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Correspondence should be addressed to Henryk Leszczyński; hleszcz@mat.ug.edu.pl
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The method of lines (MOL) for diffusion equations with Neumann boundary conditions is considered. These equations are
transformed by a discretization in space variables into systems of ordinary differential equations. The proposed ODEs satisfy the
mass conservation law. The stability of solutions of these ODEs with respect to discrete L2 norms and discrete 𝑊1,∞ norms is
investigated. Numerical examples confirm the parabolic behaviour of this model and very regular dynamics.

1. Introduction

Diffusion is one of several transport phenomena that occur in
nature. Many physical processes in metallurgy are controlled
by diffusion, for example, oxidation and sintering. There are
two ways to introduce the notion of diffusion: an atomistic
approach and continuum approach. The central role in
the diffusion theory of multicomponent systems plays the
Kirkendall effect [1], i.e., the discovery that drift in solids can
be generated by diffusion. The explanation of the effect and
an originalmethod of itsmathematical analysis was proposed
by Darken [2]. The Kirekndall effect describes what happens
when two solids diffuse into each other at different rates.
This subject is treated in many textbooks on solid-state and
publications [3–7]. In [8, 9] the authors deal with stability
of Kirkendall planes. The peculiarities of the deformation
in one-dimensional binary diffusion couple with a moving
interface are described in [10].

Our ternary system arises from the Fick second law. If the
overall molar density 𝑐 = 𝑐(𝑡, 𝑥) and component molar ratio
𝑁
𝑖
= 𝑁
𝑖
(𝑡, 𝑥) are defined by

𝑐 =

3

∑

𝑖=1

𝑐
𝑖
, (1)

(𝑐
𝑖
is the molar concentration of the 𝑖th component in the

mixture, [mole/dm3])

𝑁
𝑖
=
𝑐
𝑖

𝑐
, (2)

where this quatity is a ratio of 𝑖th component atoms to averall
number of atoms. Then we have

𝜕𝑁
𝑖

𝜕𝑡
= 𝐷
𝑖

𝜕
2
𝑁
𝑖

𝜕𝑥2
−

𝜕 (𝑁
𝑖
]𝐷)

𝜕𝑥
, 𝑖 = 1, 2, 3, (3)

where 𝐷
𝑖
denotes the intrinsic diffusivity of the 𝑖th compo-

nent and ]𝐷 is the drift velocity. In the paper 𝑁
𝑖
, 𝑖 = 1, 2, 3

will be denoted by 𝑢, V, and 𝑤, respectively.
The method proposed by Darken [2], was extended by

Danielewski et al. in [11, 12]. Their generalization of Darken’s
method describes the interdiffusion process in bounded
mixtures with constant concentrations and with variable
diffusivities of the elements.

We are interested in establishing an approximation
method of solutions to the ternary system mentioned above
by solutions of associated systems of ordinary differential
equations. These systems of ordinary differential equations
are obtained by using a discretization in spatial variables.

From the abundant literature concerning the numerical
method of lines (MOL) for classical PDEs we mention
the monographs [13–15]. MOL for time-dependent one-
dimensional systems of parabolic partial differential equa-
tions is proposed in [16]. Numerical examples for problems
such as Burger’s equation or nonlinear diffusion equation
with nonlinear boundary conditions were presented in [16].
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A posteriori error estimates for evolution problems (gen-
eral nonlinear parabolic problem with a strongly mono-
tonic elliptic operator, a linear nonstationary convection-
diffusion problem, and linear second-order hyperbolic prob-
lem) solved by the method of lines are derived in [17].

The aim of the paper is to construct a method of lines
for diffusion equations in three-component system with
Neumannboundary conditions.Weprove stability of approx-
imate solutions with respect to discrete 𝐿2 norms and discrete
𝑊
1,∞ norms.
Our research is concerned with the situation where the

initial data and solutions are at least of class𝐶2.This regularity
is assumed throughout the paper. It is observed that even
very irregular data in a short time give highly smooth
solutions (concentrations of the components). Moreover,
these concentrations are mixed, which means that they are
inside the interval (0, 1) for 𝑡 > 0. Therefore, we assume
that the initial data are of class 𝐶2. This observation also
justifies our assumptions that the Lipschitz constants and
second derivatives of solutions are bounded by some constant
independent of the discretization parameter. Under these
assumptions we prove that solutions ofODEs satisfy themax-
imum principle and remain inside the interval (0, 1). We also
show convergence and stability of the approximate solutions.
Our results confirm the parabolic nature of the equations
in question. The existence and uniqueness of solutions
of the interdiffusion problem in 𝑊

1,2 space was shown by
the variational methods in [12]. In [18] authors constructed
an example of an interdiffusion equation that does not fulfill
a peculiar type of parabolicity, meant in the sense of a
decreasing 𝐿2 norm. In Section 4 we show the convergence of
MOL in discrete𝑊1,∞ norms, while in Section 3 we attempt
to show convergence in discrete 𝐿2 norms. It turns out that we
have stability in 𝐿2 norms for certain values of the diffusion
coefficients𝐷

1
,𝐷
2
,𝐷
3
, which highlights the parabolic nature

of the equation.
In Section 5 we present numerical examples where we

consider Darken’s trajectory besides solutions. Since the
right-hand sides of ODEs are polynomial, we attempt in the
appendix to estimate the radius of convergence of Taylor
series solutions. It turns out that this radius is proportional
to ℎ
2. This means that Cauchy-Kovalevskaya theorem has

limited (restricted) applicability to our system. Because R-
K methods are close to Taylor expansions, our observation
points out that one should be careful with these methods.

