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This paper studies asymptotic behavior of solutions for the coupled nonlinear Schrödinger lattice system. We obtain the existence
and stability of compact attractor by means of tail estimates method and finite-dimensional approximations.

1. Introduction

In the present paper, we consider the following dissipative
coupled Schrödinger lattice system:

𝑖 (𝜖𝑢̇𝑘 + 𝜎1𝑢𝑘) + 𝜖(A𝑢)𝑘 − 𝑉
1
𝑢𝑘 + 𝑉

2V𝑘

+ 𝑎1
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 + 𝑎2

󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 = 𝑔

1

𝑘
,

𝑖 (𝜖V̇𝑘 + 𝜎2V𝑘) + 𝜖(AV)𝑘 − 𝑉
3V𝑘 + 𝑉

2
𝑢𝑘

+ 𝑎3
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2V𝑘 + 𝑎2
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2V𝑘 = 𝑔
2

𝑘
,

(1)

with initial condition

𝑢𝑘 (0) = 𝑢𝑘,0, V𝑘 (0) = V𝑘,0, (2)

where 𝑘 ∈ Z; 𝜎1, 𝜎2 > 0, 𝑉𝑖 denotes a bounded positive
potential with 𝑖 = 1, 2, 3; 𝑔1 = (𝑔

1

𝑘
)
𝑘∈Z

, 𝑔2 = (𝑔
2

𝑘
)
𝑘∈Z

∈ ℓ
2

denote external forces.
Nonlinear coupled Schödinger lattice system (1) can be

seen as a discretization model of the two-component sys-
tem of time-dependent nonlinearGross-Pitaevskii equations.
Gross-Pitaevskii equation arises quite naturally in a binary
mixture of Bose-Einstein condensates with two different
hyperfine states [1]. There are many analytical and numerical
results on solitary wave solutions for this system (see [2–11]).

The study of the existence of compact attractor for general
infinite lattice system can date back to Bates et al. [12],

who used the tail estimates method to prove the asymptotic
compactness of dissipative lattice system and the existence of
compact attractor. For more general results on the existence
of compact attractor for infinite lattice system, one can
see [13]. Karachalios and Yannacopoulos [14] studied the
asymptotic behavior of single nonlinear discrete Schrödinger
equations.

We state our main results in this paper.

Theorem 1. The semigroup {S(𝑡)}𝑡≥0 generated by system (4)
possesses a global attractor A ⊂ ℓ

2
× ℓ
2 which is compact,

connected, and maximal among the functional invariant sets
in ℓ2 × ℓ2.

Theorem 2. The global attractorA𝑁 convergesA in the sense
of the Hausdorff semidistance related to ℓ2 × ℓ2; that is,

lim
𝑁→∞

𝑑 (A𝑁,A) = 0, (3)

where 𝑑(𝐴1, 𝐴2) = sup
𝑥∈𝐴
1

inf𝑥∈𝐴
2

𝑑X(𝑥, 𝑦), for any non-
empty compact subsets 𝐴1 and 𝐴2 in a metric spaceX.

This paper is organized as follows. In the next section,
we prove the global existence of the dissipative coupled
Schrödinger lattice system (1). In Section 3, we show the
stability of the global attractor.
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2 Abstract and Applied Analysis

2. Existence of the Global Attractor

This section shows the existence of compact attractor of
system (1) in ℓ2 × ℓ2. We denote a Hilbert space by ℓ2 with
the scalar product ⟨𝑢, V⟩ = ∑

𝑘∈Z 𝑢𝑘V𝑘, 𝑢, V ∈ ℓ
2.

