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We study the existence of positive and monotone solution to the boundary value problem 𝑢

(𝑡) + 𝑓(𝑡, 𝑢(𝑡)) = 0, 0 ⩽ 𝑡 ⩽ 1, 𝑢(0) =

𝜉𝑢(1), 𝑢(1) = 𝜂𝑢

(0), where 𝜉, 𝜂 ∈ (0, 1) ∪ (1,∞). The main tool is the fixed point theorem of cone expansion and compression of

functional type by Avery, Henderson, and O’Regan. Finally, four examples are provided to demonstrate the availability of our main
results.

1. Introduction

Boundary value problems for ordinary differential equations
play a very important role in both theory and applications.
They are used to describe a large number of physical, biologi-
cal, and chemical phenomena. In recent years many papers
have been devoted to second-order two-point boundary
value problem. For a small sample of such work, we refer
the reader to the monographs of Agarwal [1], Agarwal et
al. [2], and Guo and Lakshmikantham [3], the papers of
Avery et al. [4] and Henderson and Thompson [5], and
references therein along this line. In the literature, many
attempts have been made by researchers to develop criteria
which guarantee the existence and uniqueness of positive
solutions to ordinary differential equations; this subject has
attracted a lot of interests; see, for example, Cid et al. [6],
Ehme [7], Ehme and Lanz [8], Ibrahim and Momani [9],
Kong [10], Ma and An [11], Zhang and Liu [12], Zhang et al.
[13], and Zhong and Zhang [14].

In this paper, we study the existence of positive and
monotone solution for the second-order two-point boundary
value problem

𝑢


(𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 ⩽ 𝑡 ⩽ 1,

𝑢 (0) = 𝜉𝑢 (1) , 𝑢


(1) = 𝜂𝑢


(0) ,

(1)

where 𝑓 : [0, 1] × [0,∞) → [0,∞) is continuous function
and 𝜉, 𝜂 ∈ (0, 1) ∪ (1,∞) are two constants. The boundary
conditions in problem (1) are closely related to some other
boundary conditions. If 𝜉 = 𝜂 = 1, the boundary conditions
in problem (1) reduce to periodic boundary conditions. If
𝜉 = 𝜂 = −1, the boundary conditions in problem (1) reduce to
antiperiodic boundary conditions. If 𝜉 = 𝜂 = 0, problem (1)
reduces to second-order right focal boundary value problem.
In a recent paper [15], by applying a fixed point theorem
by Avery et al. [16], Sun studied the existence of monotone
positive solutions to problem (1). In this paper we will prove
some new existence results for problem (1) by using the new
fixed point theorem of cone expansion and compression of
functional type by Avery et al. [17].

This paper is organized as follows. In Section 2 we present
some notations, definitions, and lemmas. In Section 3 we
establish some sufficient conditions which guarantee the
existence of positive solutions to problem (1). In Section 4
we give four examples to illustrate the effectiveness and
applications of the results presented in Section 3.

2. Preliminary Results

For the convenience of the reader, we present here the
necessary definitions and background results. We also state
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the fixed point theorem of cone expansion and compression
of functional type by Avery, Henderson, and O’Regan.

Definition 1. Let𝐸 be a real Banach space. A nonempty closed
convex set𝑃 ⊂ 𝐸 is called a 𝑐𝑜𝑛𝑒of𝐸 if it satisfies the following
two conditions:

(1) 𝑢 ∈ 𝑃, 𝜆 ⩾ 0, implies 𝜆𝑢 ∈ 𝑃;
(2) 𝑢 ∈ 𝑃, −𝑢 ∈ 𝑃, implies 𝑢 = 0.

Every cone𝑃 ⊂ 𝐸 induces an ordering in 𝐸 given by 𝑢 ⩽ V
if and only if V − 𝑢 ∈ 𝑃.

Definition 2. Let 𝐸 be a real Banach space. An operator 𝑇 :

𝐸 → 𝐸 is said to be completely continuous if it is continuous
and maps bounded sets into precompact sets.

Definition 3. Amap 𝛼 is said to be a nonnegative continuous
concave functional on a cone 𝑃 of a real Banach space 𝐸 if
𝛼 : 𝑃 → [0, +∞) is continuous and

𝛼 (𝜆𝑢 + (1 − 𝜆) V) ⩾ 𝜆𝛼 (𝑢) + (1 − 𝜆) 𝛼 (V) ,

𝑢, V ∈ 𝑃, 0 ⩽ 𝜆 ⩽ 1.

(2)

Similarly we said the map 𝛽 is a nonnegative continuous
convex functional on a cone 𝑃 of a real Banach space 𝐸 if
𝛽 : 𝑃 → [0, +∞) is continuous and

𝛽 (𝜆𝑢 + (1 − 𝜆) V) ⩽ 𝜆𝛽 (𝑢) + (1 − 𝜆) 𝛽 (V) ,

𝑢, V ∈ 𝑃, 0 ⩽ 𝜆 ⩽ 1.