2. Formulation of the Problem

We consider the system of diffusion equations:

𝜕𝑢

𝜕𝑡
= 𝐷
1

𝜕
2
𝑢

𝜕𝑥2
−

𝜕

𝜕𝑥
(𝑢 ]𝐷) ,

𝜕V
𝜕𝑡

= 𝐷
2

𝜕
2V
𝜕𝑥2

−
𝜕

𝜕𝑥
(V ]𝐷) ,

𝜕𝑤

𝜕𝑡
= 𝐷
3

𝜕
2
𝑤

𝜕𝑥2
−

𝜕

𝜕𝑥
(𝑤 ]𝐷) ,

(4)

on [0, 𝑇] × [−𝐿, 𝐿] ⊂ R2 with the initial boundary conditions

𝑢 (0, 𝑥) = 𝑢
0
(𝑥) ,

V (0, 𝑥) = V
0
(𝑥) ,

𝑤 (0, 𝑥) = 𝑤
0
(𝑥)

for 𝑥 ∈ [−𝐿, 𝐿]

𝜕𝑢

𝜕𝑥
= 0,

𝜕V
𝜕𝑥

= 0,
𝜕𝑤

𝜕𝑥
= 0 for 𝑥 = ±𝐿,

(5)

where the diffusion coefficients 𝐷
1
, 𝐷
2
, 𝐷
3
are different and

positive, say 𝐷
1
> 𝐷
2
> 𝐷
3
> 0, 𝑢

0
, V
0
, 𝑤
0
∈ 𝐶
2
([−𝐿, 𝐿],R

+
),

and 𝑢
0
+ V
0
+ 𝑤
0
= 1 for 𝑥 ∈ [−𝐿, 𝐿], and

]𝐷 = 𝐷
1

𝜕𝑢

𝜕𝑥
+ 𝐷
2

𝜕V
𝜕𝑥

+ 𝐷
3

𝜕𝑤

𝜕𝑥
, (6)

is the drift velocity. These data imply 𝑢 + V + 𝑤 ≡ 1.
We formulate themethod of lines corresponding to (4) on

a regular mesh with step ℎ such that𝑁ℎ = 𝐿. The difference
operators 𝛿(2), 𝛿+, 𝛿− are defined in the following way:

𝛿
+
𝑢
(𝑖)
=
𝑢
(𝑖+1)

− 𝑢
(𝑖)

ℎ
, 𝛿

−
𝑢
(𝑖)
=
𝑢
(𝑖)
− 𝑢
(𝑖−1)

ℎ
,

𝛿
(2)
𝑢
(𝑖)
=
𝑢
(𝑖+1)

− 2𝑢
(𝑖)
+ 𝑢
(𝑖−1)

ℎ2
= 𝛿
+
𝛿
−
𝑢
(𝑖)
.

(7)

Denote by k(𝑗) the discrete drift velocity k(𝑗) = 𝐷
1
𝛿
+
𝑢
(𝑗)
+

𝐷
2
𝛿
+V(𝑗) + 𝐷

3
𝛿
+
𝑤
(𝑗). We will consider the following ODE

system:

𝑑

𝑑𝑡
𝑢
(𝑗)
= 𝐷
1
𝛿
(2)
𝑢
(𝑗)
− 𝑢
(𝑗)
𝛿
−k(𝑗)

−
1

2
𝛿
+
𝑢
(𝑗)
⋅ k(𝑗) −

1

2
𝛿
−
𝑢
(𝑗)
⋅ k(𝑗−1),

𝑑

𝑑𝑡
V(𝑗) = 𝐷

2
𝛿
(2)V(𝑗) − V(𝑗)𝛿−k(𝑗)

−
1

2
𝛿
+V(𝑗) ⋅ k(𝑗) −

1

2
𝛿
−V(𝑗) ⋅ k(𝑗−1),

𝑑

𝑑𝑡
𝑤
(𝑗)
= 𝐷
3
𝛿
(2)
𝑤
(𝑗)
− 𝑤
(𝑗)
𝛿
−k(𝑗)

−
1

2
𝛿
+
𝑤
(𝑗)
⋅ k(𝑗) −

1

2
𝛿
−
𝑤
(𝑗)
⋅ k(𝑗−1),

(8)

for 𝑗 = −𝑁, . . . , 𝑁 with the initial conditions

𝑢
(𝑗)
(0) = 𝑢

0
(ℎ𝑗) ≥ 0,

V(𝑗) (0) = V
0
(ℎ𝑗) ≥ 0,

𝑤
(𝑗)
(0) = 𝑤

0
(ℎ𝑗) ≥ 0,

𝑗 = −𝑁, . . . , 𝑁.

(9)
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The discrete Neumann boundary conditions

𝑢
(𝑁+1)

= 𝑢
(𝑁−1)

, V(𝑁+1) = V(𝑁−1),

𝑤
(𝑁+1)

= 𝑤
(𝑁−1)

, 𝑢
(−𝑁−1)

= 𝑢
(−𝑁+1)

,

V(−𝑁−1) = V(−𝑁+1), 𝑤
(−𝑁−1)

= 𝑤
(−𝑁+1)

(10)

can be regarded as a convenient definition of auxiliary
quantities: 𝑢(𝑁+1), V(𝑁+1), 𝑤(𝑁+1), 𝑢(−𝑁−1), V(−𝑁−1), 𝑤(−𝑁−1).

Remark 1. Local existence and uniqueness of solutions of (8)
with the above conditions follows from the general theory of
ODE systems.

Suppose that we have two constants𝑀
0
,𝑀, independent

of ℎ, satisfying the inequality𝑀 ≥ 𝑀
0
> 0.This assumption is

valid throughout the paper.𝑀
0
will be the Lipschitz constant

for the initial functions 𝑢
0
, V
0
, 𝑤
0
.𝑀 will play the same role

for 𝑢, V, 𝑤

X
0
= {(𝑢

0
, V
0
, 𝑤
0
) ∈ R
3(2𝑁+1)

: 𝑢
(𝑗)

0
, V(𝑗)
0
, 𝑤
(𝑗)

0
≥ 0,

𝑢
(𝑗)

0
+ V(𝑗)
0
+ 𝑤
(𝑗)

0
= 1 for 𝑗 = −𝑁, . . . , 𝑁

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑖)

0
− 𝑢
(𝑗)

0

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
0

󵄨󵄨󵄨󵄨𝑖 − 𝑗
󵄨󵄨󵄨󵄨 ℎ,

󵄨󵄨󵄨󵄨󵄨󵄨
V(𝑖)
0
− V(𝑗)
0

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
0

󵄨󵄨󵄨󵄨𝑖 − 𝑗
󵄨󵄨󵄨󵄨 ℎ

󵄨󵄨󵄨󵄨󵄨󵄨
𝑤
(𝑖)

0
− 𝑤
(𝑗)

