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Train operation is a complex nonlinear process; it is difficult to establish accuratemathematicalmodel. In this paper, we designATO
speed controller based on the input and output data of the train operation. The method combines multimodeling with predictive
functional control according to complicated nonlinear characteristics of the train operation. Firstly, we cluster the data sample by
using fuzzy-c means algorithm. Secondly, we identify parameter of cluster model by using recursive least square algorithm with
forgetting factor and then establish the local set of models of the process of train operation.Then at each sample time, we can obtain
the global predictive model about the system based on the weighted indicators by designing a kind of weighting algorithm with
error compensation. Thus, the predictive functional controller is designed to control the speed of the train. Finally, the simulation
results demonstrate the effectiveness of the proposed algorithm.

1. Introduction

With rapid expansion of the nationwide metropolitan popu-
lation, people put forward higher requirement for the speed
and quality of the urban railway traffic train. The Automatic
Train Control (ATC) system, as an important subsystem of
the automatic train control system, can replace the drivers to
realize automatic train operation. On the basis of ensuring
safety and punctuality, it can furthest implement the demand
of energy conservation and improve passengers comfort. It is
the prospective development direction of the railway train.

Train operation is a complex nonlinear process; it is
difficult to establish accurate mathematical model because
of nonlinearities and complex operating environments such
as ramps, curves, and tunnels. So it increases difficulties to
realize the ATO system. Based on the input and output data,
people will apply some normal nonlinear system identifica-
tion methods, like Hammerstein model structure [1], Wiener
model structure [2], and so forth. But the model structure
cannot reveal global performance of the complicated system.

Multimodel method based on decomposition combination
rule can provide an effectiveway for themodeling and control
problem of complicated nonlinear system. Multiple linear
local models are used to replace the complicated controlled
object to simplify the nonlinear system structure. And the
control algorithm based on linear model can be applied
conveniently to nonlinear control system.

For multimodel control system, firstly we should build
local linear model set of the nonlinear system. The common
method is to linearize the nonlinear system near the equilib-
rium point to get local model set [3]. However, it is difficult
to confirm the equilibrium point and model because of the
complication of train operation. Based on the input and out-
put data of nonlinear systems, cluster analysis divides the data
according to some kind of similarity criterion. The method
that combines cluster analysis with traditional identification
provides an effective way to establish the local model set of
nonlinear system.

Predictive functional control is the third generation of
model-predictive control algorithm. It not only has the main
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features of model-predictive control, but also owns its unique
advantages. The introduction of base function can make the
control input structure more clear, and obviously reduces
online computation. This paper proposes a method based
on the actual train operation. It combines cluster multi-
model weighted modeling with predictive functional control
algorithm to design ATO speed controller. Firstly, we use
fuzzy c-means (FCM) clustering algorithm with recursive
least square algorithm of forgetting factor to establish the
local model set of nonlinear operation process. In order to
improve the performance of control system, we design a kind
of weighted algorithm with error compensation. The global
model will be achieved through weighted combination of
local models, and then we can design predictive functional
controller.

2. Problem Information

According to the train dynamics, the dynamic equations can
be described as follows [4]:

𝑑𝑠 (𝑡)

𝑑𝑡
= V (𝑡) ,

𝑑V (𝑡)

𝑑𝑡
= 𝑢 (𝑡) − 𝑤 (V (𝑡)) − 𝑔 (𝑠 (𝑡)) ,

𝑤 (V (𝑡)) = 𝑎V(𝑡)2 + 𝑏V (𝑡) + 𝑐,

𝑔 (𝑠 (𝑡)) = 𝑙 sin (𝛼 (𝑠)) ,

(1)

where 𝑠 is the train position coordinate, V is the velocity of
train, 𝑢 is the traction force or breaking force,𝑤(V) is motion
resistance related to velocity,𝑔(𝑠) is external resistance caused
by the slope, curve, and wind, 𝑙 is a constant, and 𝛼(𝑠) is slope
degree of 𝑠 point.

