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We investigate the nonlocal boundary value problems of impulsive fractional differential equations. By Banach’s contraction
mapping principle, Schaefer’s fixed point theorem, and the nonlinear alternative of Leray-Schauder type, some related new existence
results are established via a new special hybrid singular type Gronwall inequality. At last, some examples are also given to illustrate
the results.

1. Introduction

Fractional differential equations have recently proved to be
strong tools in the modeling of many physical phenomena.
It draws a great application in nonlinear oscillations of
earthquakes, many physical phenomena such as seepage
flow in porous media, and fluid dynamic traffic model. For
more details on fractional calculus theory, one can see the
monographs of Diethelm [1], Kilbas et al. [2], Lakshmikan-
tham et al. [3], Miller and Ross [4], Podlubny [5], and
Tarasov [6]. Fractional differential equations involving the
Riemann-Liouville fractional derivative or the Caputo frac-
tional derivative have been paid more and more attentions
(see, e.g., [7–13]).

The impulsive differential equations arise from the real
world problems to describe the dynamics of processes in
which sudden, discontinuous jumps occur. Such processes
are naturally seen in biology, physics, engineering, and so
forth. Due to their significance, many authors have estab-
lished the solvability of impulsive differential equations. For
the general theory and applications of such equationswe refer
the interested readers to see the papers [14–17] and references
therein.

As one of the important topics in the research of differen-
tial equations, the boundary value problems have attained a
great deal of attention frommany researchers; see [18–23] and
the references therein. As pointed out in [24], the nonlocal
boundary condition can be more useful than the standard

condition to describe some physical phenomena. But there
are very few papers (see, e.g., [24–26]) dealing with the
nonlocal boundary value problems of fractional differential
equations. And even in [24–26], the impulsive effect has not
been considered. In [27], the author considered the following
problems:

𝑐

𝐷
𝑞

𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡) , 𝑢
󸀠

(𝑡)) , 1 < 𝑞 ≤ 2,

𝑡 ∈ 𝐽
1
= [0, 1] \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑝
} ,

Δ𝑢 (𝑡
𝑘
) = 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , Δ𝑢

󸀠

(𝑡
𝑘
) = 𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) ,

𝑡
𝑘
∈ (1, 0) , 𝑘 = 1, 2, . . . , 𝑝,

𝛼𝑢 (0) + 𝛽𝑢
󸀠

(0) = 𝑔
1
(𝑢) , 𝛼𝑢 (1) + 𝛽𝑢

󸀠

(1) = 𝑔
2
(𝑢) ,

(1)

where 𝐽 = [0, 1], 𝑓 : 𝐽 × 𝑅 × 𝑅 → 𝑅 is a continuous
function, and 𝐼

𝑘
, 𝐽
𝑘

: 𝑅 → 𝑅 are continuous functions,
Δ𝑢(𝑡
𝑘
) = 𝑢(𝑡

+

𝑘
) − 𝑢(𝑡

−

𝑘
), 𝑢(𝑡+
𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘
+ ℎ), 𝑢(𝑡−

𝑘
) =

lim
ℎ→0

−𝑢(𝑡
𝑘
+ ℎ), 𝑘 = 1, . . . , 𝑝, 0 = 𝑡

0
< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ <

𝑡
𝑝

< 𝑡
𝑝+1

= 1, 𝛼 > 0, 𝛽 ≥ 0, and 𝑔
1
, 𝑔
2

: 𝑃𝐶(𝐽, 𝑅) → 𝑅

are two continuous functions, 𝑃𝐶(𝐽, 𝑅) = {𝑥 : 𝐽 → 𝑅; 𝑥 ∈

𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅), 𝑘 = 0, 1, . . . , 𝑝 + 1, 𝑥(𝑡+
𝑘
), and 𝑥(𝑡

−

𝑘
) exist with

𝑥(𝑡
−

𝑘
) = 𝑥(𝑡

𝑘
), 𝑘 = 1, . . . , 𝑝.}.

In [27], by a fixed point theorem due to O’Regan, the
authors established sufficient conditions for the existence of
at least one solution for the problem (1).
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In [28], the authors considered the following problem:

𝑐

𝐷
𝑞

0,𝑡
𝑢 (𝑡) :=

𝑐

𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) ,

𝑡 ∈ 𝐽
󸀠

:= 𝐽 \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} , 𝐽 := [0, 𝑇] ,

Δ𝑢 (𝑡
𝑘
) := 𝑢 (𝑡

+

𝑘
) − 𝑢 (𝑡

−

𝑘
) = 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , 𝑘 = 1, 2, . . . , 𝑚,

𝛼𝑢 (0) + 𝑏𝑢 (𝑇) = 𝑐,

(2)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of order 𝑞 ∈

(0, 1) with the lower limit zero, 𝑓 : 𝐽 × 𝑅 → 𝑅 is jointly
continuous, 𝑡

𝑘
satisfy 0 = 𝑡

0
< 𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑚

< 𝑡
𝑚+1

=

𝑇, 𝑢(𝑡+
𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘
+ ℎ) and 𝑢(𝑡

−

𝑘
) = lim

ℎ→0
−𝑢(𝑡
𝑘
+ ℎ)

represent the right and left limits of𝑢(𝑡) at 𝑡 = 𝑡
𝑘
, 𝐼
𝑘
∈ 𝐶(𝑅, 𝑅),

and 𝑎, 𝑏, 𝑐 are real constants with 𝑎 + 𝑏 ̸= 0.
In [29], the authors studied the following problem:

𝑐

𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ∈ 𝐽

󸀠

:= 𝐽 \ {𝑡
1
, 𝑡
2
, . . . , 𝑡

𝑚
} ,

𝐽 := [0, 1] ,

Δ𝑢 (𝑡
𝑘
) = 𝐼
𝑘
, Δ𝑢

󸀠

(𝑡
𝑘
) = 𝐽
𝑘
, 𝑘 = 1, 2, . . . , 𝑚,

𝛼𝑢 (0) + 𝑏𝑢 (1) = 0, 𝛼𝑢
󸀠

(0) + 𝑏𝑢
󸀠

(1) = 0,

(3)

where 𝑐𝐷𝑞
𝑡
is the Caputo fractional derivative of order 𝑞 ∈

(1, 2) with the lower limit zero, 𝑎 ≥ 𝑏 > 0, 𝑓 : 𝐽 × 𝑅 → 𝑅

is jointly continuous, 𝐼
𝑘
, 𝐽
𝑘

∈ 𝑅, and 𝑡
𝑘
satisfy 0 = 𝑡

0
<

𝑡
1

< ⋅ ⋅ ⋅ < 𝑡
𝑚

< 𝑡
𝑚+1

= 1, and Δ𝑢(𝑡
𝑘
) = 𝑢(𝑡

+

𝑘
) − 𝑢(𝑡

−

𝑘
)

with 𝑢(𝑡
+

𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘
+ ℎ), 𝑢(𝑡−

𝑘
) = lim

ℎ→0
−𝑢(𝑡
𝑘
+ ℎ)

representing the right and left limits of 𝑢(𝑡) at 𝑡 = 𝑡
𝑘
. In [29],

the authors obtained the sufficient condition of the existence
of at least one solution for problem (3).