0

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
0

󵄨󵄨󵄨󵄨𝑖 − 𝑗
󵄨󵄨󵄨󵄨 ℎ} ,

X = {(𝑢, V, 𝑤) : [0, 𝑇] 󳨀→ R
3(2𝑁+1)

: 𝑢
(𝑗)
, V(𝑗), 𝑤(𝑗) ≥ 0,

𝑢
(𝑗)
+ V(𝑗) + 𝑤(𝑗) = 1 for 𝑗 = −𝑁, . . . , 𝑁

󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑖)
− 𝑢
(𝑗)󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
󵄨󵄨󵄨󵄨𝑖 − 𝑗

󵄨󵄨󵄨󵄨 ℎ,
󵄨󵄨󵄨󵄨󵄨
V(𝑖) − V(𝑗)

󵄨󵄨󵄨󵄨󵄨
≤ 𝑀

󵄨󵄨󵄨󵄨𝑖 − 𝑗
󵄨󵄨󵄨󵄨 ℎ

󵄨󵄨󵄨󵄨󵄨
𝑤
(𝑖)
− 𝑤
(𝑗)󵄨󵄨󵄨󵄨󵄨

≤ 𝑀
󵄨󵄨󵄨󵄨𝑖 − 𝑗

󵄨󵄨󵄨󵄨 ℎ} .

(11)

We will refer to these Lipschitz-type inequalities in the
definitions of X

0
and X as 𝑀

0
-Lipschitz and 𝑀-Lipschitz,

respectively. It is assumed that approximate solutions are
Lipschitz continuous with respect to spatial variable.The Lip-
schitz continuity of approximate solutions can be proved rig-
orously; however, we omit the proof for brevity. To justify our
proceeding, consider solutions of ternary systems. They are
bounded together with their first and second derivatives.

If the initial data belong to X
0
the equations for 𝑤 can

be eliminated from (8). The following lemma allows us to
express (8) as the system of 2(2𝑁 + 1) ordinary differential
equations.

Lemma 2. Suppose that (𝑢, V, 𝑤) is the solution of (8)with the
initial condition (𝑢

0
, V
0
, 𝑤
0
) ∈ X
0
. Assume that 𝑢, V, 𝑤 are𝑀-

Lipschitz. Then (𝑢, V, 𝑤) ∈ X.

Proof. First, we prove that 𝑢(𝑗) + V(𝑗) + 𝑤
(𝑗)

= 1 for 𝑗 =

−𝑁, . . . , 𝑁. Let 𝑔 = 𝑢 + V + 𝑤. We have

𝑑

𝑑𝑡
(𝑔
(𝑗)
) = [1 − 𝑔

(𝑗)
] 𝛿
−k(𝑗)

−
1

2
𝛿
+
(𝑔
(𝑗)
) ⋅ k(𝑗) −

1

2
𝛿
−
(𝑔
(𝑗)
) ⋅ k(𝑗−1),

(12)

for 𝑗 = −𝑁, . . . , 𝑁 with the initial condition 𝑔(𝑗)(0) = 1 and
the discrete Neumann boundary conditions. It follows from
the general ODE theory that there exists exactly one solution
𝑔
(𝑗)
≡ 1.
We next show that 𝑢(𝑗), V(𝑗), 𝑤(𝑗) ≥ 0 on [0, 𝑇] for 𝑗 =

−𝑁, . . . , 𝑁. Suppose first that 𝑢(𝑗)(0), V(𝑗)(0), 𝑤(𝑗)(0) > 0. We
claim that 𝑢(𝑗), V(𝑗), 𝑤(𝑗) > 0 on [0, 𝑇] for 𝑗 = −𝑁, . . . , 𝑁. To
obtain a contradiction, we suppose that there is 𝑡̃ > 0 such
that 𝑢(𝑗)(𝑡), V(𝑗)(𝑡), 𝑤(𝑗)(𝑡) > 0 for 𝑡 < 𝑡̃ and 𝑗 = −𝑁, . . . , 𝑁 and
there is 𝑖 ∈ {−𝑁, . . . , 𝑁} such that 𝑢(𝑖)(𝑡̃) = 0. We have
𝑢
(𝑗)
(𝑡̃), V(𝑗)(𝑡̃), 𝑤(𝑗)(𝑡̃) ≥ 0 for 𝑗 = −𝑁, . . . , 𝑁. Then

𝑑

𝑑𝑡
𝑢
(𝑖)
(𝑡̃) ≤ 0, 𝛿

+
𝑢
(𝑖)
(𝑡̃) ≥ 0,

𝛿
−
𝑢
(𝑖)
(𝑡̃) ≤ 0.

(13)

We exploit (8) at the point 𝑡̃ to get the following inequality:

0 ≥
𝑑

𝑑𝑡
𝑢
(𝑖)
(𝑡̃) = 𝐷

1
𝛿
(2)
𝑢
(𝑖)
(𝑡̃) −

1

2
𝛿
+
𝑢
(𝑖)
(𝑡̃) k(𝑖)

−
1

2
𝛿
−
𝑢
(𝑖)
(𝑡̃) k(𝑖−1)

= 𝛿
+
𝑢
(𝑖)
(𝑡̃) [

𝐷
1

ℎ
− k(𝑖)]

− 𝛿
−
𝑢
(𝑖)
(𝑡̃) [

𝐷
1

ℎ
+ k(𝑖−1)] .

(14)

The expressions in the brackets are positive for small ℎ. Hence

𝛿
+
𝑢
(𝑖)
(𝑡̃) = 0, 𝛿

−
𝑢
(𝑖)
(𝑡̃) = 0. (15)

We see at once that 𝑢(𝑖)(𝑡̃) = 0 for 𝑖 = −𝑁, . . . , 𝑁. It follows
from the general ODE theory [19, page 108] that 𝑢(𝑡) = 0 for
𝑡 ∈ [0, 𝑇], contrary to strict initial inequalities.This argument
also settles the case of V(𝑖)(𝑡̃) = 0 or𝑤(𝑖)(𝑡̃) = 0.Wenow turn to
the case 𝑢(0, ⋅), V(0, ⋅), 𝑤(0, ⋅) ≥ 0. It follows from the theorem
on the continuous dependence on initial data [19, page 145]
that 𝑢(𝑗), V(𝑗), 𝑤(𝑗) ≥ 0 for 𝑗 = −𝑁, . . . , 𝑁.