In (1), we can see that train operation is a nonlinear pro-
cess. As the speed increases, the nonlinearity will get stronger,
and the operation speed will be easily affected by external
resistance. The purpose of this paper is to design reasonable
ATO speed control algorithm to make train operation as
objective speed curve and distance curve. The objective
speed curve and distance curve are obtained by computing
optimal operation figure.

3. The Establishment of Multimodels Set

Cluster analysis is a kind of data mining technology, which
is widely researched and applied. It can divide physical or
abstract data into groups in accordance to similarity degree.
This feature provides an effective way to divide models into
the groups of multimodel modeling. In the field of process
modeling, cluster multimodelmodeling adequately excavates
relationships between the data based on the input and output
data. It divides the data into different features groups rea-
sonably. In recent years, multimodel modeling method based
on clustering is widely used and a large number of cluster
algorithms emerge. The fuzzy c-means clustering algorithm
is a simple and effective clustering method.

The FCM is an unsupervised clustering algorithm.A clus-
tering problem can be expressed as follows.

Let𝑋 = {𝑥
1
, . . . , 𝑥

𝑛
}be a set of given data, where each data

point 𝑥
𝑘
(𝑘 = 1, . . . , 𝑛) is a vector inR𝑝 and 𝑛 is the number

of sample data. Its aim is to find the membership matrix
𝑅 = [𝑟

𝑖𝑗
]
𝑐×𝑛

and the cluster centers of sample data set 𝑂 =

[𝑜
1
, 𝑜
2
, . . . , 𝑜

𝑐
] that minimize a dissimilarity function. When

the clustering number is given, FCM can be described as a
mathematical programming problem [5]:

min 𝐽
𝑚

(𝑅, 𝑜) =

𝑛

∑

𝑗=1

𝑐

∑

𝑖=1

𝑟
𝑚

𝑖𝑗


𝑥
𝑗
− 𝑜
𝑖



2

s.t.
𝑐

∑

𝑖=1

𝑟
𝑖𝑗

= 1, 1 ≤ 𝑗 ≤ 𝑛

𝑟
𝑖𝑗

∈ [0, 1] , 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑖 ≤ 𝑐

0 <

𝑛

∑

𝑗=1

𝑟
𝑖𝑗

< 𝑛,

(2)

where 𝑟
𝑖𝑗
represents the membership of 𝑥

𝑗
in the cluster 𝑖,

𝑥
𝑗
∈ R𝑝 is the 𝑗th measured data, 𝑜

𝑖
∈ R𝑝 is the 𝑖th center of

the cluster, ‖ ∗ ‖ denotes the distance of the measured data
from the cluster center which can be measured by means
of Euclidean norm, 𝑚 is any real number larger than 1, and
𝑚 = 2 is used in this contribution. 𝑟

𝑖𝑗
and 𝑜
𝑖
can be obtained

from the paper [5].
In multimodel control, it is important to establish the

multiplemodels set. Xie andBeni introduced a validmeasure.
The separation measure 𝑉

𝑥𝑏
is defined as in [6].

The optical cluster number is

𝑐opt = argmin
𝑐

(𝑉
𝑥𝑏

) . (3)

In summary, the procedure for the fuzzy c-means algorithm
is as follows.

Step 1. Collect the input and output data of training oper-
ation, and assume the maximum cluster number is 10. We
apply Xie-Beni cluster validity index to assure the optical
cluster number 𝑐. Initialize 𝑅 = 𝑅

0
, preset the index weight

𝑚, and 𝜀 > 0.

Step 2. At 𝑘th iteration, compute the cluster centers 𝑜𝑘
𝑖
where

𝑟
𝑖𝑗

∈ 𝑅
𝑘 (𝑜𝑘
𝑖
and𝑅

𝑘, are resp., the cluster centers of sample data
set and the membership matrix of the 𝑘th iteration).

