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We consider the existence of infinitelymany classical solutions to a class of impulsive differential equations with Dirichlet boundary
value condition. Our main tools are based on variant fountain theorems and variational method. We study the case in which the
nonlinearity is sublinear. Some recent results are extended and improved.

1. Introduction

Consider the following Dirichlet boundary value problem of
impulsive differential equations:

−𝑢

󸀠󸀠
(𝑡

0
) + 𝑔 (𝑡) 𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , a.e. 𝑡 ∈ [0, 𝑇] ,

Δ (𝑢

󸀠
(𝑡

𝑗
)) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝,

𝑢 (0) = 𝑢 (𝑇) = 0,

(1)

where 0 = 𝑡

0
< 𝑡

1
< 𝑡

2
< ⋅ ⋅ ⋅ < 𝑡

𝑝
< 𝑡

𝑝+1
= 𝑇, Δ(𝑢󸀠(𝑡

𝑗
)) =

𝑢

󸀠
(𝑡

+

𝑗
) − 𝑢

󸀠
(𝑡

−

𝑗
) = lim

𝑠→ 𝑡
+

𝑗

𝑢

󸀠
(𝑠) − lim

𝑠→ 𝑡
−

𝑗

𝑢

󸀠
(𝑠), 𝑔 ∈ 𝐿∞[0, 𝑇],

𝑓 : [0, 𝑇]×R → R is continuous, and 𝐼
𝑗
: R → R, 1 ≤ 𝑗 ≤ 𝑝

are continuous.
Since impulsive differential equations can describe many

evolution processes inwhich their states are changed abruptly
at certain moments of time, they play an important role in
applications, such as in control theory, optimization theory,
biology, and some physics or mechanics problem; see [1–
5]. For general theory of impulsive differential equations, we
refer the readers to the monographs as [6, 7]. The existence
and multiplicity of solutions to impulsive differential equa-
tions with boundary value condition have been obtained by
using fixed point theorems and upper and lower solutions
method; see [8–12] and references therein. Recently, some
authors creatively applied variational method to deal with

impulsive problems and obtained some new results; see [13–
18]. For general theory of variational method, we refer the
readers to the monographs as [19, 20]. More precisely, Nieto
and O’Regan [13] studied Dirichlet problem as follows:

−𝑢̈ (𝑡) + 𝜆𝑢 (𝑡) = 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ̸= 𝑡

𝑗
,

Δ𝑢̇ (𝑡

𝑗
) = 𝐼

𝑗
(𝑢 (𝑡

𝑗
)) , 𝑗 = 1, 2, . . . , 𝑝,

𝑢 (0) = 𝑢 (𝑇) = 0.

(2)

For the sublinear case, they obtained the following result.

Lemma 1 (See [13]). Assume that the following conditions are
satisfied.

(1) There exist 𝑎, 𝑏 > 0 and 𝛾 ∈ [0, 1) such that

󵄨

󵄨

󵄨

󵄨

𝑓 (𝑡, 𝑢)

󵄨

󵄨

󵄨

󵄨

≤ 𝑎 + 𝑏|𝑢|

𝛾 for every (𝑡, 𝑢) ∈ [0, 𝑇] ×R. (3)

(2) There exist 𝑎
𝑗
, 𝑏

𝑗
> 0 and 𝛾

𝑗
∈ [0, 1) (𝑗 = 1, 2, . . . , 𝑝)

such that
󵄨

󵄨

󵄨

󵄨

󵄨

𝐼

𝑗
(𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑎

𝑗
+ 𝑏

𝛾
𝑗

𝑗
for every 𝑢 ∈ R. (4)

Then Problem (2) has at least one solution.
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For superlinear case, Zhang and Yuan [15] obtained the
existence of one and infinitely many solutions for Problem
(2) under the well-known Ambrosetti-Rabinowitz condition;
that is, there exists 𝜃 > 2 such that

