
Research Article
Riemannian Gradient Algorithm for the Numerical
Solution of Linear Matrix Equations

Xiaomin Duan,1,2 Huafei Sun,1 and Xinyu Zhao3,4

1 School of Mathematics, Beijing Institute of Technology, Beijing 100081, China
2 School of Science, Dalian Jiaotong University, Dalian 116028, China
3 School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China
4 School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China

Correspondence should be addressed to Huafei Sun; huafeisun@bit.edu.cn

Received 6 August 2013; Revised 10 December 2013; Accepted 10 December 2013; Published 6 January 2014

Academic Editor: Zhi-Hong Guan

Copyright © 2014 Xiaomin Duan et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

ARiemannian gradient algorithmbased on geometric structures of amanifold consisting of all positive definitematrices is proposed
to calculate the numerical solution of the linear matrix equation 𝑄 = 𝑋 + ∑

𝑚

𝑖=1
𝐴
𝑇

𝑖
𝑋𝐴
𝑖
. In this algorithm, the geodesic distance on

the curved Riemannian manifold is taken as an objective function and the geodesic curve is treated as the convergence path. Also
the optimal variable step sizes corresponding to the minimum value of the objective function are provided in order to improve
the convergence speed. Furthermore, the convergence speed of the Riemannian gradient algorithm is compared with that of the
traditional conjugate gradientmethod in two simulation examples. It is found that the convergence speed of the provided algorithm
is faster than that of the conjugate gradient method.

1. Introduction

The linear matrix equation

𝑄 = 𝑋 +

𝑚

∑

𝑖=1

𝐴
𝑇

𝑖
𝑋𝐴
𝑖
, (1)

where 𝐴
1
, 𝐴
2
, . . . , 𝐴

𝑚
are arbitrary 𝑛 × 𝑛 real matrices,

𝑚 is a nonnegative integer, and 𝐴
𝑇

𝑖
denotes the transpose

of the matrix 𝐴
𝑖
, arises from many fields, such as the

control theory, the dynamic programming, and the stochastic
filtering [1–4]. In the past decades, there has been increasing
interest in the solution problems of this equation. In the
case of 𝑚 = 1, some numerical methods, such as Bartels-
Stewart method, Hessenberg-Schur method, and Schur and
QR decompositions method, were proposed in [5, 6]. Based
on the Kronecker product and the fixed point theorem in
partially ordered sets, some sufficient conditions for the
existence of a unique symmetric positive definite solution
are given in [7, 8]. Ran and Reurings ([7, Theorem 3.3] and

[9, Theorem 3.1]) pointed out that if 𝑄 − ∑
𝑚

𝑖=1
𝐴
𝑇

𝑖
𝑄𝐴
𝑖
is a

positive definite matrix, then there exists a unique solution
and it is symmetric positive definite. Recently, under the
condition that (1) is consistent, Su and Chen presented an
efficient numerical iterative method based on the conjugate
gradient method (CGM) [10].

In addition, based on geometric structures on a Rie-
mannian manifold, Duan et al. proposed a natural gradient
descent algorithm to solve algebraic Lyapunov equations [11,
12]. Following them, we investigate the solution problem
of (1) in the view of Riemannian manifolds. Note that this
solution of (1) is a symmetric positive definite matrix and
the set of all the symmetric positive definite matrices can be
considered as a manifold. Thus, it is more convenient to
investigate the solution problem with the help of these geo-
metric structures on this manifold. To address such a need,
a new framework is presented in this paper to calculate the
numerical solution, which is based on the geometric struc-
tures on the Riemannian manifold of positive definite
symmetric matrices. We will first describe briefly some
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fundamental knowledge on manifold. Then a Riemannian
gradient algorithm is proposed, where the geodesic distance
on the curved Riemannian manifold is taken as an objective
function and the geodesic curve is treated as the convergence
path. Also the optimal variable step sizes corresponding to
the minimum value of the objective function are provided
in order to improve the convergence speed. Finally, the
behavior of the provided algorithm and the traditional CGM
is compared and demonstrated in two simulation examples.