Step 3. Update 𝑅
𝑘+1 using 𝑟

𝑖𝑗
(𝑅𝑘+1 is the membership matrix

of the (𝑘 + 1)th iteration).

Step 4. If ‖𝑅
𝑘+1

− 𝑅
𝑘
‖ > 𝜀, then 𝑘 = 𝑘 + 1; go to Step 2,

otherwise stop.

For each cluster set, the parameters of sublinearmodel are
identified by using the forgetting factor recursive least squares
(RLS) algorithm. To design GPC controller conveniently, we
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Figure 1: The structure of multimodel weighted predictive function control for train.

choose SISO (single-input single-output) Controlled Auto-
Regressive IntegratedMoving Average (CARIMA)model. So
the sublinear model is described as follows [7]:

𝐴(𝑧
−1

) 𝑦 (𝑡) = 𝐵 (𝑧
−1

) 𝑢 (𝑡 − 1) +
𝜁 (𝑡)

Δ
, (4)

𝐴(𝑧
−1

) = 1 + 𝑎
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑎
𝑛
𝑎

𝑧
−𝑛
𝑎 ,

deg𝐴(𝑧
−1

) = 𝑛
𝑎
,

𝐵 (𝑧
−1

) = 𝑏
0
+ 𝑏
1
𝑧
−1

+ ⋅ ⋅ ⋅ + 𝑏
𝑛
𝑏

𝑧
−𝑛
𝑏 ,

deg𝐵 (𝑧
−1

) = 𝑛
𝑏
,

(5)

where 𝑢(𝑡) is the control input and 𝑦(𝑡) is the measured
variable or output; in this paper 𝑦(𝑡) = V(𝑡), and 𝜁(𝑡) is the
white noise in which the mean value is zero; 𝑛

𝑎
and 𝑛

𝑏
are

the orders of output and input, respectively. Δ = 1 − 𝑧
−1

is the differencing operator; 𝐴(𝑧
−1

), 𝐵(𝑧
−1

), and 𝐶(𝑧
−1

) are
polynomials with the backward shift operator 𝑧

−1. Among
them, the first several elements of the polynomial 𝐵(𝑧

−1
)

can be zero to express the corresponding delay numbers.
The sublinear model can be identified by using the form of
regression equation.

4. Multimodel Predictive Function Controller

4.1.The Structure of MultimodelWeighted Predictive Function.
The structure of multimodel weighted predictive function is
shown in Figure 1. In Figure 1, the submodels are obtained
by clustering and identification algorithm. At each control
time, we compare the error of real output and the output

of submodel 𝑖. According to the matching degree, the corre-
sponding weights are assigned to each submodel by weighted
function. The bigger weight value represents the smaller
mismatch of submodel.

4.2. Multimodel Weighted Strategy. Multimodel control algo-
rithm based on weighted method can make full advantage
of system information of each local model and describe the
dynamics of nonlinear system more accurately at the overlap
of multiple subspace. The key question is to find the appro-
priate weighted strategy to enable local model to approach
nonlinear dynamics effectively. Based on the multimodel
integration strategy proposed in the literature [8], this paper
proposes an improved multimodel weighted strategy with
error compensation.

Define 𝑒
𝑖
(𝑡) = 𝑦(𝑡) − 𝑦

𝑖
(𝑡). The expression denotes the

error between real output and the output of the submodel 𝑖 at
time 𝑡. The average matching error between submodel 𝑖 and
system at time 𝑡 is shown as follows:

𝑚𝑒
𝑖
(𝑡) =

𝑒
𝑖
(𝑡) + ∑

𝐿

𝑗=1
𝜂
𝐿
𝑒 (𝑡 − 𝑗)

𝐿 + 1
, (6)

where 𝐿 denotes the error length in the past time at the
average error computation and 𝜂 denotes the forgetting
degree of the past error.