(3)

We say that the map 𝛾 is sublinear functional if

𝛾 (𝜆𝑢) ⩽ 𝜆𝛾 (𝑢) , 𝑢 ∈ 𝑃, 0 ⩽ 𝜆 ⩽ 1. (4)

All the concepts discussed above can be found in [3].

Property A1. Let 𝑃 be a cone in a real Banach space 𝐸 and Ω

a bounded open subset of 𝐸 with 0 ∈ Ω. Then a continuous
functional 𝛽 : 𝑃 → [0,∞) is said to satisfy Property A1 if
one of the following conditions holds:

(a) 𝛽 is convex, 𝛽(0) = 0, and 𝛽(𝑢) ̸= 0 if 𝑢 ̸= 0 and
inf
𝑢∈𝑃∩𝜕Ω

𝛽(𝑢) > 0,
(b) 𝛽 is sublinear, 𝛽(0) = 0, and 𝛽(𝑢) ̸= 0 if 𝑢 ̸= 0 and

inf
𝑢∈𝑃∩𝜕Ω

𝛽(𝑢) > 0,
(c) 𝛽 is concave and unbounded.

Property A2. Let 𝑃 be a cone in a real Banach space 𝐸 and Ω

a bounded open subset of 𝐸 with 0 ∈ Ω. Then a continuous
functional 𝛽 : 𝑃 → [0,∞) is said to satisfy Property A2 if
one of the following conditions hold:

(a) 𝛽 is convex, 𝛽(0) = 0, and 𝛽(𝑢) ̸= 0 if 𝑢 ̸= 0,
(b) 𝛽 is sublinear, 𝛽(0) = 0, and 𝛽(𝑢) ̸= 0 if 𝑢 ̸= 0,
(c) 𝛽(𝑢 + V) ⩾ 𝛽(𝑢) + 𝛽(V) for all 𝑢, V ∈ 𝑃, 𝛽(0) = 0, and

𝛽(𝑢) ̸= 0 if 𝑢 ̸= 0.

To prove our results, we will need the following fixed
point theorem, which is presented by Avery et al. [17].

Theorem 4. Let Ω
1
and Ω

2
be two bounded open sets in a

Banach space 𝐸 such that 0 ∈ Ω
1
and Ω

1
⊆ Ω
2
and 𝑃

is a cone in 𝐸. Suppose that 𝑇 : 𝑃 ∩ (Ω
2

\ Ω
1
) → 𝑃

is a completely continuous operator, 𝛼 and 𝛾 are nonnegative
continuous functional on 𝑃, and one of the two conditions

(K1) 𝛼 satisfies Property A1 with 𝛼(𝑇𝑢) ⩾ 𝛼(𝑢), for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
, and 𝛾 satisfies Property A2 with 𝛾(𝑇𝑢) ⩽

𝛾(𝑢), for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
; or

(K2) 𝛾 satisfies Property A2 with 𝛾(𝑇𝑢) ⩽ 𝛾(𝑢), for all
𝑢 ∈ 𝑃 ∩ 𝜕Ω

1
, and 𝛼 satisfies Property A1 with 𝛼(𝑇𝑢) ⩾

𝛼(𝑢), for all 𝑢 ∈ 𝑃 ∩ 𝜕Ω
2

is satisfied.Then 𝑇 has at least one fixed point in 𝑃∩(Ω
2
\Ω
1
).

To study problem (1), we need the following lemmas (see
[15]).

Lemma 5. Green’s function 𝐺 : [0, 1] × [0, 1] → [0,∞) for
the BVP (1.1) is given by

𝐺 (𝑡, 𝑠) =

1

(1 − 𝜉) (1 − 𝜂)

× {

𝑠 + 𝜂 (𝑡 − 𝑠) + 𝜉𝜂 (1 − 𝑡) , 0 ⩽ 𝑠 ⩽ 𝑡 ⩽ 1,

𝑡 + 𝜉 (𝑠 − 𝑡) + 𝜉𝜂 (1 − 𝑠) , 0 ⩽ 𝑡 ⩽ 𝑠 ⩽ 1.

