second Lame parameter 𝜇 is equal to
2.0GPa, and a Poisson’s ratio is 0.25.The square with the side
length 1.5 km is located in the inversion domain, and its centre
is at (3.3) km; the mass density of the scatterer is 1.8 g/cm3,
1.5 g/cm3 outside the scatterer. Hence, the contrast 𝜒 for the
scatterer is 0.2. During the whole inversion procedure, the
angular frequency 𝜔 is 8Hz.

The inversion domain 𝐷 is divided into 𝑁 × 𝑁 uniform
grids using the second-order scheme, adding the 𝑛

1
grids of

PML; so, the size of the total computation domain is (𝑁 +

2𝑛
1
) × (𝑁 + 2𝑛

1
). For this experiment, 𝑁 = 61 and 𝑛

1
=

15; therefore, the grid dimension of the total computation
domain is 91×91. Both the sources and receivers are assigned
to 16, which are equally distributed on the four sides of the
inversion domain, and all sources are added in the form of 𝑃-
wave incident excitation. To show the denoising performance
of the FD-MRCSI method, the numerical inversion results
are presented when the measurement datasets are added 5%
random noise. Figures 1(b) and 1(c) are the reconstruction
profile of the experiment and discrepancy between the true
model and recoveringmodel after 1000 iterations. Figure 1(d)
shows the slices along the depth at horizontal distances of
3 km for the true model and inversion model. The relative
error is 12.26%.

In this type of numerical tests of a homogeneous back-
ground medium, we will test that the FD-MRCSI method
possesses the ability of reconstructing multiple scatterers
with different geometrical information and different phys-
ical property parameters. For this purpose, we employ a
model consisting of two rectangular scatterers as shown in
Figure 2(a). The configuration consists of two rectangular
objects, which have different dimensions. One is 1.2 km ×

1.2 km, and another is 0.8 km × 1 km.We also assume that the
inversion domain is a square domain with the dimension of
6 km × 6 km and has a second Lame coefficient 𝜇 of 5.2GPa,
a Poisson’s ratio of 0.25, and a mass density of 1.5 g/cm3. The
large obstacle has a mass density of 2.7 g/cm3, and the small
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Figure 1: Applying the FD-MRCSI method to one abnormity inversion. (a) True model. (b) Reconstruction result after 1000 inversion
iterations. (c) Discrepancy between true model and reconstruction result. (d) Slices at horizontal distances of 3 km for the true model and
reconstruction result.

one has a mass density of 2.1 g/cm3. Hence, the contrasts for
the two abnormities are 0.8 and 0.4, respectively.

In the inversion process, we discretize the total compu-
tation domain into 151 × 151 uniform grids, including 15
PML grids, and 24 sources and 24 receivers are used for this
example.These sources and receivers are distributed along the
inversion domain, six sources or receivers for each side. After
the measurement data is generated using the same way as the
previous example, we select them at frequency 8Hz to drive
the inversion algorithm, and 5% noise is added. After 1000
iterations, the reconstruction profile is given in Figure 2(b).
Figure 2(c) denotes the discrepancy between the true model
and recovering model after 1000 iterations, and Figure 2(d)
shows the variation of the data equation term error with
respect to iterations. The relative error is 16.05%.

At first glance, we should solve the forward modeling for
many times for these 1000 inversion iterations. Since the con-
trast source w and contrast function 𝜒 are incorporated into
this algorithm, whichmakes the forward stiffnessmatrix only

involve the background medium for each given frequency,
the LU decomposition is required only once throughout the
whole inversion procedure; therefore, the forward modeling
computation cost is very cheap. However, the price that we
have to pay is the storing of the LU decomposition arrays of
the stiffness matrix of the background medium.

From these numerical results, we observe that the FD-
MRCSI method can effectively reconstruct the scatterers
including their locations and shapes using the measurement
scattered data, and the method is of strong denoising ability.
Additionally, Figure 2(d) demonstrates that the FD-MRCSI
method is convergent.

4.2. Reconstruction in an Inhomogeneous Background
Medium. In this section, we examine the performance of the
FD-CSI using an inhomogeneous medium as a background
medium. The configuration of the background consists of a
compressional wave speed of 2500m/s, a shear wave speed of
1443m/s, and a four-layer distribution of amass density of 1.8,
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Figure 2: Applying the FD-CSImethod to two abnormities inversion. (a) Truemodel. (b) Reconstruction result after 1000 inversion iterations.
(c) Discrepancy between true model and reconstruction result. (d) Variation of the data term error with respect to iterations.