The performance index based on model matching degree
is defined as follows:

𝐽
𝑖
(𝑡) =

𝑒𝑖 (𝑡) − 𝑚𝑒
𝑖
(𝑡)

 + ∑
𝐿

𝑗=1
𝜂
𝐿 𝑒𝑖 (𝑡 − 𝑗) − 𝑚𝑒

𝑖
(𝑡)



𝐿 + 1
.

(7)
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As (7) shows, the weight of submodel 𝑖 is

𝛼
𝑖
(𝑡) =

𝐽
𝑖
(𝑡)
−1

∑
𝑐

𝑖=1
𝐽
𝑖
(𝑡)
−1

, (8)

where 𝑐 is the number of local models.
After adding weighted value, the global predictive model

is

𝑦 (𝑡) =

𝑐

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖

1
𝑦 (𝑡 − 1) +

𝑐

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖

2
𝑦 (𝑡 − 2)

+ ⋅ ⋅ ⋅ +

𝑐

∑

𝑖=1

𝛼
𝑖
𝑎
𝑖

𝑛
𝑎

𝑦 (𝑡 − 𝑛
𝑎
)

+

𝑐

∑

𝑖=1

𝛼
𝑖
𝑏
𝑖

0
𝑢 (𝑡 − 1) +

𝑐

∑

𝑖=1

𝛼
𝑖
𝑏
𝑖

1
𝑢 (𝑡 − 2)

+ ⋅ ⋅ ⋅ +

𝑐

∑

𝑖=1

𝛼
𝑖
𝑏
𝑖

𝑛
𝑏

𝑢 (𝑡 − 𝑛
𝑏
− 1) .

(9)

4.3. Predictive Function Controller Design. Because of its con-
venient derivation and strong robustness, predictive function
control absorbs many scholars. At the present stage, the
research of PFC mostly aims at first-order system or first-
order plus pure delay system. Because the first-order system,
first-order plus pure delay system, and second-order system
can be described by CARIMA model, it is more general to
study the PFC algorithm based on CARIMA model. In this
paper, we study the predictive function control based on
CARIMA model; the structure of predictive model is shown
as (4).

Designing ATO system needs to guarantee the travelling
comfort, and it is closely related to operation velocity. So the
control input should decrease large fluctuation in designing
ATO system. For this purpose, we add summation form
of control increment to optimized performance indicator;
optimized performance is shown as follows [9]:

min 𝐽 = min [(𝑌
𝑏
− 𝑌
𝑟
)
𝑇

(𝑌
𝑏
− 𝑌
𝑟
) + 𝜌Δ𝑈

𝑇
Δ𝑈] , (10)

where

𝑌
𝑏
= [𝑦
𝑏
(𝑡 + 1) , 𝑦

𝑏
(𝑡 + 2) , . . . , 𝑦

𝑏
(𝑡 + 𝑁

1
)]
𝑇

;

𝑌
𝑟
= [𝑦
𝑟
(𝑡 + 1) , 𝑦

𝑟
(𝑡 + 2) , . . . , 𝑦

𝑟
(𝑡 + 𝑁

1
)]
𝑇

;

Δ𝑈 = [Δ𝑢 (𝑡) , Δ𝑢 (𝑡 + 1) , . . . , Δ𝑢 (𝑡 + 𝑁
𝑢
− 1)]
𝑇

.

(11)

In predictive function control, control input is regarded as
a linear combination of base function which is given advance
[9]; generally ramp function and step functions can satisfy
most of the control requirements. So in this paper, control
input is regarded as weight combination of two base function
proposed before; the form is shown as follows:

𝑢 (𝑡 + 𝑖) = 𝜇
1
+ 𝜇
2
𝑖, (𝑖 = 0, 1, . . . , 𝑁

𝑢
− 1) . (12)

Equation (12) can be rewritten as

𝑈 =

[
[
[
[

[

𝑢 (𝑡)

𝑢 (𝑡 + 1)

...
𝑢 (𝑡 + 𝑁

𝑢
− 1)

]
]
]
]

]

=

[
[
[
[

[

1 0

1 1

...
...