Motivated by the work mentioned above, we consider
the following impulsive fractional differential equation with
nonlocal boundary value conditions:

𝑐

𝐷
𝑞

𝑡
𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 1 < 𝑞 ≤ 2,

𝑡 ∈ 𝐽
1
= [0, 1] \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑝
} ,

Δ𝑢 (𝑡
𝑘
) = 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , Δ𝑢

󸀠

(𝑡
𝑘
) = 𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) ,

𝑡
𝑘
∈ (0, 1) , 𝑘 = 1, 2, . . . , 𝑝,

𝑎𝑢 (0) + 𝑏𝑢 (1) = 𝑔
1
(𝑢) , 𝑎𝑢

󸀠

(0) + 𝑏𝑢
󸀠

(1) = 𝑔
2
(𝑢) ,

(4)

where 𝐽 = [0, 1], 𝑓 : 𝐽 × 𝑅 → 𝑅 is a continuous
function, and 𝐼

𝑘
, 𝐽
𝑘

: 𝑅 → 𝑅 are continuous functions;
Δ𝑢(𝑡
𝑘
) = 𝑢(𝑡

+

𝑘
) − 𝑢(𝑡

−

𝑘
) and Δ𝑢

󸀠

(𝑡
𝑘
) = 𝑢

󸀠

(𝑡
+

𝑘
) − 𝑢
󸀠

(𝑡
−

𝑘
) with

𝑢(𝑡
+

𝑘
) = lim

ℎ→0
+𝑢(𝑡
𝑘
+ ℎ), 𝑢(𝑡−

𝑘
) = lim

ℎ→0
−𝑢(𝑡
𝑘
+ ℎ), 𝑢󸀠(𝑡+

𝑘
) =

lim
ℎ→0

+𝑢
󸀠

(𝑡
𝑘
+ℎ), 𝑢󸀠(𝑡−

𝑘
) = lim

ℎ→0
−𝑢
󸀠

(𝑡
𝑘
+ℎ), 𝑘 = 1, 2, . . . , 𝑝,

0 = 𝑡
0

< 𝑡
1

< 𝑡
2

< ⋅ ⋅ ⋅ < 𝑡
𝑝

< 𝑡
𝑝+1

= 1, and 𝑎 > 0, 𝑏 ≥ 0

and 𝑔
1
, 𝑔
2

: 𝑃𝐶(𝐽, 𝑅) → 𝑅 are two continuous functions,
𝑃𝐶(𝐽, 𝑅) = {𝑥 : 𝐽 → 𝑅; 𝑥 ∈ 𝐶((𝑡

𝑘
, 𝑡
𝑘+1

], 𝑅), 𝑘 = 0, 1, . . . , 𝑝,
and 𝑥(𝑡

+

𝑘
), 𝑥(𝑡−
𝑘
) exist with 𝑥(𝑡

−

𝑘
) = 𝑥(𝑡

𝑘
), 𝑘 = 1, . . . , 𝑝.}. The

mainmethods in our paper are Banach’s contractionmapping
principle, Schaefer’s fixed point theorem, and the nonlinear
alternative of Leray-Schauder type.

Obviously, the problems in our paper are different from
those in [27], and we generalized the methods and results in
[27]. Problems in our paper aremore universal than problems
in [28, 29]. It should also be noted that the basic space in our
paper is 𝑃𝐶

1

(𝐽, 𝑅) = {𝑥 ∈ 𝑃𝐶(𝐽, 𝑅) : 𝑥
󸀠

(𝑡) ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅),
𝑘 = 0, 1, . . . , 𝑝, 𝑥󸀠(𝑡+

𝑘
), 𝑥󸀠(𝑡−

𝑘
) exist, and 𝑥

󸀠

(𝑡) is left continuous
at 𝑡
𝑘
, 𝑘 = 1, . . . , 𝑝.}, which is a Banach space with the norm

‖𝑥‖ = sup
𝑡∈𝐽

{‖𝑥‖
𝑃𝐶

, ‖𝑥
󸀠

‖
𝑃𝐶

}, where ‖𝑥‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑥(𝑡)|,
‖𝑥
󸀠

‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑥
󸀠

(𝑡)|. The basic space in [29] is 𝑃𝐶(𝐽, 𝑅) =

{𝑢 : 𝐽 → 𝑅 : 𝑢 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅), 𝑘 = 0, 1, . . . , 𝑚, and
𝑥(𝑡
+

𝑘
), 𝑥(𝑡
−

𝑘
) exist with 𝑥(𝑡

−

𝑘
) = 𝑥(𝑡

𝑘
), 𝑘 = 1, . . . , 𝑚, with

the norm ‖𝑢‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑢(𝑡)|}, which is unreasonable for
the order 𝑞 ∈ (1, 2) because 𝑐𝐷𝑞

𝑡
𝑢(𝑡), Δ𝑢

󸀠

(𝑡
𝑘
) may not exist,

for 𝑢 ∈ 𝑃𝐶[𝐽, 𝑅]. So the problem (3) in [29] are not well
defined, and Definition 4.1 is also unreasonable and should
be modified.

The rest of this paper is organized as follows. In Section 2,
we will give some lemmas which are essential to prove our
main results. In Section 3, we give the main results. The
first result is based on the Banach contraction principle, the
second result is based on Schaefer’s fixed point theorem via
a generalized hybrid singular Gronwall inequality, and the
third result is based on a nonlinear alternative of Leray-
Schauder type. In Section 4, some examples are offered to
demonstrate the application of our main results.

2. Preliminaries

At first, we present the necessary definitions for the fractional
calculus theory.

Definition 1 (see [2, 5]). The Riemann-Liouville fractional
integral of order 𝛼 > 0 of a function 𝑦 : (0,∞) → 𝑅 is
given by

𝐼
𝛼

0
+

𝑦 (𝑡) =
1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠, (5)

where the right side is pointwise defined on (0, +∞).

Definition 2 (see [2, 5]). The Caputo fractional derivative of
order 𝛼 > 0 of a function 𝑦 : (0,∞) → 𝑅 is given by

𝑐

𝐷
𝛼

𝑦 (𝑡) =
1

Γ (𝑛 − 𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑦
(𝑛)

(𝑠) 𝑑𝑠, (6)

where 𝑛 = [𝛼] + 1, [𝛼] denotes the integer part of number 𝛼,
and the right side is pointwise defined on (0, +∞).

Lemma3 (see [2, 5]). Let𝛼 > 0; then the fractional differential
equation 𝑐𝐷𝛼𝑢(𝑡) = 0 has solutions

𝑢 (𝑡) = 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

, (7)

where 𝑐
𝑖
∈ 𝑅, 𝑖 = 0, 1, . . . , 𝑛 − 1, and 𝑛 = [𝛼] + 1.



Abstract and Applied Analysis 3

Lemma 4 (see [2, 5]). Let 𝛼 > 0. Then one has

𝐼
𝛼

0
+

𝑐

𝐷
𝛼

𝑢 (𝑡) = 𝑢 (𝑡) + 𝑐
0
+ 𝑐
1
𝑡 + 𝑐
2
𝑡
2

+ ⋅ ⋅ ⋅ + 𝑐
𝑛−1

𝑡
𝑛−1

, (8)

where 𝑐
𝑖
∈ 𝑅, 𝑖 = 0, 1, . . . , 𝑛 − 1, and 𝑛 = [𝛼] + 1.

Lemma 5 (see [29, Lemma 2.9]). Let 𝑦 ∈ 𝐶(𝐽, 𝑅) satisfy the
following inequality:

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑝
1
+ 𝑝
2
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1󵄨󵄨󵄨󵄨𝑦(𝑠)

󵄨󵄨󵄨󵄨

𝜆

𝑑𝑠

+ 𝑝
3
∫

1

0

(1 − 𝑠)
𝑞−1󵄨󵄨󵄨󵄨𝑦 (𝑠)

󵄨󵄨󵄨󵄨

𝜆

𝑑𝑠 + 𝑝
4

× ∫

1

0

(1 − 𝑠)
𝑞−2󵄨󵄨󵄨󵄨𝑦(𝑠)

󵄨󵄨󵄨󵄨

𝜆

𝑑𝑠,

(9)

where 𝑞 ∈ (1, 2), 𝜆 ∈ [0, 1 − (1/𝑝
0
)); for some 1 < 𝑝

0
< 1/(2 −

𝑞), 𝑝
1
, 𝑝
2
, 𝑝
3
, 𝑝
4
≥ 0 are constants.Then there exists a constant

𝑀
∗

> 0 such that
󵄨󵄨󵄨󵄨𝑦 (𝑡)

󵄨󵄨󵄨󵄨 ≤ 𝑀
∗

. (10)

Lemma6 (Schaefer’s fixed point theorem). Let𝑋 be aBanach
space and let 𝐹 : 𝑋 → 𝑋 be a completely continuous operator.
If the set

𝐸 (𝐹) = {𝑦 ∈ 𝑋 : 𝑦 = 𝜆𝐹𝑦 𝑓𝑜𝑟𝑠𝑜𝑚𝑒 𝜆 ∈ [0, 1]} (11)

is bounded, then 𝐹 has at least a fixed point.