Firstly, we prove the global existence of solution of system
(1). For convenience, we take the scalar form of system (1):

𝑖 (𝜖𝑢̇ + 𝜎1𝑢) + 𝜖 (A𝑢) − 𝑉
1
𝑢 + 𝑉

2V

+ 𝑎1|𝑢|
2
𝑢 + 𝑎2|V|

2
𝑢 = 𝑔

1
,

𝑖 (𝜖V̇ + 𝜎2V) + 𝜖 (AV) − 𝑉3V + 𝑉2𝑢

+ 𝑎3|V|
2V + 𝑎2|𝑢|

2V = 𝑔2,

(4)

with initial condition 𝑢(0) = 𝑢0, V(0) = V0.
Let𝐻1(𝑢, V) = 𝑎1|𝑢|

2
+𝑎2|V|

2 and𝐻2(𝑢, V) = 𝑎3|𝑢|
2
+𝑎2|V|

2.
Then system (4) can be rewritten as

𝑖 (𝜖𝑢̇ + 𝜎1𝑢) + 𝜖 (A𝑢) − 𝑉
1
𝑢 + 𝑉

2V + 𝐻1 (𝑢, V) 𝑢 = 𝑔
1
,

𝑖 (𝜖V̇ + 𝜎2V) + 𝜖 (AV) − 𝑉3V + 𝑉2𝑢 + 𝐻2 (𝑢, V) V = 𝑔
2
.

(5)

Then we get the mild solution of (5) as

𝑢 (𝑡) = T (𝑡) 𝑢0 + 𝑖𝜖
−1
∫

𝑡

0

T (𝑡 − 𝑠) 𝐹1 (𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

V (𝑡) = T (𝑡) V0 + 𝑖𝜖
−1
∫

𝑡

0

T (𝑡 − 𝑠) 𝐹2 (𝑢 (𝑠) , V (𝑠)) 𝑑𝑠,

(6)

where the semigroup T(𝑡) = 𝑒𝑖A𝑡 generated by the operator
𝑖A : ℓ

2
→ ℓ
2, and

𝐹1 (𝑢, V) := 𝑖𝜎1𝑢 − 𝑉
1
𝑢 + 𝑉

2V + 𝐻1 (𝑢, V) 𝑢 − 𝑔
1
,

𝐹2 (𝑢, V) := 𝑖𝜎2V − 𝑉
3V + 𝑉2𝑢 + 𝐻2 (𝑢, V) V − 𝑔

2
.

(7)

In order to prove the existence of compact attractor, we
need the following proposition.

Proposition 3 (Hale [15], Temam [16]). Assume that X is a
metric space and {S(𝑡)}𝑡≥0 is a semigroup of continuous opera-
tors inX. If {S(𝑡)}𝑡≥0 has an absorbing set and is asymptotically
compact, then {S(𝑡)}𝑡≥0 process a global attractor.

It is easy to verify that 𝐹1(𝑢, V) and 𝐹2(𝑢, V) satisfy the
Lipschitz continuous property on any bounded set in ℓ2 × ℓ2.
Using the samemethod in [14], we obtain the following result.

Theorem 4. Let (𝑢(0), V(0)) ∈ ℓ
2
× ℓ
2. Then system (1) pos-

sesses a unique solution (𝑢(𝑡), V(𝑡)) ∈ C1([0, 𝑇̃); ℓ2 × ℓ2) for
some 𝑇̃ > 0. If 𝑇̃ < +∞, then

lim
𝑡→ 𝑇̃

‖𝑢, V‖2
ℓ2×ℓ2

= +∞. (8)

Lemma 5. Let (𝑢0, V0) ∈ ℓ
2
× ℓ
2 and 𝑔1, 𝑔2 ∈ ℓ

2. Assume
that 𝜎1, 𝜎2 > 4 holds. Then there exists a bounded absorbing
ball B of the semigroup {S(𝑡)}𝑡≥0 generated by system (4) in

ℓ
2
× ℓ
2. The radius ofB is 󰜚 > 0. Therefore, there exists 𝑡0 ≥ 0

depending onB such that

S (𝑡)B ⊂B, ∀𝑡 ≥ 𝑡0. (9)

Proof. Taking the imaginary part of the inner product of the
first equation and second equation of (4) with 𝑢(𝑡) and V(𝑡),
respectively, we have

𝜖

2

𝑑

𝑑𝑡
‖𝑢‖
2
+ 𝜎1‖𝑢‖

2
+ 𝑉
2 Im ⟨V, 𝑢⟩ = Im ⟨𝑔

1
, 𝑢⟩ ,

𝜖

2

𝑑

𝑑𝑡
‖V‖2 + 𝜎2‖V‖

2
+ 𝑉
2 Im ⟨𝑢, V⟩ = Im ⟨𝑔

2
, V⟩ .