2. A Survey of Some Geometrical Concepts

In the present section, we briefly survey the geometry of
smoothmanifolds by recalling concepts as tangent spaces, the
Riemannian gradient, geodesic curves, and geodesic distance.
More details can be found in [13, 14]. Specially, these concepts
of manifold consisting of all symmetric positive definite
matrices have also been introduced in [15–20].

2.1. Riemannian Manifolds. Let us denote a Riemannian
manifold byM. Its tangent space at point𝑌 ∈ M is denoted by
𝑇
𝑌
M. Given any pair of points 𝑉, 𝑊 ∈ 𝑇

𝑌
M, an inner product

⟨𝑉, 𝑊⟩
𝑌

∈ R is defined.The specification of the inner product
for a Riemannian manifold turns it into a metric space. In
fact, the length of a curve 𝜙

𝑌,𝑉
: [0, 1] → M, such that

𝜙
𝑌,𝑉

(0) = 𝑌 ∈ M and ̇𝜙
𝑌,𝑉

(0) = 𝑉 ∈ 𝑇
𝑌
M, is given by

ℓ (𝜙
𝑌,𝑉

) := ∫

1

0

√⟨ ̇𝜙
𝑌,𝑉

(𝑡) , ̇𝜙
𝑌,𝑉

(𝑡)⟩
𝜙𝑌,𝑉(𝑡)

d𝑡. (2)

Given arbitrary 𝑌 ∈ M and 𝑉 ∈ 𝑇
𝑌
M, the curve 𝛾

𝑌,𝑉
:

[0, 1] → M of shortest length is called geodesic curve. Such
minimal length ℓ(𝛾

𝑌,𝑉
) is called geodesic distance between

two points, namely, 𝛾
𝑌,𝑉

(0) = 𝑌 and 𝛾
𝑌,𝑉

(1). The Riemannian
distance between two points is denoted by

d (𝛾
𝑌,𝑉

(0) , 𝛾
𝑌,𝑉

(1)) := ℓ (𝛾
𝑌,𝑉

) . (3)

It is obvious that if any pair of points on manifold M can be
connected by a geodesic curve, then it is possible to measure
the distance between any given pair of points on it. Given a
regular function 𝑓 : M → R, its Riemannian gradient ∇

𝑌
𝑓

in the direction of the vector 𝑉 ∈ 𝑇
𝑌
M measures the rate of

change of the function𝑓 in the direction𝑉. Namely, given any
smooth curve 𝜙

𝑌,𝑉
: [0, 1] → M, such that 𝜙

𝑌,𝑉
(0) = 𝑌 ∈ M

and ̇𝜙
𝑌,𝑉

(0) = 𝑉, the Riemannian gradient ∇
𝑌
𝑓 is the unique

vector in 𝑇
𝑌
M such that

⟨𝑉, ∇
𝑌
𝑓⟩
𝑌

=
d
d𝑡

𝑓 (𝜙
𝑌,𝑉

(𝑡))
𝑡=0.

(4)

Instead of the Euclidean space, by using the Riemannian
gradient the optimization method may be readily extended
to smooth manifolds [21, Chapter 7]. For this purpose, let us
consider the differential equation on manifoldM

̇𝑦 = −∇
𝑦(𝑡)

𝑓, 𝑦 (0) = 𝑦 ∈ M. (5)

If the function 𝑓 : M → R is bounded and the smooth
manifoldM is compact, then the solution of such differential

equation tends to a local minimum of the function 𝑓 in M,
depending on the initial point 𝑦. In fact, it is achieved by
definition of the Riemannian gradient

d
d𝑡

𝑓 (𝑦 (𝑡)) = ⟨ ̇𝑦 (𝑡) , ∇
𝑦(𝑡)

𝑓⟩
𝑦(𝑡)

= −⟨∇
𝑦(𝑡)

𝑓, ∇
𝑦(𝑡)

𝑓⟩
𝑦(𝑡)

≤ 0.