Denote by ℎ∑󸀠
𝑗
the trapezoidal sum. More precisely,

ℎ∑

𝑗

󸀠

𝑢
(𝑗)
= ℎ

𝑁−1

∑

𝑗=−𝑁

𝑢
(𝑗)
+ 𝑢
(𝑗+1)

2
. (16)

This quantity corresponds to the total mass of 𝑢. The MOL
system is conservative. It preserves the mass of 𝑢, V.
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Lemma 3. Suppose that 𝑢, V, 𝑤 are solutions of (8) such that
(𝑢
0
, V
0
, 𝑤
0
) ∈ X
0
. Then

ℎ∑

𝑗

󸀠

𝑢
(𝑗)
= const, ℎ∑

𝑗

󸀠

V(𝑗) = const. (17)

Proof. Note that 𝛿+𝑢(𝑗) = 𝛿−𝑢(𝑗+1) for 𝑗 = −𝑁, . . . 𝑁. Hence

ℎ∑

𝑗

󸀠

𝐷
1
𝛿
(2)
𝑢
(𝑗)
= ℎ∑

𝑗

󸀠

[𝐷
1
𝛿
+
𝑢
(𝑗)
− 𝐷
1
𝛿
+
𝑢
(𝑗−1)

] = 0,

ℎ∑

𝑗

󸀠

(−𝑢
(𝑗)
𝛿
−k(𝑗) −

𝛿
+
𝑢
(𝑗)

2
⋅ k(𝑗) −

𝛿
−
𝑢
(𝑗)

2
⋅ k(𝑗−1))

=
ℎ𝐷
󸀠

1

2
∑

𝑗

󸀠

(−𝑢
(𝑗)
𝛿
+
𝑢
(𝑗)
+ 𝑢
(𝑗)
𝛿
+
𝑢
(𝑗−1)

−𝑢
(𝑗+1)

𝛿
+
𝑢
(𝑗)
+ 𝑢
(𝑗−1)

𝛿
+
𝑢
(𝑗−1)

)

+
ℎ𝐷
󸀠

2

2
∑

𝑗

󸀠

(−𝑢
(𝑗)
𝛿
+V(𝑗) + 𝑢(𝑗)𝛿+V(𝑗−1)

−𝑢
(𝑗+1)

𝛿
+V(𝑗) + 𝑢(𝑗−1)𝛿+V(𝑗−1)) = 0,

(18)

where𝐷󸀠
1
= 𝐷
1
−𝐷
3
and𝐷󸀠

2
= 𝐷
2
−𝐷
3
. It follows from these

equations that

𝑑

𝑑𝑡
(ℎ∑

𝑗

󸀠

𝑢
(𝑗)
) = ℎ∑

𝑗

󸀠 𝑑

𝑑𝑡
𝑢
(𝑗)
= 0. (19)

3. Stability with respect to Discrete 𝐿2 Norms

The stability of the method of lines with respect to discrete 𝐿2
norm is established by the following theorem.

Theorem 4. Suppose that

(1) (𝑢, V, 𝑤) ∈ X is the unique solution of system (8) with
the initial condition (𝑢

0
, V
0
, 𝑤
0
) ∈ X
0
,

(2) (𝑢, V, 𝑤) ∈ X is an approximate solution of (8)
with the initial condition (𝑢

0
, V
0
, 𝑤
0
) ∈ X

0
and with

perturbations of the right-hand sides denoted by 𝜉(𝑗)
1
,

𝜉
(𝑗)

2
, 𝜉(𝑗)
3

for 𝑗 = −𝑁, . . . , 𝑁,
(3) consider

−𝐷
2

2
+ 14𝐷

1
𝐷
2
− 𝐷
2

1
> 0,

−𝐷
2

3
+ 14𝐷

1
𝐷
3
− 𝐷
2

1
> 0,

−𝐷
2

3
+ 14𝐷

2
𝐷
3
− 𝐷
2

2
> 0.

(20)

Then we have

𝐴
𝑡
≤ 𝐶
1
[𝐴
0
+
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩] exp (𝐾1𝑡) , (21)

where𝐾
1
, 𝐶
1
> 0 are constants independent of ℎ and

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 = max
0≤𝑡≤𝑇

ℎ∑

𝑗

󸀠

[(𝜉
(𝑗)

1
(𝑡))
2

+ (𝜉
(𝑗)

2
(𝑡))
2

+ (𝜉
(𝑗)

3
(𝑡))
2

] ,

𝐴
𝑡
= ℎ∑

𝑗

󸀠

[(𝑢
(𝑗)
(𝑡) − 𝑢

(𝑗)
(𝑡))
2

+ (V(𝑗) (𝑡) − V(𝑗) (𝑡))
2

+(𝑤
(𝑗)
(𝑡) − 𝑤

(𝑗)
(𝑡))
2

] .

(22)

Proof. Denote by Δ𝑢, ΔV, Δ𝑤 the differences between the
approximate and exact solutions of (8).

The proof is based on the following observation:

𝑑

𝑑𝑡
𝐴
𝑡
= 2ℎ∑

𝑗

󸀠

[Δ𝑢
(𝑗) 𝑑

𝑑𝑡
(𝑢
(𝑗)
− 𝑢
(𝑗)
)

+ ΔV(𝑗)
𝑑

𝑑𝑡
(V(𝑗) − V(𝑗))

+Δ𝑤
(𝑗) 𝑑

𝑑𝑡
(𝑤
(𝑗)
− 𝑤
(𝑗)
)]

= ℎ∑

𝑗

󸀠

2Δ𝑢
(𝑗)
{𝐷
1
𝛿
(2)
Δ𝑢
(𝑗)
− 𝑢
(𝑗)
𝛿
−k(𝑗) + 𝑢(𝑗)𝛿−k(𝑗)

−
1

2
𝛿
+
𝑢
(𝑗)
⋅ k(𝑗) +

1

2
𝛿
+
𝑢
(𝑗)
⋅ k(𝑗)

−
1

2
𝛿
−
𝑢
(𝑗)
⋅ k(𝑗−1) +

1

2
𝛿
−
𝑢
(𝑗)
⋅ k(𝑗−1)}

+ ℎ∑

𝑗

󸀠

2ΔV(𝑗) {
𝑑

𝑑𝑡
(V(𝑗) − V(𝑗))}

+ ℎ∑

𝑗

󸀠

2Δ𝑤
(𝑗)
{
𝑑

𝑑𝑡
(𝑤
(𝑗)
− 𝑤
(𝑗)
)}

+ ℎ∑

𝑗

󸀠

{2Δ𝑢
(𝑗)
𝜉
(𝑗)

1
+ 2ΔV(𝑗)𝜉(𝑗)

2
+ 2Δ𝑤

(𝑗)
𝜉
(𝑗)

3
} .