(5)

Lemma 6. Suppose that 𝜉, 𝜂, 𝛿 ∈ (0, 1). Then Green’s function
𝐺(𝑡, 𝑠) defined by (5) has the following properties:

(a) 𝐺(𝑡, 𝑠) ⩾ 0, 𝜕𝐺(𝑡, 𝑠)/𝜕𝑡 ⩾ 0, ∀𝑡, 𝑠 ∈ [0, 1];
(b) 𝑡𝐺(1, 𝑠) ⩽ 𝐺(𝑡, 𝑠) ⩽ 𝐺(1, 𝑠), ∀𝑡, 𝑠 ∈ [0, 1];

(c) max
0⩽𝑡⩽1

∫

1

0
𝐺(𝑡, 𝑠)𝑑𝑠 = ∫

1

0
𝐺(1, 𝑠)𝑑𝑠 = (1 + 𝜂)/2(1 −

𝜉)(1 − 𝜂);

(d) min
𝛿⩽𝑡⩽1

∫

1

𝛿
𝐺(𝑡, 𝑠)𝑑𝑠 = ∫

1

𝛿
𝐺(𝛿, 𝑠)𝑑𝑠 = (1 − 𝛿)𝛿/(1 −

𝜂) + (1 − 𝛿)(1 + 𝛿 + 𝜂 − 𝜂𝛿)𝜉/2(1 − 𝜉)(1 − 𝜂) ⩾ (1 −

𝛿)𝛿/(1 − 𝜂).

Lemma 7. Suppose that 𝜉, 𝜂 ∈ (1,∞), 𝛿 ∈ (0, 1). Then Green’s
function 𝐺(𝑡, 𝑠) defined by (5) has the following properties:

(a) 𝐺(𝑡, 𝑠) ⩾ 0, 𝜕𝐺(𝑡, 𝑠)/𝜕𝑡 ⩽ 0, ∀𝑡, 𝑠 ∈ [0, 1];
(b) (1 − 𝑡)𝐺(0, 𝑠) ⩽ 𝐺(𝑡, 𝑠) ⩽ 𝐺(0, 𝑠), ∀𝑡, 𝑠 ∈ [0, 1];

(c) max
0⩽𝑡⩽1

∫

1

0
𝐺(𝑡, 𝑠)𝑑𝑠 = ∫

1

0
𝐺(0, 𝑠)𝑑𝑠 = (1 + 𝜂)𝜉/2(𝜉 −

1)(𝜂 − 1);

(d) min
0⩽𝑡⩽1−𝛿

∫

1−𝛿

0
𝐺(𝑡, 𝑠)𝑑𝑠 = ∫

1−𝛿

0
𝐺(1 − 𝛿, 𝑠)𝑑𝑠 = 𝜂(1 −

𝛿)𝛿/(𝜂 − 1) + (1 − 𝛿)(1 + 𝜂 − 𝛿 + 𝜂𝛿)/2(𝜉 − 1)(𝜂 − 1) ⩾

𝜂(1 − 𝛿)𝛿/(𝜂 − 1).

3. Main Results

In this section, we will applyTheorem 4 to study the existence
of positive and monotonic solution to problem (1).
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3.1. Case I: 𝜉, 𝜂 ∈ (0, 1) 𝑢(0)=𝑢

(1)=𝑢


(0)=𝑢


(1)=0. In this

case we define the cone 𝑃 by

𝑃 = {𝑢 ∈ 𝐶 [0, 1] : 𝑢 (𝑡) ⩾ 0,

𝑢 (𝑡) is increasing on [0, 1] and 𝑢 (𝑡) ⩾ 𝑡 ‖𝑢‖ ,

𝑡 ∈ [0, 1]} .

(6)

Then 𝑃 is a normal cone of 𝐸. Define the operator𝑇 : 𝑃 → 𝐸

by

(𝑇𝑢) (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠, 𝑡 ∈ [0, 1] . (7)

Then by Lemma 6 and Ascoli-Arzela Theorem we know that
𝑇(𝑃) ⊆ 𝑃 and 𝑇 is a completely continuous operator. Let us
define two continuous functionals 𝛼 and 𝛾 on the cone 𝑃 by

𝛼 (𝑢) := min
𝑡∈[𝛿,1]

𝑢 (𝑡) = 𝑢 (𝛿) ,

𝛾 (𝑢) := max
𝑡∈[0,1]

𝑢 (𝑡) = 𝑢 (1) = ‖𝑢‖ .

(8)

It is clear that 𝛼(𝑢) ⩽ 𝛾(𝑢) for all 𝑢 ∈ 𝑃.