(10)

Summing up (10),

𝜖

2

𝑑

𝑑𝑡
(‖𝑢‖
2
+ ‖V‖2) + 𝜎1‖𝑢‖

2
+ 𝜎2‖V‖

2

= Im ⟨𝑔
1
, 𝑢⟩ + Im ⟨𝑔

2
, V⟩ .

(11)

Let 𝐶 = min{𝜎1/2, 𝜎2/2}. By Young inequality, we have

𝑑

𝑑𝑡
(‖𝑢‖
2
+ ‖V‖2) +

2𝐶

𝜖
(‖𝑢‖
2
+ ‖V‖2)

≤
4

𝜖𝜎1

󵄩󵄩󵄩󵄩󵄩
𝑔
1󵄩󵄩󵄩󵄩󵄩

2

+
4

𝜖𝜎2

󵄩󵄩󵄩󵄩󵄩
𝑔
2󵄩󵄩󵄩󵄩󵄩

2

.

(12)

Applying Gronwall Lemma to (12), we have

‖𝑢‖
2
+ ‖V‖2 ≤ (

󵄩󵄩󵄩󵄩𝑢0
󵄩󵄩󵄩󵄩

2
+
󵄩󵄩󵄩󵄩V0
󵄩󵄩󵄩󵄩

2
) 𝑒
−(2𝐶/𝜖)𝑡

+ (
4

𝜖𝜎1

󵄩󵄩󵄩󵄩󵄩
𝑔
1󵄩󵄩󵄩󵄩󵄩

2

+
4

𝜖𝜎2

󵄩󵄩󵄩󵄩󵄩
𝑔
2󵄩󵄩󵄩󵄩󵄩

2

)

× [
2𝐶

𝜖

−1

−
2𝐶

𝜖

−1

exp(−2𝐶
𝜖
𝑡)] , 𝑡 ≥ 0.

(13)

It implies that the semigroup {S(𝑡)}𝑡≥0 possesses a bounded
absorbing ball B ⊂ ℓ

2
× ℓ
2 centered at 0 with radius 󰜚 =

√(2/𝐶𝜎1)‖𝑔
1‖
2
+ (2/𝐶𝜎2)‖𝑔

2‖
2.

Lemma 6. Assume that (𝑢0, V0) ∈ B, 𝑔1, 𝑔2 ∈ ℓ
2, and 𝜎1,

𝜎2 > 4. Then, there exist 𝑇(𝜀) and𝑁(𝜀) such that the solution
(𝑢(𝑡), V(𝑡)) of system (4) satisfies

∑

|𝑘|>𝑁(𝜀)

(
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
) ≤ 𝜀, ∀𝑡 ≥ 𝑇 (𝜀) . (14)

Proof. Define 𝜂(𝑥) ∈ C(R+; [0, 1]) by

𝜂 (𝑥) = 0, ∀𝑥 ∈ [0, 1] ,

𝜂 (𝑥) = 1, ∀𝑥 ∈ [2, +∞) ,

󵄨󵄨󵄨󵄨󵄨
𝜂
󸀠
(𝑥)
󵄨󵄨󵄨󵄨󵄨
≤ 𝜂0,

(15)

where 𝜂0 is a positive constant number.
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Taking the imaginary part of the inner product of the first
equation and second equation of (4) with 𝑢̃𝑘 := 𝜂(|𝑘|/𝑀)𝑢𝑘

and Ṽ𝑘 := 𝜂(|𝑘|/𝑀)V𝑘 in ℓ
2, respectively, where𝑀 ∈ Z is large

enough, we have

𝜖

2

𝑑

𝑑𝑡
∑

𝑘∈Z

𝜂(
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+ 𝜎1∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2

+ 𝑉
2 Im ∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
) V𝑘𝑢𝑘

− Im ∑

𝑘∈Z

[(B𝑢̃)
𝑘
(B𝑢)𝑘] = Im ∑

𝑘∈Z

𝑔
1

𝑘
𝜂 (

|𝑘|

𝑀
)𝑢𝑘,

𝜖

2

𝑑

𝑑𝑡
∑

𝑘∈Z

𝜂(
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
+ 𝜎1∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2

+ 𝑉
2 Im ∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
)𝑢𝑘V𝑘

− Im ∑

𝑘∈Z

[(BṼ)
𝑘
(BV)𝑘] = Im ∑

𝑘∈Z

𝑔
2

𝑘
𝜂 (

|𝑘|

𝑀
) V𝑘.