(23)

The terms (𝑑/𝑑𝑡)(V(𝑗) − V(𝑗)) and (𝑑/𝑑𝑡)(𝑤
(𝑗)

− 𝑤
(𝑗)
) are

calculated similarly as (𝑑/𝑑𝑡)(𝑢(𝑗) − 𝑢(𝑗)). Set

𝑍
1
= 𝛿
+
Δ𝑢
(𝑗)
(𝑡) , 𝑍

2
= 𝛿
+
ΔV(𝑗) (𝑡) ,

𝑍
3
= 𝛿
+
Δ𝑤
(𝑗)
(𝑡) .

(24)
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We apply the summation by parts and obtain

𝑑

𝑑𝑡
𝐴
𝑡
= ℎ

𝑁−1

∑

𝑗=−𝑁

{−2𝐷
1
(𝑍
1
)
2

− 2𝐷
2
(𝑍
2
)
2

− 2𝐷
3
(𝑍
3
)
2

+ 𝑍
1
(Δ𝑢
(𝑗+1)

+ Δ𝑢
(𝑗)
) ⋅ k(𝑗)

+ 𝑍
2
(ΔV(𝑗+1) + ΔV(𝑗)) ⋅ k(𝑗)

+ 𝑍
3
(Δ𝑤
(𝑗+1)

+ Δ𝑤
(𝑗)
) ⋅ k(𝑗)

+ 𝐷
1
(𝑍
1
)
2

(𝑢
(𝑗+1)

+ 𝑢
(𝑗)
)

+ 𝐷
2
𝑍
1
𝑍
2
(𝑢
(𝑗+1)

+ 𝑢
(𝑗)
)

+ 𝐷
3
𝑍
1
𝑍
3
(𝑢
(𝑗+1)

+ 𝑢
(𝑗)
)

+ 𝐷
1
𝑍
1
𝑍
2
(V(𝑗+1) + V(𝑗))

+ 𝐷
2
(𝑍
2
)
2

(V(𝑗+1) + V(𝑗))

+ 𝐷
3
𝑍
2
𝑍
3
(V(𝑗+1) + V(𝑗))

+ 𝐷
1
𝑍
1
𝑍
3
(𝑤
(𝑗+1)

+ 𝑤
(𝑗)
)

+ 𝐷
2
𝑍
2
𝑍
3
(𝑤
(𝑗+1)

+ 𝑤
(𝑗)
)

+𝐷
3
(𝑍
3
)
2

(𝑤
(𝑗+1)

+ 𝑤
(𝑗)
)}

+ ℎ∑

𝑗

󸀠

{2Δ𝑢
(𝑗)
𝜉
(𝑗)

1
+ 2ΔV(𝑗)𝜉(𝑗)

2
+ 2Δ𝑤

(𝑗)
𝜉
(𝑗)

3
} .

(25)

From Lemma 3 we have 𝑍
3
= −𝑍
1
− 𝑍
2
. Set

2𝐴
(𝑖)
= (𝑢
(𝑖+1)

+ 𝑢
(𝑖)
) , 2𝐵

(𝑖)
= (V(𝑖+1) + V(𝑖)) ,

2𝐶
(𝑖)
= (𝑤
(𝑖+1)

+ 𝑤
(𝑖)
) .

(26)

Hence the sign of (𝑑/𝑑𝑡)𝐴
𝑡
depends on the quadratic form

𝑇 = [𝑇
𝑖𝑗
]
𝑖,𝑗=1,2

:

𝑇
11
= − 2 (𝐷

1
+ 𝐷
3
) + 2 (𝐷

1
− 𝐷
3
) (𝐴
(𝑖)
− 𝐶
(𝑖)
) ,

𝑇
12
= 𝑇
21
= −2𝐷

3
+ 𝐷
󸀠

2
(𝐴
(𝑖)
− 𝐶
(𝑖)
) + 𝐷

󸀠

1
(𝐵
(𝑖)
− 𝐶
(𝑖)
) ,

𝑇
22
= − 2 (𝐷

2
+ 𝐷
3
) + 2𝐷

󸀠

2
(𝐵
(𝑖)
− 𝐶
(𝑖)
) ,

(27)

which is negative definite for𝐷
1
,𝐷
2
,𝐷
3
satisfying condition

(20) of Theorem 4. We have

𝑑

𝑑𝑡
𝐴
𝑡
≤ − 𝐾ℎ

𝑁−1

∑

𝑗=−𝑁

(𝑍
2

1
+ 𝑍
2

2
+ 𝑍
2

3
)

+ ℎ∑

𝑗

󸀠

(2Δ𝑢
(𝑗)
𝜉
(𝑗)

1
+ 2ΔV(𝑗)𝜉(𝑗)

2
+ 2Δ𝑤

(𝑗)
𝜉
(𝑗)

3
)

+ ℎ

𝑁−1

∑

𝑗=−𝑁

{𝑍
1
(Δ𝑢
(𝑗+1)

+ Δ𝑢
(𝑗)
)

× (𝐷
1
𝛿
+
𝑢
(𝑗)
+ 𝐷
2
𝛿
+V(𝑗) + 𝐷

3
𝛿
+
𝑤
(𝑗)
)

+ 𝑍
2
(ΔV(𝑗+1) + ΔV(𝑗))

× (𝐷
1
𝛿
+
𝑢
(𝑗)
+ 𝐷
2
𝛿
+V(𝑗) + 𝐷

3
𝛿
+
𝑤
(𝑗)
)

+ 𝑍
3
(Δ𝑤
(𝑗+1)

+ Δ𝑤
(𝑗)
)

× (𝐷
1
𝛿
+
𝑢
(𝑗)
+ 𝐷
2
𝛿
+V(𝑗) + 𝐷

3
𝛿
+
𝑤
(𝑗)
)}

= 𝐼
1
+ 𝐼
2
+ 𝐼
3
.