Theorem 8. Suppose that 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)) and
there exist 𝑟, 𝑅 ∈ (0,∞), 𝛿 ∈ (0, 1) with 𝑟 < 𝛿𝑅 such that the
following conditions are satisfied:

(A1) 𝑓(𝑡, 𝑥) ⩾ (1−𝜂)𝑟/(1−𝛿)𝛿, for all (𝑡, 𝑥) ∈ [𝛿, 1]×

[𝑟, 𝑅];
(A2) 𝑓(𝑡, 𝑥) ⩽ 2(1 − 𝜉)(1 − 𝜂)𝑅/(1 + 𝜂), for all (𝑡, 𝑥) ∈

[0, 1] × [0, 𝑅].
Then problem (1) admits a positive and increasing solution 𝑢

∗

such that
𝑟 ⩽ min
𝑡∈[𝛿,1]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (9)

Proof. Let

Ω
1
= {𝑢 : 𝛼 (𝑢) < 𝑟} , Ω

2
= {𝑢 : 𝛾 (𝑢) < 𝑅} , (10)

it is easy to see that 0 ∈ Ω
1
, andΩ

1
andΩ

2
are bounded open

subsets of 𝐸. Let 𝑢 ∈ Ω
1
; then we have

𝑟 ⩾ 𝛼 (𝑢) = min
𝑡∈[𝛿,1]

𝑢 (𝑡) ⩾ 𝛿 ‖𝑢‖ = 𝛿𝛾 (𝑢) . (11)

Thus 𝑅 > 𝑟/𝛿 ⩾ 𝛾(𝑢); that is, 𝑢 ∈ Ω
2
, so Ω

1
⊆ Ω
2
.

Claim 1 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
, then 𝛼(𝑇𝑢) ⩾ 𝛼(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
; then 𝑅 = 𝛾(𝑢) ⩾ 𝑢(𝑠) ⩾ 𝛼(𝑢) = 𝑟, 𝑠 ∈ [𝛿, 1]. It

follows from (A1) and Lemmas 6(d) and (7) that

𝛼 (𝑇𝑢) = (𝑇𝑢) (𝛿) = ∫

1

0

𝐺 (𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾ ∫

1

𝛿

𝐺 (𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾

(1 − 𝜂) 𝑟

(1 − 𝛿) 𝛿

∫

1

𝛿

𝐺 (𝛿, 𝑠) 𝑑𝑠

⩾

(1 − 𝜂) 𝑟

(1 − 𝛿) 𝛿

⋅

(1 − 𝛿) 𝛿

1 − 𝜂

= 𝑟 = 𝛼 (𝑢) .

(12)

Claim 2 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
, then 𝛾(𝑇𝑢) ⩽ 𝛾(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
; then 𝑢(𝑠) ⩽ 𝛾(𝑢) = 𝑅, 𝑠 ∈ [0, 1]. Thus condition

(A2) and Lemma 6(c) yield that

𝛾 (𝑇𝑢) = (𝑇𝑢) (1) = ∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩽

2 (1 − 𝜉) (1 − 𝜂) 𝑅

1 + 𝜂

∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠

=

2 (1 − 𝜉) (1 − 𝜂) 𝑅

1 + 𝜂

⋅

1 + 𝜂

2 (1 − 𝜉) (1 − 𝜂)

= 𝑅 = 𝛾 (𝑢) .

(13)

Clearly 𝛼 satisfies Property A1(c) and 𝛾 satisfies Property
A2(a). Therefore hypothesis (K1) of Theorem 4 is satisfied
and hence 𝑇 has at least one fixed point 𝑢∗ ∈ 𝑃 ∩ (Ω

2
\ Ω
1
);

that is, problem (1) has at least one positive solution 𝑢
∗
(𝑡) ∈ 𝑃

such that

𝑟 ⩽ min
𝑡∈[𝛿,1]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (14)

This completes the proof.

Theorem 9. Suppose that 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)) and
there exist 𝑟, 𝑅 ∈ (0,∞) with 𝑟 < 𝑅 such that the following
conditions are satisfied:

(A3) 𝑓(𝑡, 𝑥) ⩽ 2(1 − 𝜉)(1 − 𝜂)𝑟/(1 + 𝜂), for (𝑡, 𝑥) ∈

[0, 1] × [0, 𝑟];
(A4) 𝑓(𝑡, 𝑥) ⩾ (1 − 𝜂)𝑅/(1 − 𝛿)𝛿, for (𝑡, 𝑥) ∈ [𝛿, 1] ×

[𝑅, 𝑅/𝛿].

Then problem (1) admits a positive and increasing solution 𝑢
∗
∈

𝑃 such that

𝑟 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[𝛿,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (15)

Proof. For all 𝑢 ∈ 𝑃 we have 𝛼(𝑢) ⩽ 𝛾(𝑢). Thus if we let

Ω
3
= {𝑢 : 𝛾 (𝑢) < 𝑟} , Ω

4
= {𝑢 : 𝛼 (𝑢) < 𝑅} , (16)

we have that 0 ∈ Ω
3
and Ω

3
⊆ Ω
4
, with Ω

3
and Ω

4
being

bounded open subsets of 𝐸.