1 𝑁
𝑢
− 1

]
]
]
]

]

[
𝜇
1

𝜇
2

] = 𝐶
1
𝜇, (13)

where

𝐶
1
=

[
[
[
[

[

1 0

1 1

...
...

1 𝑁
𝑢
− 1

]
]
]
]

]𝑁
𝑢
×2

, 𝜇 = [
𝜇
1

𝜇
2

] . (14)

In PFC, the output 𝑦(𝑡) of predictive model is composed
of free response 𝑦

𝑓
(𝑡) and forced response 𝑦

𝑝
(𝑡); the form is

shown as follows [9]:

𝑦 (𝑡) = 𝑦
𝑝
(𝑡) + 𝑦

𝑓
(𝑡) . (15)

So the predictive output of PFC is

𝑦 (𝑡 + 𝑖) = 𝑦
𝑝
(𝑡 + 𝑖) + 𝑦

𝑓
(𝑡 + 𝑖) , (𝑖 = 1, 2, . . . , 𝑁

1
) .

(16)

As for the model free response output 𝑌
𝑓

= [𝑦
𝑓
(𝑡 + 1),

𝑦
𝑓
(𝑡+2), . . . , 𝑦

𝑓
(𝑡+𝑁

1
)]
𝑇, Zhang andWangquanling, and so

forth proposed a kind of recursive deprivation [10]:

𝑦
𝑓
(𝑡 + 1 | 𝑡) =

𝑛
𝑎

∑

𝑗=1

(−𝑎
𝑗
) 𝑦

(𝑡 + 𝑖 − 𝑗)

+

𝑛
𝑏

∑

𝑗=1

𝑏
𝑗
𝑢

(𝑡 + 𝑖 − 𝑗) , 𝑖 = 1, 2, . . . , 𝑁

1
,

(17)

where

𝑦

(𝑡 + 𝑖 − 𝑗) = {

𝑦 (𝑡 + 𝑖 − 𝑗) , 𝑖 < 𝑗 + 1,

𝑦
𝑓
(𝑡 + 𝑖 − 𝑗 | 𝑡) , 𝑖 ≥ 𝑗 + 1,

𝑢

(𝑡 + 𝑖 − 𝑗) = {

𝑢 (𝑡 + 𝑖 − 𝑗) , 𝑖 < 𝑗,

0, 𝑖 ≥ 𝑗.

(18)

As for the model forced response output 𝑌
𝑝

= [𝑦
𝑝
(𝑡 + 1),

𝑦
𝑝
(𝑡 + 2), . . . , 𝑦

𝑝
(𝑡 + 𝑁

1
)]
𝑇 can be derived as follows:

𝑦
𝑝
(𝑡 + 𝑖 | 𝑡) =

𝑖

∑

𝑗=1

𝑟
𝑗
𝑢 (𝑡 + 𝑖 − 𝑗) , (𝑖 = 1, 2, . . . , 𝑁

1
) ,

(19)

where
𝑟
1
= 𝑏
1
,

𝑟
𝑗
=

min(𝑗−1,𝑛
𝑎
)

∑

𝑘=1

(−𝑎
𝑘
) 𝑟
𝑗−𝑘

+ 𝑏
𝑗
, 2 ≤ 𝑗 ≤ 𝑛

𝑏
,

𝑟
𝑗
=

min(𝑗−1,𝑛
𝑎
)

∑

𝑘=1

(−𝑎
𝑘
) 𝑟
𝑗−𝑘

, 𝑛
𝑏
< 𝑗 ≤ 𝑁

1
.

(20)
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From (13) and (19), it can derived that

𝑌
𝑝
=

[
[
[
[
[

[

𝑦
𝑝
(𝑡 + 1)

𝑦
𝑝
(𝑡 + 2)

...
𝑦
𝑝
(𝑡 + 𝑁

1
)

]
]
]
]
]

]

=

[
[
[
[

[

𝑟
1

0 ⋅ ⋅ ⋅ 0

𝑟
2

𝑟
1

⋅ ⋅ ⋅ 0

...
... d

...
𝑟
𝑁
1

𝑟
𝑁
1
−1

⋅ ⋅ ⋅ 𝑟
1

]
]
]
]

]

[
[
[
[

[

1 0

1 1

...
...