(16)

Summing up (16), we get

𝜖

2

𝑑

𝑑𝑡
∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
) (
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
)

+ 𝜎1∑

𝑘∈Z

𝜂(
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+ 𝜎2∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
)
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2

= Im ∑

𝑘∈Z

[(B𝑢̃)
𝑘
(B𝑢)𝑘 + (BṼ)

𝑘
(BV)𝑘]

+ Im ∑

𝑘∈Z

[𝑔
1

𝑘
𝜂 (

|𝑘|

𝑀
)𝑢𝑘 + 𝑔

2

𝑘
𝜂 (

|𝑘|

𝑀
) V𝑘] .

(17)

Let 𝜎 = min{𝜎1/2, 𝜎2/2} > 2. By Cauchy-Schwartz inequality
and (17), we have

𝑑

𝑑𝑡
∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
) (
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
)

+
2 (𝜎 − 2)

𝜖
∑

𝑘∈Z

𝜂 (
|𝑘|

𝑀
) (
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
)

≤
2

𝜖𝜎
∑

|𝑘|≥𝑀

(
󵄨󵄨󵄨󵄨󵄨
𝑔
1

𝑘

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑔
2

𝑘

󵄨󵄨󵄨󵄨󵄨

2

) .

(18)

Applying Gronwall Lemma, we can obtain

∑

|𝑘|>𝑀

(
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
)

≤ 𝑒
−(2(𝜎−2)/𝜖)(𝑡−𝑡

0
)
∑

|𝑘|>𝑀

(
󵄨󵄨󵄨󵄨𝑢𝑘 (𝑡0)

󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘 (𝑡0)

󵄨󵄨󵄨󵄨

2
)

+
2

𝜖𝜎
∑

|𝑘|>𝑀

(
󵄨󵄨󵄨󵄨󵄨
𝑔
1

𝑘

󵄨󵄨󵄨󵄨󵄨

2

+
󵄨󵄨󵄨󵄨󵄨
𝑔
2

𝑘

󵄨󵄨󵄨󵄨󵄨

2

)

× [(
2(𝜎 − 2)

𝜖
)

−1

− (
2(𝜎 − 2)

𝜖
)

−1

× 𝑒
−(2(𝜎−2)/𝜖)(𝑡−𝑡

0
)
] ,

(19)

where 𝑡0 and 󰜚 are the time of entry of initial data bounded in
ℓ
2
× ℓ
2 and radius of the absorbing ball in ℓ2 × ℓ2.

Since 𝑔1, 𝑔2 ∈ ℓ
2, then, for any given 𝜖 > 0 and 𝑡 > 𝑡0,

there exist𝑁(𝜖) and 𝑇(𝜖) such that

∑

|𝑘|>𝑁

(
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
) ≤ 𝐶 (𝜎) 𝜀, 𝑡 > 𝑇 (𝜖) , (20)

where 𝐶(𝜎) denote a constant number depending on 𝜎.

Lemma 7. The semigroup {S(𝑡)}𝑡≥0 is asymptotically compact
in ℓ2 × ℓ2; that is, if sequences {𝑢𝑘}𝑘∈Z, {V𝑘}𝑘∈Z are bounded in
ℓ
2 and 𝑡𝑘 → ∞, then S(𝑡𝑘)(𝑢𝑘, V𝑘) is precompact in ℓ2 × ℓ2.

Proof. Define Γ = {S(𝑡𝑘)(𝑢𝑘, V𝑘) : (𝑢𝑘, V𝑘) ∈ B, 𝑡𝑘 →

∞ as 𝑘 → ∞}. Our purpose is to prove that Γ has finite
covering balls of radii 𝜀.