(6)

2.2. Manifold of Symmetric Positive Definite Matrices. Let us
denote the general linear group by GL(𝑛), which consists of
all nonsingular real matrices. And 𝑋 > 0 means that 𝑋 is a
symmetric positive definite matrix. For a different notation
𝑋 − 𝑌 > 0, we will use 𝑋 > 𝑌. And the manifold consisting of
all symmetric positive definite matrices is defined by S+(𝑛) =

{𝑋 ∈ R𝑛×𝑛 | 𝑋
𝑇

= 𝑋, 𝑋 > 0}. The tangent space at a point
𝑋 ∈ S+(𝑛) is given by 𝑇

𝑋
S+(𝑛) = {𝑉 ∈ R𝑛×𝑛 | 𝑉

𝑇

= 𝑉}.
On manifold S+(𝑛), the Riemannian metric at the point 𝑋 is
defined by

⟨𝑉
1
, 𝑉
2
⟩
𝑋

= tr [𝑋
−1

𝑉
1
𝑋
−1

𝑉
2
] , (7)

where 𝑉
1
, 𝑉
2

∈ 𝑇
𝑋
S+(𝑛) and tr denotes the trace of the

matrix. Then, manifold S+(𝑛) with the Riemannian metric
(7) becomes a Riemannian manifold. Moreover, it is a curved
manifold since thismetric is invariant under the group action
of GL(𝑛). The geodesic curve at the point 𝑋 ∈ S+(𝑛) in the
direction 𝑉 ∈ 𝑇

𝑋
S+(𝑛) can be expressed as

𝛾
𝑋,𝑉

(𝑡) = 𝑋
1/2 exp (𝑡𝑋

−1/2

𝑉𝑋
−1/2

) 𝑋
1/2

. (8)

Obviously, this geodesic curve is entirely contained in man-
ifold. The Hopf-Rinow theorem implies that manifold S+(𝑛)

with the Riemannianmetric (7) is geodesically complete ([22,
Theorem 2.8]). This means, for any given pair 𝑋, 𝑌 ∈ S+(𝑛),
we can find a geodesic curve 𝛾

𝑋,𝑉
(𝑡), such that 𝛾

𝑋,𝑉
(0) = 𝑋

and 𝛾
𝑋,𝑉

(1) = 𝑌, by taking the initial velocity ̇𝛾
𝑋,𝑉

(0) =

𝑋
1/2 log(𝑋

−1/2

𝑌𝑋
−1/2

)𝑋
1/2

∈ 𝑇
𝑋
S+(𝑛). According to (2), the

geodesic distance d(𝑋, 𝑌) can be computed explicitly by

d2 (𝑋, 𝑌) = tr [log2 (𝑋
−1/2

𝑌𝑋
−1/2

)] . (9)

3. Riemannian Gradient Algorithm

Some researches show that the solution equation (1) is unique
positive definite if 𝐴

𝑖
and 𝑄 satisfy ([7, Theorem 3.3] and [9,

Theorem 3.1])

𝑄 >

𝑚

∑

𝑖=1

𝐴
𝑇

𝑖
𝑄𝐴
𝑖
. (10)

For convenience, we set L(𝑋) := 𝑋 + ∑
𝑚

𝑖=1
𝐴
𝑇

𝑖
𝑋𝐴
𝑖
. And it

is obvious that L(𝑋) is positive definite for any 𝑋 ∈ S+(𝑛).
Our purpose is to seek a matrix 𝑋 ∈ S+(𝑛) so that L(𝑋) is
as close as possible to the given matrix 𝑄. We figure out some
key points in designing such an algorithm as follows.