Lemma7 (nonlinear alternative of Leray-Schauder type). Let
𝐶 be a nonempty convex subset of𝑋. Let𝑈 be a nonempty open
subset of 𝐶 with 0 ∈ 𝑈 and let 𝐹 : 𝑈 → 𝐶 be a compact and
continuous operator. Then either

(i) 𝐹 has fixed points, or
(ii) there exist 𝑦 ∈ 𝜕𝑈 and 𝜆

∗

∈ [0, 1] with 𝑦 = 𝜆
∗

𝐹(𝑦).

We define

𝑃𝐶(𝐽, 𝑅) = {𝑥 : 𝐽 → 𝑅; 𝑥 ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅),
𝑘 = 0, 1, . . . , 𝑝, and 𝑥(𝑡

+

𝑘
), 𝑥(𝑡
−

𝑘
) exist with 𝑥(𝑡

−

𝑘
) =

𝑥(𝑡
𝑘
), 𝑘 = 1, . . . , 𝑝}.

𝑃𝐶
1

(𝐽, 𝑅) = {𝑥 ∈ 𝑃𝐶(𝐽, 𝑅); 𝑥󸀠(𝑡) ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅),
𝑘 = 0, 1, . . . , 𝑝, 𝑥

󸀠

(𝑡
+

𝑘
), 𝑥
󸀠

(𝑡
−

𝑘
) exist and 𝑥

󸀠 is left
continuous at 𝑡

𝑘
, 𝑘 = 1, . . . , 𝑝}.

Obviously, 𝑃𝐶
1

(𝐽, 𝑅) is a Banach space with the norm
‖𝑥‖ = sup

𝑡∈𝐽
{‖𝑥‖
𝑃𝐶

, ‖𝑥
󸀠

‖
𝑃𝐶

}, where ‖𝑥‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑥(𝑡)|,
‖𝑥
󸀠

‖
𝑃𝐶

= sup
𝑡∈𝐽

|𝑥
󸀠

(𝑡)|.

Then we can define the solution for the problem (4).

Definition 8. A function 𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅) with its Caputo
derivative of order 1 < 𝑞 ≤ 2 existing on 𝐽

1
is a solution

of the problem (4) if 𝑢(𝑡) = 𝑢
𝑘
(𝑡) for 𝑡 ∈ (𝑡

𝑘
, 𝑡
𝑘+1

) and
𝑢
󸀠

𝑘
∈ 𝐶([0, 𝑡

𝑘+1
], 𝑅) satisfies 𝑐𝐷𝑞

𝑡
𝑢
𝑘
(𝑡) = 𝑓(𝑡, 𝑢

𝑘
(𝑡)) a.e. on

(0, 𝑡
𝑘+1

), the restriction of 𝑢
𝑘+1

(𝑡) on [0, 𝑡
𝑘+1

) is just 𝑢
𝑘
(𝑡),

and the conditions Δ𝑢(𝑡
𝑘
) = 𝐼
𝑘
(𝑢(𝑡
−

𝑘
)), Δ𝑢

󸀠

(𝑡
𝑘
) = 𝐽
𝑘
(𝑢(𝑡
−

𝑘
)),

𝑡
𝑘

∈ (0, 1), 𝑘 = 1, 2, . . . , 𝑝 with 𝑎𝑢(0) + 𝑏𝑢(1) = 𝑔
1
(𝑢),

𝑎𝑢
󸀠

(0) + 𝑏𝑢
󸀠

(1) = 𝑔
2
(𝑢).

Lemma 9. For any ℎ ∈ 𝐶[0, 1], a function 𝑢 is a solution of
the nonlocal impulsive problem

𝑐

𝐷
𝑞

𝑡
𝑢 (𝑡) = ℎ (𝑡) , 1 < 𝑞 ≤ 2,

𝑡 ∈ 𝐽
1
= [0, 1] \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑝
}

Δ𝑢 (𝑡
𝑘
) = 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)) , Δ𝑢

󸀠

(𝑡
𝑘
) = 𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) ,

𝑡
𝑘
∈ (0, 1) , 𝑘 = 1, 2, . . . , 𝑝,

𝑎𝑢 (0) + 𝑏𝑢 (1) = 𝑔
1
(𝑢) , 𝑎𝑢

󸀠

(0) + 𝑏𝑢
󸀠

(1) = 𝑔
2
(𝑢)

(12)

if and only if 𝑢 is a solution of the fractional integral equation

𝑢 (𝑡) = ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 + 𝐼

𝑘
(𝑢 (𝑡
−

𝑘
)))

+ ∑

0<𝑡
𝑘
<𝑡

(𝑡−𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞−1)
ℎ (𝑠) 𝑑𝑠+𝐽

𝑘
(𝑢 (𝑡
−

𝑘
)))

− 𝑐
0
− 𝑐
1
𝑡,

(13)

with

𝑢
󸀠

(𝑡) = ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 + 𝐽

𝑘
(𝑢 (𝑡
−

𝑘
)))

−
1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)))) − 𝑔

2
(𝑢)] ,

(14)

where

𝑐
0
=

𝑏

𝑎 + 𝑏
{[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)))
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+ ∑

0<𝑡
𝑘
<1

(1 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)))]

−
1

(𝑎 + 𝑏)
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
−𝑠)
𝑞−2

Γ (𝑞−1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))))

−𝑔
2
(𝑢) ]} −

𝑔
1
(𝑢)

𝑎 + 𝑏
,

𝑐
1
=

1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) )] − 𝑔

2
(𝑢)} .

(15)

Proof. By Lemmas 3 and 4, the solution of (12) can be written
as

𝑢 (𝑡) = 𝐼
𝑞

+
ℎ (𝑡) − 𝑐

0
− 𝑐
1
𝑡

= ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 − 𝑐

0
− 𝑐
1
𝑡, 𝑡 ∈ [0, 𝑡

1
] ,

(16)

where 𝑐
0
, 𝑐
1
∈ 𝑅. Taking the derivative of 𝑢(𝑡) gives

𝑢
󸀠

(𝑡) = ∫

𝑡

0

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 − 𝑐

1
, 𝑡 ∈ [0, 𝑡

1
] . (17)

If 𝑡 ∈ (𝑡
1
, 𝑡
2
], then we have

𝑢 (𝑡) = ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 − 𝑑

0
− 𝑑
1
(𝑡 − 𝑡
1
) ,

𝑢
󸀠

(𝑡) = ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 − 𝑑

1
,

(18)

where 𝑑
0
, 𝑑
1
∈ 𝑅. In view of the impulse conditions

Δ𝑢 (𝑡
1
) = 𝑢 (𝑡

+

1
) − 𝑢 (𝑡

−

1
) = 𝐼
1
(𝑢 (𝑡
−

1
)) ,

Δ𝑢
󸀠

(𝑡
1
) = 𝑢
󸀠

(𝑡
+

1
) − 𝑢
󸀠

(𝑡
−

1
) = 𝐽
1
(𝑢 (𝑡
−

1
)) ,

(19)

and (16)–(18), we have

−𝑑
0
= ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 − 𝑐

0
− 𝑐
1
𝑡
1
+ 𝐼
1
(𝑢 (𝑡
−

1
))

−𝑑
1
= ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 − 𝑐

1
+ 𝐽
1
(𝑢 (𝑡
−

1
)) .

(20)

Taking (20) into (18), we can get

𝑢 (𝑡) = ∫

𝑡

𝑡
1

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+ ∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 − 𝑐

0
− 𝑐
1
𝑡 + 𝐼
1
(𝑢 (𝑡
−

1
))

+ (∫

𝑡
1

0

(𝑡
1
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 + 𝐽

1
(𝑢 (𝑡
−

1
))) (𝑡 − 𝑡

1
) ,

𝑡 ∈ (𝑡
1
, 𝑡
2
] .

(21)

Repeating the process in this way, the solution 𝑢(𝑡) for 𝑡 ∈

(𝑡
𝑘
, 𝑡
𝑘+1

] can be written as

𝑢 (𝑡) = ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 − 𝑐

0
− 𝑐
1
𝑡

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠 + 𝐼

𝑘
(𝑢 (𝑡
−

𝑘
)))

+ ∑

0<𝑡
𝑘
<𝑡

(𝑡 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, . . . , 𝑝.

(22)

By taking the derivative of (22), we have

𝑢
󸀠

(𝑡) = ∫

𝑡

𝑡
𝑘

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 − 𝑐

1

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 + 𝐽

𝑘
(𝑢 (𝑡
−

𝑘
))) ,

𝑡 ∈ (𝑡
𝑘
, 𝑡
𝑘+1

] , 𝑘 = 0, 1, . . . , 𝑝.