Claim 1 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
3
, then 𝛾(𝑇𝑢) ⩽ 𝛾(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
3
; then 𝑢(𝑠) ⩽ 𝛾(𝑢) = 𝑟, 𝑠 ∈ [0, 1]. Thus condition

(A3) and Lemma 6(c) yield that

𝛾 (𝑇𝑢) = (𝑇𝑢) (1)

= ∫

1

0

𝐺 (1, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩽

2 (1 − 𝜉) (1 − 𝜂) 𝑟

1 + 𝜂

∫

1

0

𝐺 (1, 𝑠) 𝑑𝑠

=

2 (1 − 𝜉) (1 − 𝜂) 𝑟

1 + 𝜂

⋅

1 + 𝜂

2 (1 − 𝜉) (1 − 𝜂)

= 𝑟 = 𝛾 (𝑢) .

(17)
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Claim 2 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
4
, then 𝛼(𝑇𝑢) ⩾ 𝛼(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
4
; then 𝑅/𝛿 = 𝛼(𝑢)/𝛿 ⩾ 𝛾(𝑢) ⩾ 𝑢(𝑠) ⩾ 𝛼(𝑢) = 𝑅,

𝑠 ∈ [𝛿, 1]. Thus it follows from (A4) and Lemma 6(d) that

𝛼 (𝑇𝑢) = (𝑇𝑢) (𝛿) = ∫

1

0

𝐺 (𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾ ∫

1

𝛿

𝐺 (𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾

(1 − 𝜂) 𝑅

(1 − 𝛿) 𝛿

∫

1

𝛿

𝐺 (𝛿, 𝑠) 𝑑𝑠

⩾

(1 − 𝜂) 𝑅

(1 − 𝛿) 𝛿

⋅

(1 − 𝛿) 𝛿

1 − 𝜂

= 𝑅 = 𝛼 (𝑢) .

(18)

Clearly 𝛼 satisfies Property A1(c) and 𝛾 satisfies Property
A2(a). Therefore hypothesis (K2) of Theorem 4 is satisfied
and hence 𝑇 has at least one fixed point 𝑢∗ ∈ 𝑃 ∩ (Ω

4
\ Ω
3
);

that is, problem (1) has at least one positive solution 𝑢
∗

∈ 𝑃

such that
𝑟 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[𝛿,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (19)

This completes the proof.

3.2. Case II: 𝜉,𝜂 ∈ (1,∞). In this case we define the cone 𝑃

by

𝑃 = {𝑢 ∈ 𝐶 [0, 1] : 𝑢 (𝑡) ⩾ 0,

𝑢 (𝑡) is decreasing on [0, 1] ,

and 𝑢 (𝑡) ⩾ (1 − 𝑡) ‖𝑢‖ ,

𝑡 ∈ [0, 1]} .

(20)

Then 𝑃 is a normal cone of 𝐸. Define the operator 𝑇 : 𝑃 →

𝐸 by (7). Then by Lemma 7 and Ascoli-Arzela Theorem we
know that 𝑇(𝑃) ⊆ 𝑃 and 𝑇 is a completely continuous
operator. Let us define two continuous functionals 𝛼 and 𝛾

on the cone 𝑃 by

𝛼 (𝑢) := min
𝑡∈[0,1−𝛿]

𝑢 (𝑡) = 𝑢 (1 − 𝛿) ,

𝛾 (𝑢) := max
𝑡∈[0,1]

𝑢 (𝑡) = 𝑢 (0) = ‖𝑢‖ .

(21)

It is clear that 𝛼(𝑢) ⩽ 𝛾(𝑢) for all 𝑢 ∈ 𝑃.

Theorem 10. Suppose that 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)) and
there exist 𝑟, 𝑅 ∈ (0,∞), 𝛿 ∈ (0, 1) with 𝑟 < 𝛿𝑅 such that the
following conditions are satisfied:

(B1) 𝑓(𝑡, 𝑥) ⩾ (𝜂 − 1)𝑟/𝜂(1 − 𝛿)𝛿, for all (𝑡, 𝑥) ∈ [0, 1 −

𝛿] × [𝑟, 𝑅];
(B2) 𝑓(𝑡, 𝑥) ⩽ 2(𝜉 − 1)(𝜂 − 1)𝑅/(1 + 𝜂)𝜉, for all (𝑡, 𝑥) ∈

[0, 1] × [0, 𝑅].

Then problem (1) admits a positive and decreasing solution 𝑢
∗

such that
𝑟 ⩽ min
𝑡∈[0,1−𝛿]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (22)

Proof. Letting

Ω
1
= {𝑢 : 𝛼 (𝑢) < 𝑟} , Ω

2
= {𝑢 : 𝛾 (𝑢) < 𝑅} , (23)

then 0 ∈ Ω
1
, Ω
1
, and Ω

2
are bounded open subsets of 𝐸. Let

𝑢 ∈ Ω
1
; then we have

𝑟 ⩾ 𝛼 (𝑢) = min
𝑡∈[0,1−𝛿]

𝑢 (𝑡) ⩾ 𝛿 ‖𝑢‖ = 𝛿𝛾 (𝑢) . (24)

Thus 𝑅 > 𝑟/𝛿 ⩾ 𝛾(𝑢); that is, 𝑢 ∈ Ω
2
, so Ω

1
⊆ Ω
2
.