(1) For some 𝑋, the difference between the given positive
definite matrix 𝑄 and the matrix L(𝑋) should be
determined and calculated firstly.
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(2) Then the Riemannian gradient descent algorithm can
be used to adjust 𝑋 so that the difference will be as
small as possible.

Note that the Riemannian manifold S+(𝑛) is geodesically
complete; hence we take the geodesic distance between𝑄 and
L(𝑋) as the objective function 𝐽(𝑋); namely,

𝐽 (𝑋) = d2 (𝑄,L (𝑋)) . (11)

Then the exact solution of (1) may be defined as

𝑋
∗

= arg min
𝑋∈S+(𝑛)

𝐽 (𝑋) . (12)

In order to find aminimizer for the criterion d2(𝑄,L(𝑋)), we
may make use of the differential equation (5). The minimum
is apparently achieved for a value 𝑋

∗
such that

∇
𝑋

𝐽 (𝑋)
𝑋=𝑋∗

= 0. (13)

It is necessary to solve the optimization problem (12) by a
numerical optimization algorithm that takes the geometry of
the Riemannian manifold S+(𝑛) into account. In particular,
starting from an initial guess 𝑋

0
, it is possible to provide an

iterative learning algorithm that generates a pattern 𝑋
𝑡

∈

S+(𝑛) at any learning step 𝑡 ∈ N. Following [21, 23], such
sequence may be generated by moving from each point 𝑋

𝑡
∈

S+(𝑛) to the next point 𝑋
𝑡+1

along a short geodesic curve
in the opposite direction of the Riemannian gradient of the
objective function 𝐽(𝑋

𝑡
). Namely, if we set

𝑉
𝑡

= ∇
𝑋𝑡

𝐽 (𝑋
𝑡
) , (14)

then the Riemannian gradient algorithmmay be expressed as

𝑋
𝑡+1

= 𝛾
𝑋𝑡,−𝑉𝑡

(𝜂) , (15)

where 𝜂 denotes any suitable step-size schedule that drives the
iterative algorithm (15) to be convergent. Moreover, with the
aim to employ the learning algorithm (14) and (15), we first
need to compute the Riemannian gradient of the objective
function 𝐽(𝑋

𝑡
) to be optimized. In the definition of the

Riemannian gradient (4), the generic smooth curve 𝜙
𝑌,𝑉

may
be replaced with a geodesic curve. We obtain the following
theorem.

Theorem 1. TheRiemannian gradient of the objective function
𝐽(𝑋) at point 𝑋 is given by

∇
𝑋

𝐽 (𝑋) = 2𝑋 ( log (𝑄
−1

L (𝑋))L(𝑋)
−1

+

𝑚

∑

𝑗=1

𝐴
𝑗
log (𝑄

−1

L (𝑋))L(𝑋)
−1

𝐴
𝑇

𝑗
) 𝑋.

(16)

Proof. First, we compute the derivative of the real-valued
function

𝐽 (𝑠 (𝑡)) = tr [log2 (𝑄
−1/2

L (𝑠 (𝑡)) 𝑄
−1/2

)] (17)

with respect to 𝑡, where 𝑠(𝑡) = 𝑋
1/2 exp(𝑡𝑋

−1/2

𝑉𝑋
−1/2

)𝑋
1/2

is the geodesic curve emanating from 𝑋 in the direction 𝑉 =

̇𝑠(0). Using Proposition 2.1 in [16] and some properties of the
trace, we have

d
d𝑡

𝐽 (𝑠 (𝑡))|
𝑡=0

= 2 tr[

[

( log (𝑄
−1

L (𝑋))L(𝑋)
−1

+

𝑚

∑

𝑗=1

𝐴
𝑗
log (𝑄

−1

L (𝑋))L(𝑋)
−1

𝐴
𝑇

𝑗
) 𝑉]

]

= ⟨𝑉, 2𝑋 ( log (𝑄
−1

L (𝑋))L(𝑋)
−1

+

𝑚

∑

𝑗=1

𝐴
𝑗
log (𝑄

−1

L (𝑋))L(𝑋)
−1

𝐴
𝑇

𝑗
) 𝑋⟩

𝑋

.