(23)

Taking (16), (17), (22), and (23) to the boundary value
conditions

𝑎𝑢 (0) + 𝑏𝑢 (1) = 𝑔
1
(𝑢) , 𝑎𝑢

󸀠

(0) + 𝑏𝑢
󸀠

(1) = 𝑔
2
(𝑢) ,

(24)
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we can get

𝑐
0
=

𝑏

𝑎 + 𝑏
{[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
ℎ (𝑠) 𝑑𝑠

+𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)))

+ ∑

0<𝑡
𝑘
<1

(1 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)))] −

1

(𝑎 + 𝑏)

× [𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))))

−𝑔
2
(𝑢) ]} −

𝑔
1
(𝑢)

𝑎 + 𝑏
,

𝑐
1
=

1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) )) − 𝑔

2
(𝑢)] .

(25)

Then the solution of (12) is (22), where 𝑐
0
, 𝑐
1
are given by (25).

Taking derivative of (13), we can get

𝑢
󸀠

(𝑡) = ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠 + 𝐽

𝑘
(𝑢 (𝑡
−

𝑘
)))

−
1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
ℎ (𝑠) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))))−𝑔

2
(𝑢)].

(26)

Conversely, taking (13) and (14) into (12), we can easily get
the equation

𝑐

𝐷
𝑞

𝑡
𝑢 (𝑡) = ℎ (𝑡) , 1 < 𝑞 ≤ 2,

𝑡 ∈ 𝐽
1
= [0, 1] \ {𝑡

1
, 𝑡
2
, . . . , 𝑡

𝑝
}

(27)

and all the impulse conditions and boundary value conditions
are satisfied. So we complete the proof of Lemma 9.

Consider the operator 𝐹 : 𝑃𝐶
1

(𝐽, 𝑅) → 𝑃𝐶
1

(𝐽, 𝑅)

defined by

(𝐹𝑢) (𝑡) = ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)))

+ ∑

0<𝑡
𝑘
<𝑡

(𝑡 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ 𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))) − 𝑐

0
− 𝑐
1
𝑡,

(28)

where

𝑐
0
=

1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐼
𝑘
(𝑢 (𝑡
−

𝑘
)))

+ ∑

0<𝑡
𝑘
<1

(1−𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) )] − 𝑔

1
(𝑢)}

−
𝑏

(𝑎 + 𝑏)
2
{𝑏[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) )] − 𝑔

2
(𝑢)} ,



6 Abstract and Applied Analysis

𝑐
1
=

1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) )) − 𝑔

2
(𝑢)] .

(29)

Then we have

(𝐹𝑢)
󸀠

(𝑡) = ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
−𝑠)
𝑞−2

Γ (𝑞−1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)))

−
1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
−𝑠)
𝑞−2

Γ (𝑞−1)
𝑓 (𝑠, 𝑢 (𝑠)) 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
)) ))

− 𝑔
2
(𝑢) ] .

(30)

Clearly, 𝐹 is well defined.

3. Main Results

This section deals with the existence of solutions for problem
(4). Before stating and proving the main results, we make the
following hypotheses.

(H
1
) 𝑓 : 𝐽 × 𝑅 → 𝑅 is jointly continuous.

(H
2
) 𝑔
1
, 𝑔
2

: 𝑅 → 𝑅 are continuous functions and there
exists 𝑙

1
(𝑡), 𝑙
2
(𝑡) ∈ 𝐶[𝐽, 𝑅

+
] such that |𝑔

1
(𝑢
1
(𝑡)) −

𝑔
1
(𝑢
2
(𝑡))| ≤ 𝑙

1
(𝑡)‖𝑢
1
− 𝑢
2
‖, |𝑔
2
(𝑢
1
(𝑡)) − 𝑔

2
(𝑢
2
(𝑡))| ≤

𝑙
2
(𝑡)‖𝑢
1
− 𝑢
2
‖, for ∀𝑢

1
, 𝑢
2
∈ 𝑃𝐶
1

(𝐽, 𝑅), 𝑡 ∈ 𝐽.

(H
3
) There exist real functions ℎ

1
(⋅), ℎ
2
(⋅) ∈ 𝐶(𝐽, 𝑅

+
) such

that |𝑓(𝑡, 𝑢)| ≤ ℎ
1
(𝑡),|𝑓(𝑡, 𝑢

1
(𝑡)) − 𝑓(𝑡, 𝑢

2
(𝑡))| ≤

ℎ
2
(𝑡)‖𝑢
1
− 𝑢
2
‖, for ∀𝑢

1
, 𝑢
2
∈ 𝑃𝐶
1

(𝐽, 𝑅), 𝑡 ∈ 𝐽.

(H
4
) 𝐼
𝑘
, 𝐽
𝑘

: 𝑅 → 𝑅 are continuous functions and there
exist positive constants 𝑀

𝑘
, 𝑚
𝑘
such that |𝐼

𝑘
(𝑢
1
) −

𝐼
𝑘
(𝑢
2
)| ≤ 𝑀

𝑘
‖𝑢
1
−𝑢
2
‖, |𝐽
𝑘
(𝑢
1
)−𝐽
𝑘
(𝑢
2
)| ≤ 𝑚

𝑘
‖𝑢
1
−𝑢
2
‖,

∀𝑢
1
, 𝑢
2
∈ 𝑃𝐶
1

(𝐽, 𝑅) and 𝑘 = 1, 2, . . . , 𝑝.

Let
𝑊 = sup

𝑡∈𝐽

𝑙
1
(𝑡) , 𝑤 = sup

𝑡∈𝐽

𝑙
2
(𝑡) ,

𝐸 = sup
𝑡∈𝐽

ℎ
1
(𝑡) 𝑒 = sup

𝑡∈𝐽

ℎ
2
(𝑡) .

(31)

Theorem 10. Assume that (𝐻
1
)–(𝐻
4
) hold and < 1; then

problem (4) has a unique solution, where

𝑛 = max {[
2𝑒 (1 + 𝑝)

Γ (𝑞 + 1)
+

2𝑒 (1 + 2𝑝)

Γ (𝑞)
+ 𝑊 + 2𝑤

+

𝑝

∑

𝑘=1

(2𝑀
𝑘
+ 4𝑚
𝑘
)] ,

(
2𝑒 (1 + 𝑝)

Γ (𝑞 − 1)
+ 𝑤 + 2

𝑝

∑

𝑘=1

𝑚
𝑘
)} .

(32)

Proof.

Step 1. We show that 𝐹𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅), for all 𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅).
For all 𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅), 𝑠
1
, 𝑠
2
∈ [0, 𝑡

1
], or 𝑠

1
, 𝑠
2
∈ (𝑡
𝑘
, 𝑡
𝑘+1

],
𝑘 = 1, 2, . . . , 𝑝, 𝑠

2
> 𝑠
1
, by (30) and the continuity of 𝑔

2
, 𝑢, we

have
󵄨󵄨󵄨󵄨󵄨
(𝐹𝑢)
󸀠

(𝑠
2
) − (𝐹𝑢)

󸀠

(𝑠
1
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑠
1

𝑡
𝑖

[(𝑠
2
− 𝑠)
𝑞−2

− (𝑠
1
− 𝑠)
𝑞−2

]

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑠
2

𝑠
1

(𝑠
2
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
1

𝑎 + 𝑏

󵄨󵄨󵄨󵄨(𝑔2 (𝑢 (𝑠
2
)) − 𝑔

2
(𝑢 (𝑠
1
)))

󵄨󵄨󵄨󵄨

≤
𝐸

Γ (𝑞 − 1)
[∫

𝑠
1

0

[(𝑠
2
− 𝑠)
𝑞−2

− (𝑠
1
− 𝑠)
𝑞−2

] 𝑑𝑠

+∫

𝑠
2

𝑠
1

(𝑠
2
− 𝑠)
𝑞−2

𝑑𝑠]

+
1

𝑎 + 𝑏

󵄨󵄨󵄨󵄨(𝑔2 (𝑢 (𝑠
2
)) − 𝑔

2
(𝑢 (𝑠
1
)))

󵄨󵄨󵄨󵄨 󳨀→ 0,

as 𝑠
1
󳨀→ 𝑠
2
.