(28)

It follows from the inequality

|𝑎𝑏| ≤
1

2
(𝐾𝑎
2
+
𝑏
2

𝐾
) for 𝐾 > 0 (29)

that

󵄨󵄨󵄨󵄨𝐼2
󵄨󵄨󵄨󵄨 ≤

ℎ

𝐾
∑

𝑗

󸀠

(Δ𝑢
(𝑗)
)
2

+ (ΔV(𝑗))
2

+ (Δ𝑤
(𝑗)
)
2

+ 𝐾
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 ,

󵄨󵄨󵄨󵄨𝐼3
󵄨󵄨󵄨󵄨 ≤ ℎ𝑀

1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)

×

𝑁−1

∑

𝑗=−𝑁

(𝑍
1
Δ𝑢
(𝑗+1)

+ 𝑍
2
ΔV(𝑗+1) + 𝑍

3
Δ𝑤
(𝑗+1)

)

+ ℎ𝑀
1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)

×

𝑁−1

∑

𝑗=−𝑁

(𝑍
1
Δ𝑢
(𝑗)
+ 𝑍
2
ΔV(𝑗) + 𝑍

3
Δ𝑤
(𝑗)
)

≤ 𝐾ℎ

𝑁−1

∑

𝑗=−𝑁

(𝑍
2

1
+ 𝑍
2

2
+ 𝑍
2

3
)

+
ℎ𝑀
2

1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)
2

𝐾

×∑

𝑗

󸀠

((Δ𝑢
(𝑗)
)
2

+ (ΔV(𝑗))
2

+ (Δ𝑤
(𝑗)
)
2

) .

(30)
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Hence

𝑑

𝑑𝑡
𝐴
𝑡
≤ − 𝐾ℎ

𝑁−1

∑

𝑗=−𝑁

(𝑍
2

1
+ 𝑍
2

2
+ 𝑍
2

3
)

+ 𝐾ℎ

𝑁−1

∑

𝑗=−𝑁

(𝑍
2

1
+ 𝑍
2

2
+ 𝑍
2

3
)

+

(1 +𝑀
2

1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)
2

)

𝐾
𝐴
𝑡
+ 𝐾

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩 .

(31)

We conclude from this differential inequality that

𝐴
𝑡
≤ 𝐶
1
(𝐴
0
+
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩) exp(

(1 +𝑀
2

1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)
2

)

𝐾
𝑡) ,

(32)

where

𝐶
1
=

𝐾
2

(1 +𝑀
2

1
(𝐷
1
+ 𝐷
2
+ 𝐷
3
)
2

)

. (33)

This finishes the proof.

4. Stability with respect to
Discrete 𝑊1,∞ Norms

We define the norm ‖ ⋅ ‖
1,∞

in R2𝑁+1 as follows:

‖𝑢‖1,∞ = ‖𝑢‖∞ +
󵄩󵄩󵄩󵄩𝛿
+
𝑢
󵄩󵄩󵄩󵄩∞

, (34)

where ‖𝑢‖
∞
= max

−𝑁≤𝑗≤𝑁
|𝑢
(𝑗)
| (with the discrete Neumann

convention).

Theorem 5. Suppose that

(1) (𝑢, V, 𝑤) ∈ X is the exact solution of (8)with the initial
condition (𝑢

0
, V
0
, 𝑤
0
) ∈ X
0
,

(2) (𝑢, V, 𝑤) ∈ X is an approximate solution of (8)
with the initial condition (𝑢

0
, V
0
, 𝑤
0
) ∈ X

0
and with

perturbations of the right-hand sides denoted by 𝜉(𝑗)
1
,

𝜉
(𝑗)

2
, 𝜉(𝑗)
3

for 𝑗 = −𝑁, . . . , 𝑁.

Then we have

‖Δ𝑢(𝑡)‖
1,∞

+ ‖ΔV(𝑡)‖1,∞ ≤ 𝐾̃
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

𝑡
1/2
, (35)

where 𝐾̃ is some constant independent of ℎ.

Proof. It is easily seen that Δ𝑢 satisfies differential equation

𝑑

𝑑𝑡
Δ𝑢
(𝑖)
= [𝐷

1
𝛿
(2)
Δ𝑢
(𝑖)
− 𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
(2)
Δ𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
(2)
ΔV(𝑖))

− Δ𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
(2)
𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
(2)V(𝑖))

−
1

2
𝛿
+
𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
+
Δ𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
+
ΔV(𝑖))

−
1

2
𝛿
+
Δ𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
+
𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
+V(𝑖))

−
1

2
𝛿
−
𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
−
Δ𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
−
ΔV(𝑖))

−
1

2
𝛿
−
Δ𝑢
(𝑖)
(𝐷
󸀠

1
𝛿
−
𝑢
(𝑖)
+ 𝐷
󸀠

2
𝛿
−V(𝑖))]

+ 𝜉
(𝑖)

1
(𝑡) .

(36)

ΔV satisfies a similar differential equation.
Suppose that we have Green functions 𝐺1,𝑖,𝑗, 𝐺2,𝑖,𝑗 corre-

sponding to the differential-difference operator:

[
[

[

𝑑

𝑑𝑡
− 𝐷
1
𝛿
(2)
+ 𝐷
󸀠

1
𝑢
(𝑖)
𝛿
(2)

𝐷
󸀠

2
𝑢
(𝑖)
𝛿
(2)

𝐷
󸀠

1
V(𝑖)𝛿(2)

𝑑

𝑑𝑡
− 𝐷
2
𝛿
(2)
+ 𝐷
󸀠

2
V(𝑖)𝛿(2)

]
]

]

(37)

such that

ℎ∑

𝑗

𝐺
𝑘,𝑖,𝑗

(𝑡, 𝑠) ≤ 𝐶,

ℎ∑

𝑗

𝛿
+
𝐺
𝑘,𝑖,𝑗

(𝑡, 𝑠) ≤
𝐶

√𝑡 − 𝑠
,

(38)

where 𝐶 > 0 and 𝑘 = 1, 2 (see [20]). Using the above Green
functions we express the differencesΔ𝑢(𝑖) andΔV(𝑖) as follows:

[
Δ𝑢
(𝑖)
(𝑡)

ΔV(𝑖) (𝑡)
] = ∫

𝑡

0

ℎ∑

𝑗

[
𝐺
1,𝑖,𝑗

(𝑡, 𝑠) 𝑃
1,𝑗
(𝑠)

𝐺
2,𝑖,𝑗

(𝑡, 𝑠) 𝑃
2,𝑗
(𝑠)
] 𝑑𝑠, (39)

where 𝑃
1,𝑗
(𝑡), 𝑃

2,𝑗
(𝑡) depend on Δ𝑢

(𝑗), ΔV(𝑗), 𝛿
+
Δ𝑢
(𝑗),

𝛿
+
Δ𝑢
(𝑗−1), 𝛿+ΔV(𝑗), 𝛿+ΔV(𝑗−1) and satisfy the estimates

󵄩󵄩󵄩󵄩󵄩
𝑃
𝑖
(𝑡)
󵄩󵄩󵄩󵄩󵄩∞

≤ 𝐶
0
(‖Δ𝑢 (𝑡)‖∞ +

󵄩󵄩󵄩󵄩𝛿
+
Δ𝑢 (𝑡)

󵄩󵄩󵄩󵄩∞
)

+ 𝐶
0
(‖ΔV (𝑡)‖∞ +

󵄩󵄩󵄩󵄩𝛿
+
ΔV (𝑡)󵄩󵄩󵄩󵄩∞)

+
󵄩󵄩󵄩󵄩𝜉𝑖 (𝑡)

󵄩󵄩󵄩󵄩∞
, 𝑖 = 1, 2,

(40)
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Figure 1: Initial values (a) and experimental values of 𝑢, V, and 𝑤 for 𝑡 = 0.01, ℎ = .002 (b).

where 𝐶
0
depends on𝑀

1
,𝐷󸀠
1
,𝐷󸀠
2
. Hence

‖Δ𝑢 (𝑡)‖∞ ≤ ∫

𝑡

0

𝐶
󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝑠)
󵄩󵄩󵄩󵄩󵄩∞

𝑑𝑠

≤ ∫

𝑡

0

𝐶

√𝑡 − 𝑠

󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝑠)
󵄩󵄩󵄩󵄩󵄩∞

𝑑𝑠

≤ ∫

𝑡

0

𝐶𝐶
0

√𝑡 − 𝑠

× (‖Δ𝑢 (𝑠)‖1,∞ + ‖ΔV (𝑠)‖1,∞) +
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

𝑑𝑠,

󵄩󵄩󵄩󵄩𝛿
+
Δ𝑢 (𝑡)

󵄩󵄩󵄩󵄩∞
≤ ∫

𝑡

0

𝐶

√𝑡 − 𝑠

󵄩󵄩󵄩󵄩󵄩
𝑃
1
(𝑠)
󵄩󵄩󵄩󵄩󵄩∞

𝑑𝑠

≤ ∫

𝑡

0

𝐶𝐶
0

√𝑡 − 𝑠

× (‖Δ𝑢 (𝑠)‖1,∞ + ‖ΔV (𝑠)‖1,∞) +
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

𝑑𝑠,

(41)

where
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

= max
0≤𝑡≤𝑇

{
󵄩󵄩󵄩󵄩𝜉1(𝑡)

󵄩󵄩󵄩󵄩∞
+
󵄩󵄩󵄩󵄩𝜉2(𝑡)

󵄩󵄩󵄩󵄩∞
} . (42)

The same inequalities are satisfied by ΔV(𝑡), 𝛿+ΔV(𝑡). We get

‖Δ𝑢 (𝑡)‖∞ +
󵄩󵄩󵄩󵄩𝛿
+
Δ𝑢 (𝑡)

󵄩󵄩󵄩󵄩∞
+ ‖ΔV (𝑡)‖∞ +

󵄩󵄩󵄩󵄩𝛿
+
ΔV (𝑡)󵄩󵄩󵄩󵄩∞

≤ ∫

𝑡

0

4𝐶𝐶
0

√𝑡 − 𝑠
(‖Δ𝑢(𝑠)‖1,∞ + ‖ΔV(𝑠)‖1,∞ +

󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

) .

(43)

It follows from Lemma A.1 that

‖Δ𝑢(𝑡)‖1,∞ + ‖ΔV(𝑡)‖1,∞ ≤ 𝐾̃
󵄩󵄩󵄩󵄩𝜉
󵄩󵄩󵄩󵄩∞

𝑡
1/2
, (44)

where 𝐾̃ depends on 𝐶, 𝐶
0
.

5. Numerical Simulations

Numerical Example 1. Set 𝐿 = 1, 𝐷
1
= 0.2, 𝐷

2
= 0.15,

𝐷
3
= 0.08 and the initial distributions 𝑢, V are almost step

functions, regularized near zero, whereas 𝑤 starts from a
droplet:

𝑢 (0, 𝑥) = Θ (100𝑥) − Φ (100𝑥) + 1
(.01,1]

(𝑥) ,

Θ (𝑥) = (−
1

4
𝑥
3
+
3

4
𝑥 +

9

20
) 1
[−1,1]

(𝑥) ,

V (0, 𝑥) = Θ (−100𝑥) − Φ (100𝑥) + 1
[−1,.01)

(𝑥) ,

𝑤 (0, 𝑥) = 2 ⋅ Φ (100𝑥) ,

Φ (𝑥) = (
1

10
𝑥
4
−
1

5
𝑥
2
+
1

10
) 1
[−1,1]

(𝑥) ,

(45)

for 𝑥 ∈ [−1, 1] where 1 stands for a characteristic function.
We use a second-order Runge-Kutta method with time step
ℎ
𝑡
= 2 × 10

−6. Here 𝐷
1
, 𝐷
2
, 𝐷
3
satisfy condition (20)

of Theorem 4. Note that (𝑢
0
, V
0
, 𝑤
0
) ∈ X

0
with 𝑀 =

𝑀
0
= 30. In Figure 1(a) we give experimental values of the

solution (𝑢, V, 𝑤) of (8) for 𝑡 = 0.01 and ℎ = .002 with
the initial condition (45) (a). Since ℎ = .002 we divide
[−1, 1] into 1000 intervals. We put the values of 𝑢, V, 𝑤 at
𝑡 = 0. Note that 𝑢

0
is increasing on the interval [−1, 1].