(18)

From (4), it is shown that formula (16) is valid.

Remark 2. In fact, note that log(𝐴
−1

𝐵𝐴) = 𝐴
−1

(log𝐵)𝐴, for
all 𝐴 ∈ GL(𝑛) and for all 𝐵 ∈ S+(𝑛); then ∇

𝑋
𝐽(𝑋) can be

rewritten as

∇
𝑋

𝐽 (𝑋)

= 2𝑋 (L(𝑋)
−1/2 log (L(𝑋)

1/2

𝑄
−1

L(𝑋)
1/2

)L(𝑋)
−1/2

+

𝑚

∑

𝑗=1

𝐴
𝑗
L(𝑋)

−1/2

× log (L(𝑋)
1/2

𝑄
−1

L(𝑋)
1/2

)L(𝑋)
−1/2

𝐴
𝑇

𝑗
) 𝑋.

(19)

Therefore it can be shown that ∇
𝑋

𝐽(𝑋) belongs to 𝑇
𝑋
S+(𝑛).

Corollary 3. TheRiemannian gradient∇
𝑋

𝐽(𝑋) has the unique
zero point 𝑋

∗
. Furthermore, for the suitable step-size 𝜂, the

sequence 𝑋
𝑡
generated by (15) converges to the solution 𝑋

∗
of

(1).

Proof. Obviously, 𝑋
∗
is a zero point of the Riemannian gra-

dient ∇
𝑋

𝐽(𝑋). If there exists 𝑋


∗
̸= 𝑋
∗
such that the iterative

process (15) stops, then it means ∇
𝑋


∗

𝐽(𝑋


∗
) = 0, which is

equivalent to

log (𝑄
−1

L (𝑋


∗
))L(𝑋



∗
)
−1

+

𝑚

∑

𝑗=1

𝐴
𝑗
log (𝑄

−1

L (𝑋


∗
))L(𝑋



∗
)
−1

𝐴
𝑇

𝑗
= 0.

(20)
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On (20), the matrices are multiplied by 𝑋


∗
and the traces of

the matrices are taken; then we have

tr [log (𝑄
−1

L (𝑋


∗
))] = 0. (21)

Also, if we replace 𝑋


∗
with 𝑋

∗
and follow the similar

procedure as the above equation, then the following equalities
are valid:

tr[log (𝑄
−1

L (𝑋


∗
))L(𝑋



∗
)
−1

(𝑋
∗

+

𝑚

∑

𝑖=1

𝐴
𝑇

𝑖
𝑋
∗
𝐴
𝑖
)]

= tr [log (𝑄
−1

L (𝑋


∗
))L(𝑋



∗
)
−1

𝑄]

= 0.

(22)

Combining (21) and (22), it can be obtained that

tr [log (𝑄
−1

L (𝑋


∗
))] − tr [log (𝑄

−1

L (𝑋


∗
)) 𝑄]

= tr [log (𝑄
−1

L (𝑋


∗
)) (𝐼 − L(𝑋



∗
)
−1

𝑄)]

= tr [log (𝑄
−1/2

L (𝑋


∗
) 𝑄
−1/2

)

× (𝐼 − 𝑄
1/2

L(𝑋


∗
)
−1

𝑄
1/2

)]

= 0.