(33)

So we know (𝐹𝑢)
󸀠

(𝑡) ∈ 𝐶((𝑡
𝑘
, 𝑡
𝑘+1

], 𝑅), 𝑘 = 0, 1, . . . , 𝑝 + 1.
It is easy to see that (𝐹𝑢)

󸀠

(𝑡
+

𝑘
), (𝐹𝑢)

󸀠

(𝑡
−

𝑘
) exist and (𝐹𝑢)

󸀠

(𝑡) is
left continuous at 𝑡

𝑘
, 𝑘 = 1, . . . , 𝑝. So, for ∀𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅),
𝐹𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅).

Step 2.We show that𝐹 is a contraction operator on𝑃𝐶
1

(𝐽, 𝑅).
Consider
|(𝐹𝑢) (𝑡) − (𝐹V) (𝑡)|

≤ ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐼
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )
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+ ∑

0<𝑡
𝑘
<𝑡

(𝑡 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+
1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐼
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+ ∑

0<𝑡
𝑘
<1

(1 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

−𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔1 (𝑢) − 𝑔

1
(𝑢)

󵄨󵄨󵄨󵄨 }

+
𝑏

(𝑎 + 𝑏)
2
{𝑏[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢) − 𝑔

2
(V)󵄨󵄨󵄨󵄨 }

+
1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢) − 𝑔

2
(V)󵄨󵄨󵄨󵄨 }

≤ [
2𝑒 (1 + 𝑝)

Γ (𝑞 + 1)
+

2𝑒 (1 + 2𝑝)

Γ (𝑞)
+ 𝑊 + 2𝑤

+

𝑝

∑

𝑘=1

(2𝑀
𝑘
+ 4𝑚
𝑘
)] ‖𝑢 − V‖

≤ ‖𝑢 − V‖ ,

󵄨󵄨󵄨󵄨󵄨
(𝐹𝑢)
󸀠

(𝑡) − (𝐹V)󸀠 (𝑡)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+
1

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

−𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
)) − 𝐽
𝑘
(V (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 ))

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢) − 𝑔

2
(V)󵄨󵄨󵄨󵄨 ]

≤ (
2𝑒 (1 + 𝑝)

Γ (𝑞)
+ 𝑤 + 2

𝑝

∑

𝑘=1

𝑚
𝑘
)‖𝑢 − V‖

≤ ‖𝑢 − V‖ .

(34)

Hence ‖𝐹(𝑢) − 𝐹(V)‖ ≤ ‖𝑢 − V‖, that is, 𝐹 is a contraction
operator on 𝑃𝐶

1

(𝐽, 𝑅). By applying the well-known Banach’s
contraction mapping principle, we know that the operator 𝐹

has a unique fixed point on𝑃𝐶
1

(𝐽, 𝑅).Therefore, the problem
(4) has a unique solution.

In order to get the second main result, we replace (𝐻
2
)
󸀠

with (𝐻
2
).

(𝐻
2
)
󸀠

𝑔
1
, 𝑔
2

: 𝑅 → 𝑅 are continuous functions and there
exist positive constants 𝑟

1
, 𝑟
2
and 𝑙
1
(𝑡), 𝑙
2
(𝑡) ∈ 𝐶[𝐽, 𝑅

+
]

such that |𝑔
1
(𝑢)| ≤ 𝑟

1
, |𝑔
2
(𝑢)| ≤ 𝑟

2
, |𝑔
1
(𝑢
1
)−𝑔
1
(𝑢
2
)| ≤

𝑙
1
(𝑡)‖𝑢
1
− 𝑢
2
‖, |𝑔
2
(𝑢
1
) − 𝑔
2
(𝑢
2
)| ≤ 𝑙
2
(𝑡)‖𝑢
1
− 𝑢
2
‖, for

all 𝑢
1
, 𝑢
2
∈ 𝑃𝐶
1

(𝐽, 𝑅).

Next, we modify (𝐻
3
) to the following linear growth

condition (𝐻
3
)
󸀠:

(𝐻
3
)
󸀠 There exist constants 𝜆 ∈ [0, 1) and 𝐿 > 0 such that
|𝑓(𝑡, 𝑢(𝑡))| ≤ 𝐿(1 + |𝑢(𝑡)|

𝜆

), ∀𝑡 ∈ 𝐽, 𝑢(𝑡) ∈ 𝑅.
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Theorem 11. Assume that (𝐻
1
), (𝐻
2
)
󸀠, and (𝐻

3
)
󸀠 hold; then

the problem (4) has at least one solution.

Proof. According to Lemma 6, if we want to get the solution
of problem (4), we only need to consider the fixed point of
operator 𝐹, which is defined by (28). We divide the proof into
four steps.

Step 1. 𝐹 is continuous.
Let {𝑢

𝑛
} be a sequence such that {𝑢

𝑛
} → 𝑢

0
in 𝑃𝐶

1

(𝐽, 𝑅).
∀𝑡 ∈ 𝐽, we have
󵄨󵄨󵄨󵄨(𝐹𝑢
𝑛
) (𝑡) − (𝐹𝑢

0
) (𝑡)

󵄨󵄨󵄨󵄨

≤ ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐼
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐽
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+
1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠)) −𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢

𝑛
(𝑠)) −𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐼
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠))

−𝑓 (𝑠, 𝑢
0
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐽
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔1 (𝑢) − 𝑔

1
(𝑢)

󵄨󵄨󵄨󵄨 }

+
𝑏

(𝑎 + 𝑏)
2
{𝑏[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠)) − 𝑓 (𝑠, V (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠))

−𝑓 (𝑠, 𝑢
0
(𝑠))

󵄨󵄨󵄨󵄨𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐽
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢𝑛) − 𝑔

2
(𝑢
0
)
󵄨󵄨󵄨󵄨 } +

1

𝑎 + 𝑏

× {𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠)) − 𝑓 (𝑠, 𝑢

0
(𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢
𝑛
(𝑠))

−𝑓 (𝑠, 𝑢
0
(𝑠))

󵄨󵄨󵄨󵄨𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢𝑛 (𝑡

−

𝑘
)) − 𝐽
𝑘
(𝑢
0
(𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢𝑛) − 𝑔

2
(𝑢
0
)
󵄨󵄨󵄨󵄨 } .

(35)

From (𝐻
1
) and (𝐻

2
)
󸀠, we know 𝑓 is jointly continuous

and 𝑔
1
, 𝑔
2
are also continuous. Together with the continuity

of 𝐼
𝑘
, 𝐽
𝑘
, we can also easily draw that |(𝐹𝑢

𝑛
)(𝑡) − (𝐹𝑢

0
)(𝑡)| →

0, as 𝑢
𝑛

→ 𝑢
0
.

Similarly, we can obtain |(𝐹𝑢
𝑛
)
󸀠

(𝑡) − (𝐹𝑢
0
)
󸀠

(𝑡)| → 0, as
𝑢
𝑛

→ 𝑢
0
, ∀𝑡 ∈ 𝐽. Then for {𝑢

𝑛
} → 𝑢

0
, we have ‖𝐹𝑢

𝑛
−

𝐹𝑢
0
‖ → 0, as 𝑢

𝑛
→ 𝑢
0
, which implies that 𝐹 : 𝑃𝐶

1

(𝐽, 𝑅) →

𝑃𝐶
1

(𝐽, 𝑅) is continuous.