Furthermore V
0
is decreasing on the interval [−1, 1].The even

function 𝑤
0
(“marker”) is increasing on the interval [−1, 0]

and decreasing on the interval [0, 1]. We consider the differ-
ential equations describing the marker position (𝑑𝑧/𝑑𝑡)(𝑡) =
]𝐷(𝑡, 𝑧(𝑡)), where ]𝐷 is the Darken velocity. We use a second-
order Runge-Kutta method. The approximate position of the
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Figure 2: Evolution of concentrations 𝑢, V (a) and experimental position of marker 𝑧 = 𝑧(𝑡) for 0 ≤ 𝑡 ≤ 0.01 (b).
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Figure 3: Experimental values of 𝑢, V, and 𝑤 for 𝑡 = 0.01, ℎ = .002.

marker denoted by z (Figure 2(b)) forms a trajectory in (𝑢, V)-
plane shown in Figure 2(a).This object traces the evolution of
concentrations of diffunding substances 𝑢, V.

Numerical Example 2. Set 𝐿 = 1, 𝐷
1
= 0.2, 𝐷

2
= 0.15, 𝐷

3
=

0.08 and the initial distribution of 𝑤 is constant:

𝑢 (0, 𝑥) = Ψ (100𝑥) +
5

11
1
𝐵
(𝑥) +

10

11
1
(.01,1]

(𝑥) ,

V (0, 𝑥) = −Ψ (100𝑥) +
5

11
1
𝐵
(𝑥) +

10

11
1
[−1,−.01)

(𝑥) ,

𝑤 (0, 𝑥) =
1

11
,

Ψ (𝑥) = (
30

176
𝑥
5
−
50

88
𝑥
3
+
150

176
𝑥) 1
[−1,1]

(𝑥) ,

(46)

for 𝑥 ∈ [−1, 1] where 1
𝐵
is the characteristic function of 𝐵 :=

[−.01, .01]. Note that (𝑢
0
, V
0
, 𝑤
0
) ∈ X

0
with 𝑀 = 𝑀

0
= 30.

In Figure 3(a) we give initial values of the solution (𝑢, V, 𝑤)
of (8) with the initial condition (46) for ℎ

𝑡
= 2 × 10

−6 and
ℎ = .002. Starting with a constant distribution 𝑤

0
= 1/11

(Figure 3(a)) we give experimental values of 𝑢, V, 𝑤 for 𝑡 =
0.01 and ℎ = .002 (Figure 3(b)). It is seen that diffusion
causes a perturbation for𝑤.This observation is coherent with
engineers’ practice.

Our numerical experiments confirm the theory and sta-
bility analysis. It is seen that the proposed numerical method
is stable, mass-conservative, and dissipative. Its solutions do
not leave the interval [0, 1]. Since our stability analysis relies
on the 𝑀-Lipschitz condition for 𝑢, V, 𝑤, we show (numer-
ically) that the Lipschitz constants for 𝑢, V, 𝑤 decrease in
time. We focus on numerical Example 1. Denote these time-
dependent constants byMu(t),Mv(t),Mw(t), respectively, and
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Figure 4: Experimental values of Lipschitz constants𝑀
𝑢
(𝑡) and𝑀V(𝑡) for ℎ = .002, ℎ = .004, and ℎ = .008.
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Figure 5: Experimental values of 𝑢 and V for ℎ = .002, ℎ = .004, and ℎ = .008.

show them in Figure 4: 𝑀u (a) and 𝑀v (b). Considering
the same numerical example we demonstrate convergence in
Figure 5 where numerical solutions for different steps ℎ =

.008, ℎ = .004, and ℎ = .002 are very close to each other.
We take the concentrations u (a) and v (b).

Appendix

We formulate a Gronwall type lemma, which was applied in
Section 4.

Lemma A.1. Suppose that 𝐶 ≥ 0, 𝐾 ≥ 0

𝑧 (𝑡) ≤ ∫

𝑡

0

𝐶

√𝑡 − 𝑠
[𝑧 (𝑠) + 𝑝 (𝑠)] 𝑑𝑠, (A.1)

and 0 ≤ 𝑝(𝑠) ≤ 𝐾𝑠
𝑚. Then there is a positive constant 𝐾̃ such

that

𝑧 (𝑡) ≤ 𝐾̃𝑡
𝑚+1/2 (A.2)

for 𝑡 ∈ [0, 𝑇], 1 − 2𝐶𝑇1/2 > 0.
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Since the right-hand sides of system (8) are polynomials,
we can apply the Cauchy-Kovalevskaya theorem. Suppose
that solutions of (8) are given by

𝑢
(𝑗)
(𝑡) =

∞

∑

𝑘=0

𝑡
𝑘
𝑢
(𝑗)

𝑘
, V(𝑗) (𝑡) =

∞

∑

𝑘=0

𝑡
𝑘V(𝑗)
𝑘
. (A.3)

If we differentiate these expressions with respect to 𝑡 we
get the obvious recursive relations for 𝑢(𝑗)

𝑘+1
and V(𝑗)
𝑘+1

. One can
prove by induction on 𝑘 that

󵄨󵄨󵄨󵄨󵄨󵄨
𝑢
(𝑗)

𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
∗
𝑄
𝑘
,

󵄨󵄨󵄨󵄨󵄨󵄨
V(𝑗)
𝑘

󵄨󵄨󵄨󵄨󵄨󵄨
≤ 𝐶
∗
𝑄
𝑘

for 𝑘 ≥ 0, 𝑗 = −𝑁, . . . , 𝑁,

(A.4)

where

4max {𝐷
1
, 𝐷
2
}

(𝑘 + 1) ℎ
2

+

8 (𝐷
󸀠

1
+ 𝐷
󸀠

2
) 𝐶
∗

ℎ2
≤ 𝑄. (A.5)

This means that the radius of convergence of the above series
is lower bounded by ℎ2/𝐶

2
, where

𝐶
2
=

1

4max {𝐷
1
, 𝐷
2
} + 8 (𝐷

󸀠

1
+ 𝐷
󸀠

2
) 𝐶
∗

. (A.6)
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