By Lemma 6, we know that, for all (𝑢𝑘, V𝑘) ∈ Γ, there exist
𝑁(𝜀) and 𝑇(𝜀) such that

∑

|𝑘|>𝑁(𝜀)

(
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
+
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
) ≤

𝜀

2
, 𝑡 ≥ 𝑇 (𝜀) . (21)

We consider the set Γ̃ = {(𝑢𝑘, V𝑘)|𝑘|≤𝑁(𝜀) : (𝑢𝑘, V𝑘) ∈ Γ}

in R2𝑁(𝜀)+1. Note that Γ̃ is bounded in R2𝑁(𝜀)+1, so it is
precompact inR2𝑁(𝜀)+1; that is, there exists a family of balls of
radii 𝜀/2, which covers Γ̃. This together with (21) implies that
the set Γ has finite covering balls of radii 𝜀.This completes the
proof.

Therefore, by Lemmas 6 and 7 and Proposition 3, we
conclude that Theorem 1 holds.

3. Finite Approximation of
the Global Attractor

In this section, we study the stability of global attractor
of lattice dynamical system generated by (1)-(2) under its
approximation by a global attractor of an appropriate infinite
dimensional dynamical system.
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We consider the following finite dimensional boundary
value problem:

𝑖 (𝜖𝑢̇𝑘 + 𝜎1𝑢𝑘) + 𝜖 (A𝑢𝑘) − 𝑉
1
𝑢𝑘 + 𝑉

2V𝑘

− 𝑎1
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 − 𝑎2

󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 = 𝑔

1

𝑘
,

𝑖 (𝜖V̇𝑘 + 𝜎2V𝑘) + 𝜖 (AV𝑘) − 𝑉
3V𝑘 + 𝑉

2
𝑢𝑘

− 𝑎3
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2V𝑘 − 𝑎2
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2V𝑘 = 𝑔
2

𝑘
,

𝑢−𝑁−1 (𝑡) = 𝑢𝑁+1 (𝑡) = 0, V−𝑁−1 (𝑡) = V𝑁+1 (𝑡) = 0,

𝑢𝑘 (0) = 𝑢𝑘,0, V𝑘 (0) = V𝑘,0.
(22)

In similar process with infinite dimensional problem (1)-
(2), we have the following well-posedness and asymptotic
behavior of finite dimensional system (22).

Lemma 8. Let 𝑢0 := (𝑢𝑘,0)𝑘≤𝑁
, V0 := (V𝑘,0)𝑘≤𝑁 ∈ C2𝑁+1.

Assume that 𝜎1, 𝜎2 > 4 holds. Then there exists a unique
solution (𝑢̃, Ṽ) ∈ C1([0,∞),C2𝑁+1 × C2𝑁+1). The dynamical
systemS𝑁(𝑡) generated by (22) possesses a bounded absorbing
setB𝑁 ∈ C2𝑁+1 × C2𝑁+1 and global attractorA𝑁 ⊂B𝑁.

In order to verify the global attractor A of semigroup
S(𝑡) being approximated by the global attractor A𝑁 of
semigroupS𝑁(𝑡) as𝑁 → ∞, we extend the solution of (22)
to infinite dimensional space ℓ2 × ℓ2, as

(𝑢𝑁 (𝑡) , V𝑁 (𝑡))𝑁∈Z

:= {
(𝑢̃ (𝑡) , Ṽ (𝑡)) := (𝑢𝑘(𝑡), V𝑘(𝑡))|𝑘|≤𝑁, |𝑘| ≤ 𝑁,

0, |𝑘| > 𝑁.

(23)

Proof of Theorem 2. We denote global attractors generated by
semigroups S(𝑡) and S𝑁(𝑡) by A and A𝑁, respectively. By
Lemma 7, we can get that B̃ :=B ⋂(C2𝑁+1 ×C2𝑁+1) is also
an absorbing set for S𝑁(𝑡). Then, we have

A𝑁 ⊂ B̃ ⊂B0 := O ⋂ (C
2𝑁+1

× C
2𝑁+1

) ,

A𝑁 attracts B0,
(24)

whereO denotes an open neighborhood of absorbing ballB.
In light ofTheorem 6.1 in [14], for obtaining (3), we only need
to verify that, for every compact interval 𝐽 of R+,

sup
(𝑢
0
,V
0
)∈B
0

sup
𝑡∈𝐽

𝑑 (S𝑁 (𝑡) (𝑢0, V0) ,S (𝑡) (𝑢0, V0)) 󳨀→ 0,

as 𝑁 󳨀→ ∞.