Step 2. 𝐹 maps bounded sets into bounded sets in 𝑃𝐶
1

(𝐽, 𝑅).
Set 𝐵
𝜇
= {𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅) : ‖𝑢‖ ≤ 𝜇}. For 𝑢 ∈ 𝐵
𝜇
, 𝑡 ∈ 𝐽

1
, by

the continuity of 𝐼
𝑘
, 𝐽
𝑘
, 𝑔
1
(𝑢), 𝑔

2
(𝑢), ∀𝑢 ∈ 𝐵

𝜇
, we know that

|𝐼
𝑘
(𝑢(𝑡
−

𝑘
))| ≤ 𝑒

󸀠

1
, |𝐽
𝑘
(𝑢(𝑡
−

𝑘
))| ≤ 𝑒

󸀠

2
, where 𝑒

󸀠

1
, 𝑒󸀠
2
are nonnegative

constants.
For all 𝑡 ∈ 𝐽, 𝑢 ∈ 𝐵

𝜇
, we have

|(𝐹𝑢) (𝑡)| ≤ ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )

+ ∑

0<𝑡
𝑘
<𝑡

(𝑡 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 ) +
1

𝑎 + 𝑏

× {𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )
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+ ∑

0<𝑡
𝑘
<1

(1 − 𝑡
𝑘
)(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔1 (𝑢)

󵄨󵄨󵄨󵄨 }

+
𝑏

(𝑎 + 𝑏)
2
{𝑏[∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢)

󵄨󵄨󵄨󵄨 }

+
1

𝑎 + 𝑏
{𝑏 [∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )]

+
󵄨󵄨󵄨󵄨𝑔2 (𝑢)

󵄨󵄨󵄨󵄨 }

≤

2𝐿 (1 + 𝑝) (1 +
󵄩󵄩󵄩󵄩𝜇

󵄩󵄩󵄩󵄩

𝜆

)

Γ (𝑞 + 1)
+ 2𝑝𝑒

󸀠

1

+

𝐿 (4𝑝 + 2) (1 +
󵄩󵄩󵄩󵄩𝜇

󵄩󵄩󵄩󵄩

𝜆

)

Γ (𝑞)
+ 4𝑝𝑒

󸀠

2
+ 𝑟
1
+ 2𝑟
2
,

󵄨󵄨󵄨󵄨󵄨
(𝐹𝑢)
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ ∫

𝑡

𝑡
𝑖

(𝑡 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<𝑡

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )

+
𝑏

𝑎 + 𝑏
[𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

×
󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))

󵄨󵄨󵄨󵄨 𝑑𝑠

+
󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡

−

𝑘
))

󵄨󵄨󵄨󵄨 )) +
󵄨󵄨󵄨󵄨𝑔2 (𝑢)

󵄨󵄨󵄨󵄨]

≤

2𝐿 (𝑝 + 1) (1 +
󵄩󵄩󵄩󵄩𝜇

󵄩󵄩󵄩󵄩

𝜆

)

Γ (𝑞)
+ 2𝑝𝑒

󸀠

2
+ 𝑟
2
.

(36)

Then we can obtain ‖𝐹𝑢‖ ≤ 𝜂, where

𝜂 = max
{

{

{

2𝐿 (1 + 𝑝) (1 + 𝜇
𝜆

)

Γ (𝑞 + 1)
+ 2𝑝𝑒

󸀠

1

+

𝐿 (4𝑝 + 2) (1 + 𝜇
𝜆

)

Γ (𝑞)

+ 4𝑝𝑒
󸀠

2
+ 𝑟
1
+ 2𝑟
2
,

2𝐿 (𝑝 + 1) (1 + 𝜇
𝜆

)

Γ (𝑞)

+2𝑝𝑒
󸀠

2
+ 𝑟
2

}

}

}

.

(37)

If 0 < 𝜇 < ∞, that is, 𝐵
𝜇
is bounded, then 0 < 𝜂 < ∞.

Hence 𝐹 maps bounded sets into bounded sets in 𝑃𝐶
1

(𝐽, 𝑅).

Step 3. 𝐹 maps bounded sets into equicontinuous sets of
𝑃𝐶
1

(𝐽, 𝑅).
Consider ∀𝑢 ∈ 𝐵

𝜇
= {𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅) : ‖𝑢‖ ≤ 𝜇}, ∀0 ≤

𝑠
1
< 𝑠
2
≤ 𝑡
1
; we have

󵄨󵄨󵄨󵄨𝐹𝑢 (𝑠
2
) − 𝐹𝑢 (𝑠

1
)
󵄨󵄨󵄨󵄨

≤ ∫

𝑠
1

0

[(𝑠
2
− 𝑠)
𝑞−1

− (𝑠
1
− 𝑠)
𝑞−1

]

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑠
2

𝑠
1

(𝑠
2
− 𝑠)
𝑞−1

Γ (𝑞)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
𝑏

(𝑎 + 𝑏)
2

󵄨󵄨󵄨󵄨𝑔2 (𝑢 (𝑠
2
)) − 𝑔

2
(𝑢 (𝑠
1
))

󵄨󵄨󵄨󵄨
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+

󵄨󵄨󵄨󵄨𝑔1 (𝑢 (𝑠
2
)) − 𝑔

1
(𝑢 (𝑠
1
))

󵄨󵄨󵄨󵄨

𝑎 + 𝑏
+

1

𝑎 + 𝑏

× [𝑏(∫

1

𝑡
𝑝

(1 − 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∑

0<𝑡
𝑘
<1

(∫

𝑡
𝑘

𝑡
𝑘−1

(𝑡
𝑘
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+𝐽
𝑘
(𝑢 (𝑡
−

𝑘
))))]

× (𝑠
2
− 𝑠
1
) +

󵄨󵄨󵄨󵄨𝑠2𝑔2 (𝑢 (𝑠
2
)) − 𝑠
1
𝑔
2
(𝑢 (𝑠
1
))

󵄨󵄨󵄨󵄨

𝑎 + 𝑏

≤

𝐿 (1 + 𝜇
𝜆

)

Γ (𝑞)
{∫

𝑠
1

0

[(𝑠
2
− 𝑠)
𝑞−1

− (𝑠
1
− 𝑠)
𝑞−1

] 𝑑𝑠

+∫

𝑠
2

𝑠
1

(𝑠
2
− 𝑠)
𝑞−1

𝑑𝑠}

+

{

{

{

𝑏

𝑎 + 𝑏

[

[

2𝐿 (1 + 𝜇
𝜆

) (1 + 𝑝)

Γ (𝑞)
+ 𝑝𝑒
󸀠

2

]

]

+𝜇
𝑏𝑤 + (𝑎 + 𝑏) (𝑊 + 𝑤)

(𝑎 + 𝑏)
2

+
ℎ
󸀠

2

𝑎 + 𝑏

}

}

}

(𝑠
2
− 𝑠
1
) ,

󵄨󵄨󵄨󵄨󵄨
(𝐹𝑢)
󸀠

(𝑠
2
) − (𝐹𝑢)

󸀠

(𝑠
1
)
󵄨󵄨󵄨󵄨󵄨

≤ ∫

𝑠
1

0

[(𝑠
2
− 𝑠)
𝑞−2

− (𝑠
1
− 𝑠)
𝑞−2

]

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+ ∫

𝑠
2

𝑠
1

(𝑠
2
− 𝑠)
𝑞−2

Γ (𝑞 − 1)

󵄨󵄨󵄨󵄨𝑓 (𝑠, 𝑢 (𝑠))
󵄨󵄨󵄨󵄨 𝑑𝑠

+
𝑏

𝑎 + 𝑏

󵄨󵄨󵄨󵄨𝑔2 (𝑢 (𝑠
2
)) − 𝑔

2
(𝑢 (𝑠
1
))

󵄨󵄨󵄨󵄨

≤

𝐿 (1 + 𝜇
𝜆

)

Γ (𝑞 − 1)
{∫

𝑠
1

0

[(𝑠
2
− 𝑠)
𝑞−1

− (𝑠
1
− 𝑠)
𝑞−1

] 𝑑𝑠

+∫

𝑠
2

𝑠
1

(𝑠
2
−𝑠)
𝑞−1

𝑑𝑠} +
𝑏ℎ
󸀠

2
𝜇

𝑎 + 𝑏

󵄨󵄨󵄨󵄨𝑠2−𝑠
1

󵄨󵄨󵄨󵄨 .

(38)

Obviously, |𝐹𝑢(𝑠
2
) − 𝐹𝑢(𝑠

1
)| → 0, |(𝐹𝑢)

󸀠

(𝑠
2
) −

(𝐹𝑢)
󸀠

(𝑠
1
)| → 0, as 𝑠

1
→ 𝑠
2
. Hence 𝐹 is equicontinuous on

interval [0, 𝑡
1
].

Similarly, we can prove 𝐹 is equicontinuous on interval
(𝑡
𝑘
, 𝑡
𝑘+1

], 𝑘 = 1, 2, . . . , 𝑝.
As a consequence of Steps 1–3 together with the PC-type

Arzela-Ascoli theorem, we know that 𝐹 : 𝑃𝐶
1

(𝐽, 𝑅) →

𝑃𝐶
1

(𝐽, 𝑅) is continuous and completely continuous.