(23)

Note that the matrix 𝑄
1/2L(𝑋



∗
)
−1

𝑄
1/2 is positive defi-

nite; hence its orthogonal similarity diagonalization can be
expressed as 𝑈Λ𝑈

𝑇, where 𝑈 is an orthogonal matrix, Λ =

diag (𝜆
1
, . . . , 𝜆

𝑛
), and 𝜆

𝑖
> 0 (1 ≤ 𝑖 ≤ 𝑛). Thus, we have

tr [(Λ − 𝐼) logΛ] =

𝑛

∑

𝑖=1

(𝜆
𝑖
− 1) log 𝜆

𝑖

= 0. (24)

Note that the second equality of (24) is equivalent to

𝑛

∏

𝑖=1

𝜆
𝑖

𝜆𝑖−1 = 1. (25)

Thus we have 𝜆
1

= 𝜆
2

= ⋅ ⋅ ⋅ = 𝜆
𝑛

= 1. That means that 𝑋


∗
is

also the solution of (1), which is contrary to the uniqueness
of the solution. Therefore, the Riemannian gradient ∇

𝑋
𝐽(𝑋)

has the unique zero point 𝑋
∗
. This completes the proof of

Corollary 3.

Now, the Riemannian gradient algorithm with a constant
step-size (RGACS) becomes

𝑋
𝑡+1

= 𝑋
1/2

𝑡
exp (−𝜂𝑋

−1/2

𝑡
∇
𝑋𝑡

𝐽 (𝑋
𝑡
) 𝑋
−1/2

𝑡
) 𝑋
1/2

𝑡
, (26)

where the initial value 𝑋
0

∈ S+(𝑛). The step-size 𝜂 corres-
ponding to the best convergence speed can be obtained exper-
imentally and the details will be described in our following
simulations.

3.1. Riemannian Gradient Algorithm with Variable Step Sizes.
In order to improve the convergence speed of the RGACS,
an optimal variable step-size schedule 𝜂

𝑡
will be considered

and defined as follows. The step-size 𝜂
𝑡
should be evaluated

in such a way that the objective function 𝐽(𝑋
𝑡+1

) at step 𝑡 + 1

is reduced as much as possible with respect to 𝐽(𝑋
𝑡
). We may

regard 𝐽(𝑋
𝑡+1

) as a function of the step-size 𝜂
𝑡
that

𝐽 (𝑋
𝑡+1

) = d2 (𝑄,L (𝛾
𝑋𝑡,−𝑉𝑡

(𝜂
𝑡
))) . (27)

Thus, we can optimize the value of 𝜂
𝑡
to ensure that the

difference 𝐽(𝑋
𝑡
) − 𝐽(𝑋

𝑡+1
) could be as large as possible. Since

it is difficult to solve this nonlinear problem exactly, we use a
suboptimal approximation in practice. Under the hypothesis
that the step-size value 𝜂

𝑡
is small enough, we may invoke the

expansion of the function 𝐽(𝑋
𝑡+1

) around the point 𝜂
𝑡

= 0 as
follows:

𝐽 (𝑋
𝑡+1

) ≈ 𝐽 (𝑋
𝑡
) + 𝐶
1,𝑡

𝜂
𝑡
+

1

2
𝐶
2,𝑡

𝜂
2

𝑡
. (28)

Then the optimal step-size 𝜂
∗

𝑡
, corresponding to the maxi-

mum of the difference 𝐽(𝑋
𝑡
) − 𝐽(𝑋

𝑡+1
), can be expressed as

𝜂
∗

𝑡
≈ −

𝐶
1,𝑡

𝐶
2,𝑡

. (29)

The coefficients 𝐶
1,𝑡
, and 𝐶

2,𝑡
can be calculated using the

first-order and the second-order derivatives of the function
𝐽(𝑋
𝑡+1

) with respect to the parameter 𝜂
𝑡
at the point 𝜂

𝑡
= 0.

On the basis of the above discussion, we may obtain the
optimal step-size

𝜂
∗

𝑡
≈

tr [(𝑋L (log (𝑄
−1L (𝑋

𝑡
))L(𝑋

𝑡
)
−1

))
2

]

tr [(L(𝑋
𝑡
)
−1

L (∇
𝑋𝑡

𝐽 (𝑋
𝑡
)))
2

]

. (30)

Then, the Riemannian gradient algorithm with variable
step-sizes (RGAVS) can be written explicitly as

𝑋
𝑡+1

= 𝑋
1/2

𝑡
exp (−𝜂

∗

𝑡
𝑋
−1/2

𝑡
∇
𝑋𝑡

𝐽 (𝑋
𝑡
) 𝑋
−1/2

𝑡
) 𝑋
1/2

𝑡
, (31)

where 𝑋
0

∈ S+(𝑛) is the initial value.