(25)

Let (𝑢̃(𝑡), Ṽ(𝑡)) = S𝑁(𝑡)(𝑢0, V0) ∈ C2𝑁+1 ×C2𝑁+1 be a solution
of problem (22). Since (𝑢̃(𝑡), Ṽ(𝑡)) ∈ B𝑁, for every 𝑡 ∈ R+. If
we denote 󰜚𝑁 as the radius of absorbing ballB𝑁, by (23) and
(22), we have

󵄩󵄩󵄩󵄩(𝑢𝑁(𝑡), V𝑁(𝑡))
󵄩󵄩󵄩󵄩ℓ2×ℓ2

≤ 󰜚
2

𝑁
,

󵄩󵄩󵄩󵄩(𝑢̇𝑁(𝑡), V̇𝑁(𝑡))
󵄩󵄩󵄩󵄩ℓ2×ℓ2

≤ 𝐶5 (󰜚𝑁,
󵄩󵄩󵄩󵄩󵄩
𝑔
1󵄩󵄩󵄩󵄩󵄩

2

,
󵄩󵄩󵄩󵄩󵄩
𝑔
1󵄩󵄩󵄩󵄩󵄩

2

) ,

(26)

which implies that, for every 𝑡 ∈ 𝐽, there exists a subsequence
of (𝑢𝑁(𝑡), V𝑁(𝑡)) (still denoted by itself) such that

(𝑢𝑁 (𝑡) , V𝑁 (𝑡)) 󳨀→ (𝑢 (𝑡) , V (𝑡)) ,

weakly in C (𝐽, ℓ
2
× ℓ
2
) ,

(𝑢𝑁 (𝑡) , V𝑁 (𝑡)) 󳨀→ (𝑢 (𝑡) , V (𝑡)) ,

weakly star in L
∞
(𝐽, ℓ
2
× ℓ
2
) ,

(𝑢̇𝑁 (𝑡) , V̇𝑁 (𝑡)) 󳨀→ (𝑢̇ (𝑡) , V̇ (𝑡)) ,

weakly star in L
∞
(𝐽, ℓ
2
× ℓ
2
) .

(27)

Next, according to Theorem 6.1 in [14], for proving (25), it
suffices to show that solution (𝑢𝑁(𝑡), V𝑁(𝑡)) of system (22)
converges to solution (𝑢(𝑡), V(𝑡)) of system (1) in any compact
interval 𝐽 of R+ and (𝑢0, V0) in a bounded set of ℓ2 × ℓ2.

By (26), we can define differentiable functions

Υ
1

𝑁
(𝑡) := (𝑢𝑁 (𝑡) , 𝜙) , Υ

2

𝑁
(𝑡) := (V𝑁 (𝑡) , 𝜙) ,

∀𝜙 ∈ ℓ
2
, 𝑡 ∈ 𝐽.

(28)

Then,

(Υ
1

𝑁
(𝑡))
󸀠

:= (𝑢̇𝑁 (𝑡) , 𝜙) , (Υ
2

𝑁
(𝑡))
󸀠

:= (V̇𝑁 (𝑡) , 𝜙) .
(29)

It follows from the mean-value theorem that there exist
𝜁1, 𝜁2 ∈ 𝐽 such that, for any fixed 𝑡, 𝑠 ∈ 𝐽,

󵄨󵄨󵄨󵄨(𝑢𝑁 (𝑡) − 𝑢𝑁 (𝑠) , 𝜙)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
Υ
1

𝑁
(𝑡) − Υ

1

𝑁
(𝑠)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨(𝑢̇𝑁 (𝑡) , 𝜙)

󵄨󵄨󵄨󵄨 |𝑡 − 𝑠| ≤ 𝐶5 |𝑡 − 𝑠| ,

(30)

󵄨󵄨󵄨󵄨(V𝑁 (𝑡) − V𝑁 (𝑠) , 𝜙)
󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
Υ
2

𝑁
(𝑡) − Υ

2

𝑁
(𝑠)
󵄨󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨(V̇𝑁 (𝑡) , 𝜙)

󵄨󵄨󵄨󵄨 |𝑡 − 𝑠| ≤ 𝐶6 |𝑡 − 𝑠| .