Step 4. There exists a priori bound.
Next we show that the set 𝐸(𝐹) = {𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅) : 𝑢 =

𝜆𝐹𝑢, for some 𝜆 ∈ (0, 1]}, is bounded.
Consider ∀𝑡 ∈ 𝐽, 𝑢 ∈ 𝐸(𝐹); we have

|𝑢 (𝑡)| = |𝜆𝐹𝑢 (𝑡)|

≤
𝐿

Γ (𝑞)
+

𝐿

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

|𝑢 (𝑠)|
𝜆

𝑑𝑠

+ (1 +
𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+
𝐿

Γ (𝑞)
[2𝑝 +

𝑏

𝑎 + 𝑏
(2 + 3𝑝) +

𝑏
2

(𝑎 + 𝑏)
2
(1 + 𝑝)]

+
𝐿

Γ (𝑞)
[𝑝 +

𝑏

𝑎 + 𝑏
(1 + 𝑝)]∫

1

0

(1 − 𝑠)
𝑞−1

|𝑢 (𝑠)|
𝜆

𝑑𝑠

+
𝐿

Γ (𝑞 − 1)
[𝑝 +

𝑏

𝑎 + 𝑏
(1 + 2𝑝) +

𝑏
2

(𝑎 + 𝑏)
2
(1 + 𝑝)]

× ∫

1

0

(1 − 𝑠)
𝑞−2

|𝑢 (𝑠)|
𝜆

𝑑𝑠

+ (1 +
2𝑏

𝑎 + 𝑏
+

𝑏
2

(𝑎 + 𝑏)
2
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+
𝑟
1

𝑎 + 𝑏
+

𝑎 + 2𝑏

(𝑎 + 𝑏)
2
𝑟
2
.

(39)

Then by Lemma 5, we know there exists a constant𝑀∗ >
0 such that

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑀

∗

. (40)

For all 𝑡 ∈ 𝐽, ∀𝑢 ∈ 𝐸(𝐹), we also have
󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝜆(𝐹𝑢)

󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨

≤
𝐿

Γ (𝑞 − 1)
(1 + 𝑝) (1 +

𝑏

𝑎 + 𝑏
)

× ∫

1

0

(1 − 𝑠)
𝑞−2

|𝑢 (𝑠)|
𝜆

𝑑𝑠

+
𝐿

Γ (𝑞)
(1 + 𝑝) (1 +

𝑏

𝑎 + 𝑏
) + (1 +

𝑏

𝑎 + 𝑏
)

× ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 +
𝑟
2

𝑎 + 𝑏
.

(41)

Also by Lemma 5, we can get that there exists a constant
𝑀
∗∗

> 0 such that
󵄨󵄨󵄨󵄨󵄨
𝑦
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤ 𝑀
∗∗

. (42)

So, for all 𝑢 ∈ 𝐸(𝐹), we have ‖𝑢‖ = sup
𝑡∈𝐽

{‖𝑢‖
𝑃𝐶

, ‖𝑢
󸀠

‖
𝑃𝐶

} ≤

𝑀
∗∗∗, where 𝑀

∗∗∗

= max{𝑀∗,𝑀∗∗}.
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As a consequence of Schaefer’s fixed point theorem
(Lemma 6), we deduce that 𝐹 has at least one fixed point
which means that the problem (4) has at least one solution.

Next we apply the nonlinear alternative of Leray-
Schauder type to get Theorem 12. We give the following
hypothesis (𝐻

3
)
󸀠󸀠.

(𝐻
3
)
󸀠󸀠 There exist a real valued function 𝜙 ∈ 𝐿

2

(𝐽, 𝑅),
a 𝐿
1-integrable and nondecreasing function 𝜓 :

[0, +∞) → [0, +∞), and a positive constant 𝑟 such
that

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢)
󵄨󵄨󵄨󵄨 ≤ 𝜙 (𝑡) 𝜓 (𝑢) , for ∀𝑡 ∈ 𝐽, ∀𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅) ,

𝑟 (
𝜓 (𝑟)

Γ (𝑞)
{∫

𝑡

0

(𝑡−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠+𝑇
1

× ∫

1

0

(1−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠} + 𝑇
2
)

−1

>1,

(43)

where

𝑇
1
= 𝑝 (1 + 𝑞) +

𝑏

𝑎 + 𝑏
(1 + 𝑞 + 𝑝 + 2𝑝𝑞) +

𝑏
2

𝑞

(𝑎 + 𝑏)
2
(1 + 𝑝) ,

𝑇
2
= (1 +

𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+ (1 +
2𝑏

𝑎 + 𝑏
+

𝑏
2

(𝑎 + 𝑏)
2
)

× ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 +
𝑏𝑟
1

𝑎 + 𝑏
+

𝑎 + 2𝑏

(𝑎 + 𝑏)
2
𝑟
2
.

(44)

Theorem 12. Assume that (𝐻
1
), (𝐻
2
)
󸀠, and (𝐻

3
)
󸀠󸀠 hold; then

the problem (4) has at least one solution.

Proof. We consider the operator 𝐹 defined by (28). Let 𝑦 =

𝜆𝐹𝑦, for 𝜆 ∈ [0, 1]; then we have

|𝑢 (𝑡)| = |𝜆𝐹𝑢 (𝑡)| ≤
𝜓 (‖𝑢‖)

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠

+ (1 +
𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+
𝜓 (‖𝑢‖)

Γ (𝑞)
[𝑝 (1 + 𝑞) +

𝑏

𝑎 + 𝑏
(1 + 𝑞 + 𝑝 + 2𝑝𝑞)

+
𝑏
2

𝑞

(𝑎 + 𝑏)
2
(1 + 𝑝)]

× ∫

1

0

(1 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠 + (1 +
2𝑏

𝑎 + 𝑏
+

𝑏
2

(𝑎 + 𝑏)
2
)

× ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 +
𝑟
1

𝑎 + 𝑏
+

𝑎 + 2𝑏

(𝑎 + 𝑏)
2
𝑟
2
,

󵄨󵄨󵄨󵄨󵄨
𝑢
󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
=

󵄨󵄨󵄨󵄨󵄨
𝜆(𝐹𝑢)

󸀠

(𝑡)
󵄨󵄨󵄨󵄨󵄨
≤

𝜓 (‖𝑢‖)

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠

+
𝜓 (‖𝑢‖)

Γ (𝑞)
[𝑝𝑞+

𝑞𝑏

𝑎 + 𝑏
(1+𝑝)]∫

1

0

(1−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠

+ (1 +
𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 +
𝑟
2

𝑎 + 𝑏
.

(45)

Then we can obtain

‖𝑢‖ ≤
𝜓 (‖𝑢‖)

Γ (𝑞)
∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠

+ (1 +
𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+
𝜓 (‖𝑢‖)

Γ (𝑞)
[𝑝 (1 + 𝑞) +

𝑏

𝑎 + 𝑏
(1 + 𝑞 + 𝑝 + 2𝑝𝑞)

+
𝑏
2

𝑞

(𝑎 + 𝑏)
2
(1 + 𝑝)]∫

1

0

(1 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠

+ (1 +
2𝑏

𝑎 + 𝑏
+

𝑏
2

(𝑎 + 𝑏)
2
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+
𝑏𝑟
1

𝑎 + 𝑏
+

𝑎 + 2𝑏

(𝑎 + 𝑏)
2
𝑟
2
,

(46)

which implies

‖𝑢‖(
𝜓 (‖𝑢‖)

Γ (𝑞)
{∫

𝑡

0

(𝑡−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠 +𝑇
1

×∫

1

0

(1−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠} +𝑇
2
)

−1

≤ 1,

(47)

where

𝑇
1
= 𝑝 (1 + 𝑞) +

𝑏

𝑎 + 𝑏
(1 + 𝑞 + 𝑝 + 2𝑝𝑞) +

𝑏
2

𝑞

(𝑎 + 𝑏)
2
(1 + 𝑝) ,

𝑇
2
= (1 +

𝑏

𝑎 + 𝑏
) ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐼𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨

+ (1 +
2𝑏

𝑎 + 𝑏
+

𝑏
2

(𝑎 + 𝑏)
2
)

× ∑

0<𝑡
𝑘
<1

󵄨󵄨󵄨󵄨𝐽𝑘 (𝑢 (𝑡
−

𝑘
))

󵄨󵄨󵄨󵄨 +
𝑏𝑟
1

𝑎 + 𝑏
+

𝑎 + 2𝑏

(𝑎 + 𝑏)
2
𝑟
2
.