Claim 1 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
, then 𝛼(𝑇𝑢) ⩾ 𝛼(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
1
; then 𝑅 = 𝛾(𝑢) ⩾ 𝑢(𝑠) ⩾ 𝛼(𝑢) = 𝑟, 𝑠 ∈ [0, 1 − 𝛿].

Thus it follows from (A1) and Lemmas 7(d) and (7) that

𝛼 (𝑇𝑢) = (𝑇𝑢) (1 − 𝛿)

= ∫

1

0

𝐺 (1 − 𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾ ∫

1−𝛿

0

𝐺 (1 − 𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾

(𝜂 − 1) 𝑟

𝜂 (1 − 𝛿) 𝛿

∫

1−𝛿

0

𝐺 (1 − 𝛿, 𝑠) 𝑑𝑠

⩾

(𝜂 − 1) 𝑟

𝜂 (1 − 𝛿) 𝛿

⋅

𝜂 (1 − 𝛿) 𝛿

𝜂 − 1

= 𝑟 = 𝛼 (𝑢) .

(25)

Claim 2 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
, then 𝛾(𝑇𝑢) ⩽ 𝛾(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
2
; then 𝑢(𝑠) ⩽ 𝛾(𝑢) = 𝑅, 𝑠 ∈ [0, 1]. Thus condition

(B2) and Lemma 7(c) yield

𝛾 (𝑇𝑢) = (𝑇𝑢) (0) = ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩽

2 (𝜉 − 1) (𝜂 − 1) 𝑅

(1 + 𝜂) 𝜉

∫

1

0

𝐺 (0, 𝑠) 𝑑𝑠

=

2 (𝜉 − 1) (𝜂 − 1) 𝑅

(1 + 𝜂) 𝜉

⋅

(1 + 𝜂) 𝜉

2 (𝜉 − 1) (𝜂 − 1)

= 𝑅 = 𝛾 (𝑢) .

(26)

Clearly 𝛼 satisfies Property A1(c) and 𝛾 satisfies Property
A2(a). Therefore hypothesis (K1) of Theorem 4 is satisfied
and hence 𝑇 has at least one fixed point 𝑢∗ ∈ 𝑃 ∩ (Ω

2
\ Ω
1
);

that is, problem (1) has at least one positive solution 𝑢
∗
(𝑡) ∈ 𝑃

such that

𝑟 ⩽ min
𝑡∈[0,1−𝛿]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (27)

This completes the proof.

Theorem 11. Suppose that 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)), and
there exist 𝑟, 𝑅 ∈ (0,∞) with 𝑟 < 𝑅 such that the following
conditions are satisfied:

(B3) 𝑓(𝑡, 𝑥) ⩽ 2(𝜉 − 1)(𝜂 − 1)𝑟/(1 + 𝜂)𝜉, for (𝑡, 𝑥) ∈

[0, 1] × [0, 𝑟];
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(B4) 𝑓(𝑡, 𝑥) ⩾ (𝜂 − 1)𝑅/𝜂(1 − 𝛿)𝛿, for (𝑡, 𝑥) ∈ [0, 1 −

𝛿] × [𝑅, 𝑅/𝛿].

Then problem (1) admits a positive and decreasing solution
𝑢
∗
∈ 𝑃 such that

𝑟 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[𝛿,1]

𝑢
∗

(𝑡) ⩽ 𝑅. (28)

Proof. For all 𝑢 ∈ 𝑃 we have 𝛼(𝑢) ⩽ 𝛾(𝑢). Thus if we let

Ω
3
= {𝑢 : 𝛾 (𝑢) < 𝑟} , Ω

4
= {𝑢 : 𝛼 (𝑢) < 𝑅} , (29)

we have that 0 ∈ Ω
3
and Ω

3
⊆ Ω
4
, with Ω

3
and Ω

4
being

bounded open subsets of 𝐸.

Claim 1 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
3
, then 𝛾(𝑇𝑢) ⩽ 𝛾(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
3
; then 𝑢(𝑠) ⩽ 𝛾(𝑢) = 𝑟, 𝑠 ∈ [0, 1]. Thus condition

(B3) and Lemma 7(c) yield

𝛾 (𝑇𝑢) = (𝑇𝑢) (0)

= ∫

1

0

𝐺 (0, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 ⩽

2 (𝜉 − 1) (𝜂 − 1) 𝑟

(1 + 𝜂) 𝜉

× ∫

1

0

𝐺 (0, 𝑠) 𝑑𝑠

=

2 (𝜉 − 1) (𝜂 − 1) 𝑟

(1 + 𝜂) 𝜉

⋅

(1 + 𝜂) 𝜉

2 (𝜉 − 1) (𝜂 − 1)

= 𝑟 = 𝛾 (𝑥) .