1.6, 1.5, and 1.8 g/cm3 from top to bottom. Figure 3(a) shows
the mass density distribution of the background medium.
The inversion model consisting of a circle and an ellipse is
presented as shown in Figure 3(b). The circular abnormity
with a contrast of 0.8 has a radius of 0.550 km, which is
centered at (3.4, 3.6) km. For the elliptical scatterer, it has a
semimajor axis of 0.7 km. and a semiminor axis of 0.36 km,
and its centre is (2.3, 2) km.We also assume that the inversion
domain is a square with dimension of 𝐿×𝐿. In our numerical
experiments, 𝐿 is assigned to 6 km.

In the inversion, the contrast function 𝜒, contrast sources
w, and state variables u, uinc, and usct in the inversion domain
are uniformly discretized on a regular two-dimensional grid
at intervals of Δ𝑥 and Δ𝑧. Both Δ𝑥 and Δ𝑧 are equal to
0.05 km; in other words, the grid size is 121 × 121. The
measurement domain surface 𝑆 where 24 receivers and 24
sources are distributed is a square around the inversion
domain. After the synthetic datasets are generated by using
FFT on the finite-difference time-domain (FD-DT) data at
frequency 10Hz, 5% noise is added by using (35). After
running 1000 iterations, the reconstruction results are given
in Figure 3(c). The relative errors are 18.83%.

As shown in Figure 3, the FD-MRCSI method can suc-
cessfully reconstruct the objects including their locations
and shapes as those present in a homogeneous background
medium.The feature of the inversionmethod results from the
flexibility of the finite-difference operator of the governing
differential equations.

4.3. Reconstruction Improvement Using Multiple Frequencies.
In these examples, we use the previous lower frequency
inversion reconstruction results as an initial guess for another
frequency inversion, which is the so-called sequential multi-
frequency inversion approach, that one usually employs this
technique in theGauss-Newton or nonlinear conjugate gradi-
ent method. This technique applied to improve the inversion
profiles is guaranteed by the following two observations: (1)
each frequency is independent of FD-MRCSI algorithm; (2)
the inversion algorithm is locally convergent, and hence a
good initial guess will result in a better inversion results.
Additionally, multiple frequencies inversion technique can
migrate the nonlinearity of the elastic inverse problem.

To drive the inversion algorithm, we should use another
initialization method, which was introduced by Abubakar et
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Figure 3: Applying the FD-CSI method to two abnormities inversion in an inhomogeneous background medium. (a) Background medium.
(b) True model. (c) Reconstruction result after 1000 inversion iterations. (d) Variation of the data term with respect to iterations.

al. (see [8]). Firstly, use the previous inversion result as 𝜒
0
;

then, solve the forward problemwith 𝜌 = (1+𝜒
0
)𝜌
𝑏
to get the

total field vectors u
𝑗,0
; finally, the initial contrast sources w

𝑗,0

are obtained with the equation w
𝑗,0

= 𝜒
0
u
𝑗,0
.

We employ the strategy to rebuild the two test examples
given in Section 4.1, and all relative parameters are the
same as those present in Section 4.1. For the one scatterer
model case, we successively select three frequencies (4, 6,
and 8Hz). For the two scatterers model case, the sequential
frequency applied during the multiple frequencies inversion
is 5Hz, 7Hz, and 10Hz. Figures 4(a) and 4(b) show the
corresponding reconstruction results. The relative errors are
8.13% and 12.60%, respectively, which are smaller than those
in Section 4.1. Table 2 indicates the reconstruction relative
errors of the two models using FD-MRCSI and FD-MRCSI
with multiple frequencies technique.

From Figure 4 and Table 2, we can observe that the
use of the sequential multifrequency approach can improve
reconstructed model to some extent. This can be explained
by the fact that a good initial guess can result in a better
computation result for a locally convergent method.

Table 2: Relative errors using FD-CSI and FD-CSI with multiple
frequencies technique.

Model FD-CSI FD-CSI with multifrequency
One scatterer model 12.26% 8.13%
Two scatterers model 16.05% 12.60%

5. Conclusions

In this paper, the finite-difference contrast source inversion
method incorporating a multiplicative regularization factor
is successfully employed in seismic full-waveform inversion
to reconstruct the mass density. The method is very efficient
because it does not require solving a full forward problem in
each inversion iteration, and the highly efficient calculation
of the forward modeling makes it have a potential for dealing
with large scale computational inverse problems.

From the results of numerical experiments, the algorithm
can well recognize the shapes of the scatterers and precisely
identify their locations, no matter the background mediums
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Figure 4: Applying sequential multifrequency technique to improve reconstruction results. (a) Reconstruction result of one square scatterer
model. (b) Reconstruction result of two rectangle scatterers model.

are homogeneous or inhomogeneousmedium.The algorithm
is very robust when the measurement data is polluted by
random noise. Furthermore, the FD-MRCSI using sequen-
tial multifrequency technique can successfully improve the
reconstruction results, which is very hopeful for getting
higher resolution in exploration seismology. Estimating other
subsurface parameters using this method, such as Lame
coefficients and velocity, is our future work.
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