(48)

By (𝐻
3
)
󸀠󸀠, there exists a 𝑟, such that ‖𝑦‖ ̸= 𝑟. Let 𝑈 = {𝑢 ∈

𝑃𝐶
1

[𝐽, 𝑅] : ‖𝑢‖ < 𝑟}. Then, as the proof of Steps 1–3,
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we can easily get that 𝐹 : 𝑈 → 𝑃𝐶
1

[𝐽, 𝑅] is continuous
and completely continuous. From the definition of 𝑈, we
can know there exist no 𝑦 ∈ 𝜕𝑈, 𝜆 ∈ [0, 1] such that
𝑦 = 𝜆(𝐹𝑦). Otherwise, there exists at least one 𝑦

0
∈ 𝜕𝑈 such

that 𝑦
0

= 𝜆(𝐴𝑦
0
). From the proof above, we know ‖𝑦

0
‖ ̸= 𝑟.

However, for 𝑦
0

∈ 𝜕𝑈, ‖𝑦
0
‖ = 𝑟, which is a contradiction.

Therefore, there does not exist 𝑦 ∈ 𝜕𝑈, 𝜆 ∈ [0, 1] such that
𝑦 = 𝜆(𝐹𝑦). As a consequence of the nonlinear alternative
of Leray-Schauder type, we deduce that 𝐹 has a fixed point
𝑢 ∈ 𝑈, which implies that the problem (4) has at least one
solution 𝑢 ∈ 𝑃𝐶

1

[𝐽, 𝑅].

4. Examples

In this section we give an example to illustrate the usefulness
of our main result.

Example 13. Let us consider the following fractional impul-
sive problem:

𝑐

𝐷
3/2

𝑢 (𝑡) =
𝑢 (𝑡) sin 𝑡

2

16 (1 + 𝑒𝑡
2

) (𝑒
𝑡 + |𝑢 (𝑡)|)

,

𝑡 ∈ 𝐽
1
= [0, 1] \ {

1

2
} ,

Δ𝑢 (
1

2
) = 1, Δ𝑢

󸀠

(
1

2
) = 1,

𝑎𝑢 (0) + 𝑏𝑢 (1) =
𝑢 (𝑡)

18 (1 + |𝑢 (𝑡)|)
,

𝑎𝑢
󸀠

(0) + 𝑏𝑢
󸀠

(1) =
sin 𝑢 (𝑡)

18𝑒𝑡
.

(49)

First, we prove that Example 13 satisfies all the assump-
tions of Theorem 10.

In Example 13, it is easy to see that 𝑓(𝑡, 𝑢) =

(𝑢(𝑡) sin 𝑡
2

/(1 + 𝑒
𝑡
2

)(𝑒
𝑡

+ |𝑢(𝑡)|)) ∈ 𝐶([0, 1] × 𝑅, 𝑅); so
(𝐻
1
) holds.
For 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑃𝐶

1

(𝐽, 𝑅), we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡) sin 𝑡
2

16 (1 + 𝑒𝑡
2

) (𝑒
𝑡 + |𝑢 (𝑡)|)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

32
,

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢) − 𝑓 (𝑡, V)󵄨󵄨󵄨󵄨 ≤
1

32
‖𝑢 − V‖ .

(50)

So (𝐻
3
) is satisfied, where ℎ

1
(𝑡) = ℎ

2
(𝑡) = 1/32.

For 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅), 𝑔
1
(𝑢) = (𝑢(𝑡)/18(1+|𝑢(𝑡)|)),

𝑔
2
(𝑢) = (1/18𝑒

𝑡

) sin 𝑢(𝑡); then we know |𝑔
1
(𝑢) − 𝑔

1
(V)| ≤

(1/18)‖𝑢 − V‖, |𝑔
2
(𝑢) − 𝑔

2
(V)| ≤ (‖𝑢 − V‖/18) with 𝑙

1
(𝑡) =

(1/18), 𝑙
2
(𝑡) = (1/18), so (𝐻

2
) is also satisfied.

For 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅), 𝐼
𝑘

= 𝐽
𝑘

= 1; then |𝐼
𝑘
(𝑢) −

𝐼
𝑘
(V)| = 0, |𝐽

𝑘
(𝑢) − 𝐽

𝑘
(V)| = 0, so (𝐻

4
) holds with 𝑀

𝑘
= 𝑚
𝑘
=

0.
From Example 13, we also have 𝑝 = 1, 𝑞 = 3/2; then

𝑛 = max {[
1

8Γ (5/2)
+

3

16Γ (3/2)
+

1

6
] ,

(
1

8Γ (1/2)
+

1

18
)} ≤

2

3
,

(51)

so all the conditions of Theorem 10 are satisfied; as a conse-
quence of Theorem 10, Example 13 has a unique solution.

Second, we verify that all the assumptions of Theorem 11
are satisfied.

Obviously, |𝑔
1
(𝑢)| = |𝑢(𝑡)/18(1 + |𝑢(𝑡)|)| ≤ (1/18),

|𝑔
2
(𝑢)| = |(1/18𝑒

𝑡

) sin 𝑢(𝑡)| ≤ (1/18); then 𝑔
1
(𝑢), 𝑔

2
(𝑢) are

bounded. The other conditions of (𝐻
2
)
󸀠 in theorem can be

verified as the condition of (𝐻
2
) in Theorem 10.

For 𝑡 ∈ [0, 1], 𝑢 ∈ 𝑃𝐶
1

(𝐽, 𝑅), we have

󵄨󵄨󵄨󵄨𝑓 (𝑡, 𝑢 (𝑡))
󵄨󵄨󵄨󵄨 =

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑢 (𝑡) sin 𝑢
2

(𝑡)

16 (1 + 𝑒𝑡
2

) (𝑒
𝑡 + |𝑢 (𝑡)|)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤
1

64
(1 + |𝑢|

0

) .

(52)

Thus, all the assumptions in Theorem 11 are satisfied; our
results can be applied to Example 13; that is, Example 13 has
at least one solution.

Example 14. Let us consider the following fractional impul-
sive problem:

𝑐

𝐷
3/2

𝑢 (𝑡) =
𝑢 (𝑡)

175 (1 + 𝑒𝑡
2

)

, 𝑡 ∈ 𝐽
1
= [0, 1] \ {

1

2
} ,

Δ𝑢 (
1

2
) = 1, Δ𝑢

󸀠

(
1

2
) = 1,

𝑢 (0) + 𝑢 (1) =
𝑢 (𝑡)

18 (1 + |𝑢 (𝑡)|)
,

𝑢
󸀠

(0) + 𝑢
󸀠

(1) =
sin 𝑢 (𝑡)

18𝑒𝑡
.

(53)

It is easy to check (𝐻
1
) is satisfied. Similar to the proof in

Example 13, we can also verify (𝐻
2
)
󸀠 holds for Example 14.

In Example 14, we have 𝑓(𝑡) = (𝑢(𝑡)/175(1 + 𝑒
𝑡
2

)) ≤

𝜓(𝑢)𝜙(𝑡)with𝜓(𝑢) = ‖𝑢‖/175, 𝜙(𝑡) = 1/2. Obviously,𝜓(𝑢) is
𝐿
1-integrable and nondecreasing function, 𝜙 ∈ 𝐿

2

(𝐽, 𝑅). And
for ∀𝑟 > 0,

𝑟 (
𝜓 (𝑟)

Γ (𝑞)
{∫

𝑡

0

(𝑡 − 𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠+ 𝑇
1

× ∫

1

0

(1−𝑠)
𝑞−1

𝜙 (𝑠) 𝑑𝑠} +𝑇
2
)

−1

= 175Γ (
3

2
) (

1

2
∫

𝑡

0

(𝑡−𝑠)
1/2

𝑑𝑠+
13

4

×∫

1

0

(1−𝑠)
1/2

𝑑𝑠+
275

72
)

−1

> 1.

(54)

Then all the conditions of (𝐻
3
)
󸀠󸀠are satisfied. As a con-

sequence of Theorem 12, then Example 14 has at least one
solution.
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