3.2. Volume Feature of Riemannian Gradient Algorithm. The
RGACS shows an interesting volume feature that the ratio
det(𝑋

𝑡+1
)/ det(𝑋

𝑡
) always keeps a certain relationship. In

order to prove the volume feature, let us recall two properties
of determinant operator det; namely, for each 𝐴, 𝐵 ∈ GL(𝑛),
there hold

det (𝐴𝐵) = det (𝐴) det (𝐵) ,

det (exp (𝐴)) = exp (tr (𝐴)) .
(32)
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By applying the determinant operator to both sides of (31),
we obtain

det (𝑋
𝑡+1

)

= det (𝑋
𝑡
) exp (tr [−𝜂𝑋

−1/2

𝑡
∇
𝑋𝑡

𝐽 (𝑋
𝑡
) 𝑋
−1/2

𝑡
])

= det (𝑋
𝑡
) exp(tr[

[

𝜂 ( log (L(𝑋
𝑡
)
−1

𝑄)L(𝑋
𝑡
)
−1

𝑋
𝑡

+ log (L(𝑋
𝑡
)
−1

𝑄)L(𝑋
𝑡
)
−1

×

𝑚

∑

𝑗=1

𝐴
𝑇

𝑗
𝑋
𝑡
𝐴
𝑗
)]

]

)

= det (𝑋
𝑡
) exp (tr [𝜂 log (L(𝑋

𝑡
)
−1

𝑄)])

= det (𝑋
𝑡
) det ((L(𝑋

𝑡
)
−1

𝑄)
𝜂

) .

(33)

Therefore, the following property is valid:

det (𝑋
𝑡+1

)

det (𝑋
𝑡
)

= (
det (𝑄)

det(L (𝑋
𝑡
)
)

𝜂

. (34)

This equation shows that the determinant of (1) is
closely linked with that of the sequence 𝑋

𝑡
. Moreover,

the ratio det(𝑋
𝑡+1

)/ det(𝑋
𝑡
) is directly proportional to

det(𝑄)/ det(L(𝑋
𝑡
)) for the fixed step-size 𝜂. In the case of

the RGAVS, the similar conclusion can also be obtained.

4. Simulations

Two simulation examples are given to compare the con-
vergence speed of the Riemannian gradient algorithm (the
RGACS and the RGAVS) with those of the traditional CGM.
The error criterion used in these simulations is𝜌(L(𝑋)−𝑄) <

10
−15, where 𝜌(⋅) denotes the spectral radius of the matrix.

Example 4. First we consider the matrices equation

𝑄 = 𝑋 + 𝐴
𝑇

1
𝑋𝐴
1

+ 𝐴
𝑇

2
𝑋𝐴
2

+ 𝐴
𝑇

3
𝑋𝐴
3

(35)

in the case of 𝑛 = 5. And 𝑄, 𝐴
1
, 𝐴
2
, 𝐴
3
are as follows:

𝑄 = (

4.6350 0.0698 0.3104 0.1990 0.2918

0.0698 4.0376 0.0742 0.0694 0.0690

0.3104 0.0742 4.2242 0.1554 0.1826

0.1990 0.0694 0.1554 4.1472 0.1572

0.2918 0.0690 0.1826 0.1572 4.2134

) ,

𝐴
1

= (

0.0834 0.0007 0.0293 0.0142 0.0139

0.0141 0.2975 0.0154 0.0289 0.0339

0.0244 0.0152 0.0317 0.0270 0.0117

0.0251 0.0097 0.0140 0.0135 0.0240

0.0158 0.1499 0.0275 0.0077 0.0157

) ,
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Figure 1: Step sizes versus the iterations in the RGACS.