1 𝑁
1
− 1

]
]
]
]

]

[
𝜇
1

𝜇
2

]

= 𝐶
2
𝐶
3
𝜇,

(21)

where

𝐶
2
=

[
[
[
[

[

𝑟
1

0 ⋅ ⋅ ⋅ 0

𝑟
2

𝑟
1

⋅ ⋅ ⋅ 0

...
... d

...
𝑟
𝑁
1

𝑟
𝑁
1
−1

⋅ ⋅ ⋅ 𝑟
1

]
]
]
]

]

; 𝐶
3
=

[
[
[
[

[

1 0

1 1

...
...

1 𝑁
1
− 1

]
]
]
]

]

.

(22)

To reduce the effect caused by model mismatch, error
correction is used to compensate the predictive output.

Consider

𝑦
𝑏
(𝑡 + 𝑖) = 𝑦 (𝑡 + 𝑖) + 𝑒 (𝑡 + 𝑖) . (23)

Predictive error is described as the following form:

𝑒 (𝑡 + 𝑖) = 𝑦 (𝑡) − 𝑦
𝑚

(𝑡) , 𝑖 = 0, 1, . . . , 𝑁
1
, (24)

where 𝑦(𝑡) is the output of the predictive model and 𝑦
𝑚
(𝑡) is

the actual output of the system.
So

𝑌
𝑏
= 𝑌
𝑝
+ 𝑌
𝑓
+ 𝐶
4
𝑒 (𝑡) = 𝐶

2
𝐶
3
𝜇 + 𝑌
𝑓
+ 𝐶
4
𝑒 (𝑡) , (25)

where 𝐶
4
= [1; 1; . . . ; 1]

𝑁
1
×1
.

Because Δ𝑢(𝑡) = 𝑢(𝑡) − 𝑢(𝑡 − 1), from (13), we can get that

Δ𝑈 =

[
[
[
[
[

[

Δ𝑢 (𝑡)

Δ𝑢 (𝑡 + 1)

...
Δ𝑢 (𝑡 + 𝑁

𝑢
− 1)

]
]
]
]
]

]

=

[
[
[
[
[

[

𝑢 (𝑡) − 𝑢 (𝑡 − 1)

𝑢 (𝑡 + 1) − 𝑢 (𝑡)

...
𝑢 (𝑡 + 𝑁

𝑢
− 1) − 𝑢 (𝑡 + 𝑁

𝑢
− 2)

]
]
]
]
]

]

=

[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0

−1 1 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 1

]
]
]
]

]

[
[
[
[

[

𝑢 (𝑡)

𝑢 (𝑡 + 1)

...
𝑢 (𝑡 + 𝑁

𝑢
− 1)

]
]
]
]

]

−

[
[
[
[

[

𝑢 (𝑡 − 1)

0

...
0

]
]
]
]

]

= 𝐶
5
𝑈 − 𝑈

0
= 𝐶
5
𝐶
1
𝜇 − 𝑈

0
,

(26)

where

𝐶
5
=

[
[
[
[

[

1 0 ⋅ ⋅ ⋅ 0

−1 1 ⋅ ⋅ ⋅ 0

...
... ⋅ ⋅ ⋅ 0

0 0 ⋅ ⋅ ⋅ 1

]
]
]
]

]𝑁
𝑢
×𝑁
𝑢

, 𝑈
0
=

[
[
[
[

[

𝑢 (𝑡 − 1)

0

...
0

]
]
]
]

]𝑁
𝑢
×1

.