(30)

Claim 2 (if 𝑢 ∈ 𝑃 ∩ 𝜕Ω
4
, then 𝛼(𝑇𝑢) ⩾ 𝛼(𝑢)). To see this let

𝑢 ∈ 𝑃 ∩ 𝜕Ω
4
; then 𝑅/𝛿 = 𝛼(𝑢)/𝛿 ⩾ 𝛾(𝑢) ⩾ 𝑢(𝑠) ⩾ 𝛼(𝑢) = 𝑅,

𝑠 ∈ [0, 1 − 𝛿]. Thus it follows from (B4) and Lemma 7(d) that

𝛼 (𝑇𝑢) = (𝑇𝑢) (1 − 𝛿) = ∫

1

0

𝐺 (1 − 𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

⩾ ∫

1−𝛿

0

𝐺 (1 − 𝛿, 𝑠) 𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠 ⩾

(𝜂 − 1) 𝑅

𝜂 (1 − 𝛿) 𝛿

× ∫

1−𝛿

0

𝐺 (1 − 𝛿, 𝑠) 𝑑𝑠

⩾

(𝜂 − 1) 𝑅

𝜂 (1 − 𝛿) 𝛿

⋅

𝜂 (1 − 𝛿) 𝛿

𝜂 − 1

= 𝑅 = 𝛼 (𝑢) .

(31)

Clearly 𝛼 satisfies Property A1(c) and 𝛾 satisfies Property
A2(a). Therefore hypothesis (K2) of Theorem 4 is satisfied
and hence 𝑇 has at least one fixed point 𝑢∗ ∈ 𝑃 ∩ (Ω

4
\ Ω
3
);

that is, problem (1) has at least one positive solution 𝑢
∗

∈ 𝑃

such that

𝑟 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[0,1−𝛿]

𝑢
∗

(𝑡) ⩽ 𝑅. (32)

This completes the proof.

4. Examples

At the end of the paper, we present some examples to illustrate
the usefulness of our main results.

Example 1. Consider the second-order boundary value prob-
lem

𝑢


(𝑡) +

1 + 𝑡

144

𝑢
2

(𝑡) +

1

24

𝑢 (𝑡) +

1

8

𝑡
2
+

1

4

𝑡 +

1

4

= 0,

0 ⩽ 𝑡 ⩽ 1,

𝑢 (0) =

1

2

𝑢 (1) , 𝑢


(1) =

1

2

𝑢


(0) .

(33)

In this case, 𝜉 = 𝜂 = 1/2. Let 𝛿 = 1/2, 𝑟 = 1/6, 𝑅 = 3; observe
that 𝑟 < 𝛿𝑅. Setting

𝑓 (𝑡, 𝑥) =

1 + 𝑡

144

𝑥
2
+

1

24

𝑥 +

1

8

𝑡
2
+

1

4

𝑡 +

1

4

, (34)

then 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)), and for (𝑡, 𝑥) ∈ [0, 1] ×

[0, 𝑅], we have

𝑓 (𝑡, 𝑥) ⩽ 𝑓 (1, 𝑅) =

7

8

< 1 =

2 (1 − 𝜉) (1 − 𝜂) 𝑅

1 + 𝜂

. (35)

For (𝑡, 𝑥) ∈ [𝛿, 1] × [𝑟, 𝑅], we have

𝑓 (𝑡, 𝑥) ⩾ 𝑓 (𝛿, 𝑟) =

1429

3456

>

1

3

=

(1 − 𝜂) 𝑟

(1 − 𝛿) 𝛿

. (36)

Clearly, all the assumptions of Theorem 8 hold and conse-
quently problem (33) has at least one positive and increasing
solution 𝑢

∗
(𝑡) such that

1

6

⩽ min
𝑡∈[1/2,1]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 3. (37)

Example 2. Consider the second-order boundary value prob-
lem

𝑢


(𝑡) +

2 + 2𝑡

9

𝑢
3

(𝑡) +

1

9

𝑢 (𝑡) +

1

9

𝑡 = 0, 0 ⩽ 𝑡 ⩽ 1,

𝑢 (0) =

1

4

𝑢 (1) , 𝑢


(1) =

1

3

𝑢


(0) .