𝐴
2

= (

0.2624 0.0166 0.0454 0.0172 0.0160

0.0893 0.0608 0.0242 0.0029 0.0061

0.0054 0.0190 0.0589 0.0036 0.0160

0.0278 0.0050 0.0255 0.0689 0.0048

0.0319 0.0064 0.0103 0.0219 0.0018

) ,

𝐴
3

= (

8.1622 0.6020 0.4505 0.8258 0.1067

2.7943 7.0630 0.0838 0.5383 0.9619

0.3112 0.6541 6.2290 0.9961 0.0046

0.5285 0.6892 0.9133 1.0782 0.7749

0.1656 0.7482 0.1524 0.4427 9.0073

) ,

(36)

which satisfy the condition (10). Both the RGACS and
RGAVS are used and compared with the traditional CGM,
and 𝑄 is taken as the initial value 𝑋

0
in the following

simulation. In the RGACS case, the step sizes versus the
iterations are shown in Figure 1. It can be found that the
iterations will reduce gradually as the step-size changes from
zero to a critical value; then the iterations will increase
gradually above this critical value.Therefore, the critical value
about 0.64 can be selected experimentally as an optimal step-
size and used in the RGACS.

Figure 2 shows the convergence comparison between the
RGACS and the RGAVS and the traditional CGM. It can be
found that the RGAVS possesses themost steady convergence
and the fastest convergence speed, and it needs 23 iterations
to obtain the numerical solution of (35) as follows:

(

0.0856 −0.0265 0.0151 −0.1065 0.0148

−0.0265 0.0970 0.0166 −0.1581 −0.0023

0.0151 0.0166 0.1591 −0.3608 0.0283

−0.1065 −0.1581 −0.3608 2.3761 −0.1723

0.0148 −0.0023 0.0283 −0.1723 0.0654

) .

(37)

The case of the CGM realizes the given error through 33
iterations and the slowest one among them is the RGACS
with 31 steps. By comparison, it is shown that the convergence
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Figure 2: Comparison of convergence speeds (log scale).

speed of the RGAVS is faster than both those of the RGACS
and the traditional CGM in solving (35).

Example 5. A 20-order linear matrix equation with 𝑚 =

2 is also considered here following the similar procedure
as Example 4, where 𝑄 ∈ S+(20), and 𝐴

1
, 𝐴
2

∈ R20×20

satisfy the condition (10). The simulation indicates that the
numerical solution needs 26, 45, and 37 iterations in the
RGAVS, the RGACS (𝜂 = 0.74), and the traditional CGM,
respectively. Therefore, the convergence speed of the RGAVS
is also better than those of the RGACS and the CGM.

5. Conclusion

Using geometric structures of manifold consisting of all sym-
metric positive definite matrices, the Riemannian gradient
algorithm is developed to calculate the numerical solution
for the linear matrix equation 𝑄 = 𝑋 + ∑

𝑚

𝑖=1
𝐴
𝑇

𝑖
𝑋𝐴
𝑖
. In this

algorithm, the geodesic distance on the curved Riemannian
manifold is taken as an objective function and the geodesic
curve is treated as the convergence path. Also, the variable
step sizes algorithm corresponding to the minimum value
of the objective function is provided in order to improve
the convergence speed in the constant step-size case. Finally,
the convergence speed of the Riemannian gradient algorithm
has been compared with the traditional conjugate gradient
method by two simulation examples in 5-order and 20-order
linear matrix equations, respectively. It is shown that the
convergence speed of the Riemannian gradient algorithm
with variable step sizes is faster than that of the conjugate gra-
dient method. Although the Riemannian gradient algorithm
is used here for the linear matrix equation in the real number
field, it may be generalized to the complex case as well.
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