(27)

Substituting (23) and (26) into (10) and letting 𝜕𝐽/𝜕𝜇 = 0,
we can get that

𝜇 = [(𝐶
2
𝐶
3
)
𝑇

(𝐶
2
𝐶
3
) + 𝜌(𝐶

5
𝐶
1
)
𝑇

(𝐶
5
𝐶
1
)]
−1

× [(𝐶
2
𝐶
3
)
𝑇

(𝑌
𝑟
− 𝑌
𝑓
− 𝐶
4
𝑒 (𝑡)) + 𝜌(𝐶

5
𝐶
1
)
𝑇

𝑈
0
] .

(28)

Let 𝐶
2
𝐶
3
= 𝐶
6
, 𝐶
5
𝐶
1
= 𝐶
7
; we can get that

𝜇 = (𝐶
𝑇

6
𝐶
6
+ 𝜌𝐶
𝑇

7
𝐶
7
)
−1

[𝐶
𝑇

6
(𝑌
𝑟
− 𝑌
𝑓
− 𝐶
4
𝑒 (𝑡)) + 𝜌𝐶

𝑇

7
𝑈
0
] .

(29)

From (12) and (29), we can get control subsequence of
the future time. Predictive function control retains the rolling
optimization strategy and just applies the current control
input to system. So the current control input of predictive
function control is

𝑢 (𝑡) = 𝜇
1
+ 𝜇
2
× 0 = 𝜇

1
= [1, 0] 𝜇. (30)

5. Simulation Results and Discussions

A concrete train operation system [11] is used to test the per-
formance of the proposed algorithm. We consider a 17285.5
meters long trail line. Because curves and tunnel external
force will convert to ramp force under a certain condition, we
just consider a length of ramp force in simulation. It is defined
as follows:

𝑔 (𝑠 (𝑡)) =

{{{{{

{{{{{

{

(
0.2

1000
) × 𝑠 (𝑡) − 1.0, 5000 < 𝑠 (𝑡) ≤ 6000,

0.2, 6000 < 𝑠 (𝑡) ≤ 7000,

− (
0.2

800
) × 𝑠 (𝑡) + 1.95, 7000 < 𝑠 (𝑡) ≤ 7800.

(31)

The unit basic resistancemodel is determined empirically
from empirical formula which is derived by experiments. In
this paper we choose unit basic resistancemodel of Shenzhen
metro line 3. It is defined as follows:

𝑤
0
(V (𝑡)) = 0.00675V2 (𝑡) + 0.394V (𝑡) + 20.89. (32)

In the operation process of the train, one of energy-
saving control scheme is to keep a constant speed in the
cruise stage, reducing unnecessary braking and acceleration.
This simulation imitates the constant-speed cruise motion of
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Table 1: The result of cluster.

𝐶 𝑉
𝑥𝑏

𝐶 𝑉
𝑥𝑏

2 0.1344 7 0.0431
3 0.0798 8 0.0410
4 0.0451 9 0.1505
5 0.0221 10 0.1602
6 0.0816 — —

the rail train. We can obtain the ATO speed by composite
computation:

V
𝑑
(𝑡) =

{{{{{{{{{

{{{{{{{{{

{

0.75𝑡, 0 ≤ 𝑡 ≤ 40,

30, 40 < 𝑡 ≤ 560,

−0.35𝑡 + 226, 560 < 𝑡 ≤ 600,

−0.7𝑡 + 436, 600 < 𝑡 ≤ 610,

−𝑡 + 619, 610 < 𝑡 ≤ 619.

(33)

The distance profile in the simulation is as follows:

𝑠
𝑑
(𝑡) =

{{{{{{{{{

{{{{{{{{{

{

0.375𝑡
2
, 0 ≤ 𝑡 ≤ 40,

600 + 30 (𝑡 − 40) , 40 < 𝑡 ≤ 560,

−0.175𝑡
2
+ 226𝑡 − 55480, 560 < 𝑡 ≤ 600,

−0.35𝑡
2
+ 436𝑡 − 118480, 600 < 𝑡 ≤ 610,

−0.5𝑡
2
+ 619𝑡 − 174295, 610 < 𝑡 ≤ 619.