(31)

Hence, there exists a constant 𝐶7 (independent of 𝑁) such
that

󵄩󵄩󵄩󵄩(𝑢𝑁(𝑡) − 𝑢𝑁(𝑠), V𝑁(𝑡) − V𝑁(𝑠))
󵄩󵄩󵄩󵄩ℓ2×ℓ2

≤ 𝐶7 |𝑡 − 𝑠| , (32)

which implies that the sequences (Υ1
𝑁
, Υ
2

𝑁
) are equicontin-

uous. This combines with (26) and Ascoli-Arzelá theorem;
we get that the weak convergence in (27) is actually strong
convergence.

We define

𝐹1 (𝑢, V) := −𝑉
1
𝑢 + 𝑉

2V − 𝐻1 (𝑢, V) 𝑢,

𝐹2 (𝑢, V) := −𝑉
3V + 𝑉2𝑢 − 𝐻2 (𝑢, V) V,

(33)

where 𝐻1(𝑢, V) and 𝐻2(𝑢, V) are defined in (5). Similar to
Lemma 5, we can get that 𝐹1, 𝐹2 : ℓ

2
× ℓ
2
→ ℓ
2
× ℓ
2 are
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Lipschitz continuous on any bounded sets in ℓ2 × ℓ2; that is,
there exists constant 𝐶8(󰜚𝑁) such that
󵄩󵄩󵄩󵄩󵄩
𝐹1 (𝑢𝑁, V𝑁) − 𝐹1 (𝑢, V)

󵄩󵄩󵄩󵄩󵄩
≤ 𝐶9

󵄩󵄩󵄩󵄩(𝑢𝑁 − 𝑢, V𝑁 − 𝑢)
󵄩󵄩󵄩󵄩ℓ2×ℓ2 ,

󵄩󵄩󵄩󵄩󵄩
𝐹2(𝑢𝑁, V𝑁) − 𝐹2(𝑢, V)

󵄩󵄩󵄩󵄩󵄩ℓ2×ℓ2
≤ 𝐶8

󵄩󵄩󵄩󵄩(𝑢𝑁 − 𝑢, V𝑁 − V)󵄩󵄩󵄩󵄩ℓ2×ℓ2 .
(34)

Then, by (27), ∀𝜛(𝑡) ∈ C∞
0
(𝐽), we have

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐽

(𝐹1 (𝑢𝑁, V𝑁) − 𝐹1 (𝑢, V) , 𝜛 (𝑡)) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0

as 𝑁 󳨀→∞,

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫
𝐽

(𝐹2 (𝑢𝑁, V𝑁) − 𝐹2 (𝑢, V) , 𝜛 (𝑡)) 𝑑𝑡
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0

as 𝑁 󳨀→∞.

(35)

By the formula in [17, page 59], for 𝜙 ∈ ℓ2, we get

∫
𝐽

(𝑖𝑢̇𝑁 (𝑡) , 𝜙) 𝜛 (𝑡) 𝑑𝑡 + 𝜖∫
𝐽

(A𝑢𝑁, 𝜙) 𝜛 (𝑡) 𝑑𝑡

+ ∫
𝐽

(𝐹1 (𝑢𝑁 (𝑡) , V𝑁 (𝑡)) , 𝜙) 𝜛 (𝑡) 𝑑𝑡

= ∫
𝐽

(𝑔
1
, 𝜙) 𝜛 (𝑡) 𝑑𝑡,

∫
𝐽

(𝑖V̇𝑁 (𝑡) , 𝜙) 𝜛 (𝑡) 𝑑𝑡 + 𝜖∫
𝐽

(AV𝑁, 𝜙) 𝜛 (𝑡) 𝑑𝑡

+ ∫
𝐽

(𝐹1 (𝑢𝑁 (𝑡) , V𝑁 (𝑡)) , 𝜙) 𝜛 (𝑡) 𝑑𝑡

= ∫
𝐽

(𝑔
2
, 𝜙) 𝜛 (𝑡) 𝑑𝑡.