(38)

In this case, 𝜉 = 1/4 and 𝜂 = 1/3. Let 𝛿 = 1/2, 𝑅 = 3, 𝑟 = 1,
and

𝑓 (𝑡, 𝑥) =

2 + 2𝑡

9

𝑥
3
+

1

9

𝑥 +

1

9

𝑡. (39)

Then 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)), and for (𝑡, 𝑥) ∈ [0, 1] ×

[0, 𝑟],

𝑓 (𝑡, 𝑥) ⩽ 𝑓 (1, 𝑟) =

2

3

<

3

4

=

2 (1 − 𝜉) (1 − 𝜂) 𝑟

1 + 𝜂

. (40)

For (𝑡, 𝑥) ∈ [𝛿, 1] × [𝑅, 𝑅/𝛿],

𝑓 (𝑡, 𝑥) ⩾ 𝑓 (𝛿, 𝑅) = 9

7

18

> 8 =

(1 − 𝜂) 𝑅

(1 − 𝛿) 𝛿

. (41)
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Hence, by Theorem 9, problem (38) has at least one positive
and increasing solution 𝑢

∗
(𝑡) such that

1 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[1/2,1]

𝑢
∗

(𝑡) ⩽ 3. (42)

Example 3. Consider the second-order boundary value prob-
lem

𝑢


(𝑡) +

1 + 𝑡

144

𝑢
2

(𝑡) +

1

24

𝑢 (𝑡) +

1

8

𝑡
2
+

1

2

= 0, 0 ⩽ 𝑡 ⩽ 1,

𝑢 (0) = 2𝑢 (1) , 𝑢


(1) = 2𝑢


(0) .

(43)

In this case, 𝜉 = 𝜂 = 2. Let 𝛿 = 1/2, 𝑟 = 1/6, 𝑅 = 3; it is
evident that 𝑟 < 𝛿𝑅. Set

𝑓 (𝑡, 𝑥) =

1 + 𝑡

144

𝑥
2
+

1

24

𝑥 +

1

8

𝑡
2
+

1

2

. (44)

Then 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)), and for (𝑡, 𝑥) ∈ [0, 1] ×

[0, 𝑅], we have

𝑓 (𝑡, 𝑥) ⩽ 𝑓 (1, 𝑅) =

7

8

< 1 =

2 (𝜉 − 1) (𝜂 − 1) 𝑅

(1 + 𝜂) 𝜉

. (45)

For (𝑡, 𝑥) ∈ [0, 1 − 𝛿] × [𝑟, 𝑅], we have

𝑓 (𝑡, 𝑥) ⩾ 𝑓 (0, 𝑟) >

1

2

>

1

3

=

(𝜂 − 1) 𝑟

𝜂 (1 − 𝛿) 𝛿

. (46)

So all conditions ofTheorem 10 are satisfied and consequently
problem (43) has at least one positive and decreasing solution
𝑢
∗
(𝑡) such that

1

6

⩽ min
𝑡∈[1/2,1]

𝑢
∗

(𝑡) , max
𝑡∈[0,1]

𝑢
∗

(𝑡) ⩽ 3. (47)

Example 4. Consider the second-order boundary value prob-
lem

𝑢


(𝑡) +

1 + 𝑡

9

𝑢
4

(𝑡) +

𝑡

9

𝑢 (𝑡) +

1

3

= 0, 0 ⩽ 𝑡 ⩽ 1,

𝑢 (0) = 4𝑢 (1) , 𝑢


(1) = 3𝑢


(0) .

(48)

In this problem, 𝜉 = 4, and 𝜂 = 3. Let 𝛿 = 1/2, 𝑅 = 3, 𝑟 = 1,
and

𝑓 (𝑡, 𝑥) =

1 + 𝑡

9

𝑥
4
+

𝑡

9

𝑥 +

1

3

. (49)

Then 𝑓 ∈ 𝐶([0, 1] × [0,∞), [0,∞)), and for (𝑡, 𝑥) ∈ [0, 1] ×

[0, 𝑟],

𝑓 (𝑡, 𝑥) ⩽ 𝑓 (1, 𝑟) =

2

3

<

3

4

=

2 (𝜉 − 1) (𝜂 − 1) 𝑟

(1 + 𝜂) 𝜉

. (50)

For (𝑡, 𝑥) ∈ [0, 1 − 𝛿] × [𝑅, 𝑅/𝛿],

𝑓 (𝑡, 𝑥) ⩾ 𝑓 (0, 𝑅) = 9

1

3

> 8 =

(𝜂 − 1) 𝑅

𝜂 (1 − 𝛿) 𝛿

. (51)

Hence, by Theorem 11, problem (48) has at least one positive
and decreasing solution 𝑢

∗
(𝑡) such that

1 ⩽ max
𝑡∈[0,1]

𝑢
∗

(𝑡) , min
𝑡∈[0,1/2]

𝑢
∗

(𝑡) ⩽ 3. (52)
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