(34)

First of all, we obtain the input and output data of train
operation based on dynamicmodel. According to the fuzzy c-
means cluster algorithm and Xie-Beni cluster valid measure,
we can obtain the optimal number of submodels. The result
of clustering is shown in Table 1.

In Table 1, 𝐶 denotes the number of cluster; 𝑉
𝑥𝑏

denotes
the value of cluster valid measure. When the cluster number
is 5, the value of𝑉

𝑥𝑏
is the minimum. So the optimal number

of cluster is 5. According to the clustering set and forgetting
factor recursive least squares identification algorithm, the
submodels set can be defined as follows.

Submodel 1:

𝑦 (𝑡) − 0.9515𝑦 (𝑡 − 1) = 0.0375𝑢 (𝑡 − 1) + 𝜁 (𝑡) ; (35)

Submodel 2:

𝑦 (𝑡) − 0.9790𝑦 (𝑡 − 1) = 0.0150𝑢 (𝑡 − 1) + 𝜁 (𝑡) ; (36)

Submodel 3:

𝑦 (𝑡) − 0.9891𝑦 (𝑡 − 1) = 0.0020𝑢 (𝑡 − 1) + 𝜁 (𝑡) ; (37)

Submodel 4:

𝑦 (𝑡) − 0.9748𝑦 (𝑡 − 1) = 0.0161𝑢 (𝑡 − 1) + 𝜁 (𝑡) ; (38)

Submodel 5:

𝑦 (𝑡) − 0.9902𝑦 (𝑡 − 1) = 0.0051𝑢 (𝑡 − 1) + 𝜁 (𝑡) . (39)
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Figure 2: Train velocity tracking curve (this paper).
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Figure 3: Train velocity tracking curve (single model PFC).

In controller designing, we define 𝐿 = 2, 𝜂 = 0.9 accord-
ing to the weighted scheme; the parameters of predictive
function controller are 𝑁

1
= 5 and 𝑁

𝑢
= 2. The algorithm

proposed in this paper is compared with single-model PFC
algorithm and the result is shown in Figures 2 and 3.

From Figures 2 and 3, we can see that the proposed
scheme can track the ATO speed profile precisely and achieve
the tracking task. But at some local working points, the single-
model predictive function control algorithm cannot track the
objective curve precisely.The reason is that single-model pre-
dictive function control algorithm cannot describe the global
performance of nonlinear train operation. The multimodel
control algorithm has better control performance, and can
describe global state of nonlinear system.
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Figure 4: Train distance tracking curve (this paper).
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Figure 5: Train distance tracking curve (single model PFC).

In Figures 4 and 5, we can see that the algorithm of the
ATO speed controller proposed in this paper can make the
curve almost match together. And the results meet the accu-
rate requirement of the stopping. Because at some local work-
ing points the single-model PFC algorithm cannot describe
the operation character precisely, the distance trajectory
cannot track the given trajectory.

Figure 6 shows the tracking situation of train acceleration
and the given acceleration under the control of multimodel
predictive function control. Figure 7 shows the part weighted
changing curves of local model in multimodel control. The
results show that more placidly the stable weights changing
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Figure 6: Train acceleration tracking curve (this paper).
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Figure 7: The figure of weight change of local model.

can assure the transformation of global model. Then the
acceleration will not vibrate largely when the models trans-
form.

6. Conclusions

In this paper, we studied the speed controller of ATO system
by combining clustering multimodel weighted modeling
method with predictive function control algorithm.The pro-
posed algorithm solved the modeling and control problem of
nonlinear train operation system. Firstly, we used clustering
and identification algorithm to build local model set of train
operation process. At each sample time, weighted scheme
with error compensation is combined with every local model
according to the respective weight to obtain global model.
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After meeting linear requirement, we can design predictive
function controller. Finally, the simulation results are pro-
vided to show the effectiveness of the proposed algorithm.
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