(36)

Since 𝐽 is arbitrary, (36) holds for all 𝑡 ∈ R+. By (27) and
(36), we obtain that (𝑢(𝑡), V(𝑡)) is a bounded solution of (1)
and (𝑢(𝑡), V(𝑡)) ∈ A, which implies that (𝑢𝑁(0), V𝑁(0)) →

(𝑢(0), V(0)). If the convergence holds for any other subse-
quence satisfying (36), then it contradicts uniqueness of the
solution. Therefore, we deduce that the convergence holds
for original sequence (𝑢𝑁, V𝑁), which implies that (25) holds.
This completes the proof.

Remark 9. We have discussed the existence of compact
attractor for the one dimensional coupled Schrödinger lattice.
By the same method, we also can obtain the same result for
spatial discretization of coupled Schrödinger system in higher
dimensional Z𝑛, 𝑛 ≥ 2. It takes the following form:

𝑖 (𝜖𝑢̇𝑘 + 𝜎1𝑢𝑘) + 𝜖(A𝑢)𝑘 − 𝑉
1
𝑢𝑘 + 𝑉

2V𝑘

− 𝑎1
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 − 𝑎2

󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2
𝑢𝑘 = 𝑔

1

𝑘
,

𝑖 (𝜖V̇𝑘 + 𝜎2V𝑘) + 𝜖(AV)𝑘 − 𝑉
3V𝑘 + 𝑉

2
𝑢𝑘

− 𝑎3
󵄨󵄨󵄨󵄨V𝑘
󵄨󵄨󵄨󵄨

2V𝑘 − 𝑎2
󵄨󵄨󵄨󵄨𝑢𝑘
󵄨󵄨󵄨󵄨

2V𝑘 = 𝑔
2

𝑘
,

(37)

where 𝜖 > 0 is a small parameter, 𝑘 = (𝑘1, 𝑘2, . . . , 𝑘𝑛) ∈ Z𝑛,
𝑎𝑖 > 0, 𝑉𝑖 are constant potential (𝑖 = 1, 2, 3), and A is the
discrete Laplacian operator defined as

(A𝑢)𝑘∈Z𝑛 = 𝑢(𝑘
1
−1,𝑘
2
,...,𝑘
𝑛
) + 𝑢(𝑘

1
,𝑘
2
−1,...,𝑘

𝑛
)

+ ⋅ ⋅ ⋅ + 𝑢(𝑘
1
,𝑘
2
,...,𝑘
𝑛
−1)

+ 𝑢(𝑘
1
+1,𝑘
2
,...,𝑘
𝑛
) + 𝑢(𝑘

1
,𝑘
2
+1,...,𝑘

𝑛
)

+ ⋅ ⋅ ⋅ + 𝑢(𝑘
1
,𝑘
2
,...,𝑘
𝑛
+1) − 2𝑛𝑢(𝑘

1
,𝑘
2
,...,𝑘
𝑛
).

(38)

Define operators B],B
∗

] : ℓ
2
→ ℓ
2 as

(B]𝑢)𝑘∈Z𝑛 = 𝑢(𝑘1 ,...,𝑘]−1 ,𝑘]+1,𝑘]+1 ,...,𝑘𝑛) − 𝑢(𝑘1 ,...,𝑘𝑛),

(B
∗

]𝑢)𝑘∈Z𝑛 = 𝑢(𝑘1 ,...,𝑘]−1 ,𝑘]−1,𝑘]+1 ,...,𝑘𝑛) − 𝑢(𝑘1 ,...,𝑘𝑛).
(39)

Then the operatorA satisfies

(−A𝑢, V) =
𝑛

∑

]=1
(B
∗

]B]𝑢, V)

=

𝑛

∑

]=1
(B]𝑢,B]V) , ∀𝑢, V ∈ ℓ2.

(40)
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