0 < 𝜃𝐹 (𝑡, 𝑢) ≤ 𝑓 (𝑡, 𝑢) 𝑢, ∀𝑢 ∈ R \ {0} , 𝑡 ∈ [0, 𝑇] , (5)

where 𝐹 is a primitive function of 𝑓. Soon after, Zhou and
Li [16] obtained the existence of infinitely many solutions for
Problem (1) under the weaker condition; there exist 𝜃 > 2 and
𝑅 > 0 such that

0 < 𝜃𝐹 (𝑡, 𝑢) ≤ 𝑓 (𝑡, 𝑢) 𝑢, |𝑢| ≥ 𝑅, ∀𝑡 ∈ [0, 𝑇] . (6)

Recently, Sun and Chen studied the existence of infinitely
many solutions for Problem (1) with superlinear nonlinearity
𝑓 which is not satisfied (5) or (6). In addition, they also
studied the case where the nonlinearity is asymptotically
linear.

Motivated by the above facts, in this paper, our aim is to
study the existence of infinitely many solutions for Problem
(1) with nonlinearity 𝑓 which is sublinear. To the best of
our knowledge, there are few papers concerned with this.
For sublinear case, Nieto and O’Regan [13] only obtain the
existence of at least one solution.

We make the following assumptions:

(𝐻
1
) 𝐼
𝑗
(1 ≤ 𝑗 ≤ 𝑝) are odd and satisfy

1

2

𝐼

𝑗
(𝑢) 𝑢 − ∫

𝑢

0

𝐼

𝑗
(𝑠) 𝑑𝑠 ≥ 0, ∫

𝑢

0

𝐼

𝑗
(𝑠) 𝑑𝑠 ≥ 0

(7)

for all 𝑢 ∈ R.
(𝐻
2
) For any 𝑗 ∈ {1, 2, . . . , 𝑝}, there exist constants 𝑏

𝑗
> 0

and 𝛾
𝑗
≥ 1 such that

󵄨

󵄨

󵄨

󵄨

󵄨

𝐼

𝑗
(𝑢)

󵄨

󵄨

󵄨

󵄨

󵄨

≤ 𝑏

𝑗
|𝑢|

𝛾
𝑗 (8)

for all 𝑢 ∈ R.
(𝐻
3
) There exist constants 𝑅

0
> 0, 𝑑 > 0 and 𝛾 ≥ 1 such

that

𝑓 (𝑡, 𝑢) 𝑢 ≥ 0, 𝐹 (𝑡, 𝑢) −

1

2

𝑓 (𝑡, 𝑢) 𝑢 ≥ 𝑑|𝑢|

𝛾
,

(9)

for every 𝑡 ∈ [0, 𝑇] and 𝑢 ∈ R with |𝑢| ≥ 𝑅

0
, where

𝐹(𝑡, 𝑢) = ∫

𝑢

0
𝑓(𝑡, 𝑠)𝑑𝑠. Moreover, 𝐹(𝑡, 𝑢) ≥ 0 for all

𝑡 ∈ [0, 𝑇] and ∈ R.
(𝐻
4
) There exist constants 𝜇 ∈ (1, 2) and 𝐶

1
> 0 such

that |𝑓(𝑡, 𝑢)| ≤ 𝐶

1
(1 + |𝑢|

𝜇−1
). In what follows, 𝐶

𝑖
,

𝑖 = 1, 2, . . . denote positive constants.
(𝐻
5
) there exist constants 𝑅

1
> 0, 𝐶

2
> 0, 𝛿 ∈ [1, 2) such

that

𝐹 (𝑡, 𝑢) ≥ 𝐶

2
|𝑢|

𝛿 (10)

for every 𝑡 ∈ [0, 𝑇] and |𝑢| ≤ 𝑅
1
.

(𝐻
6
) 𝐹(𝑡, 𝑢) is even in 𝑢, that is, 𝐹(𝑡, −𝑢) = 𝐹(𝑡, 𝑢).

Theorem 2. Assume that (𝐻
1
)–(𝐻
6
) are satisfied. Then Prob-

lem (1) has infinitely many classical solutions.

Remark 3. For the definition of classical solution, we refer
readers to paper [17, 18]. By (𝐻

1
) and (𝐻

2
), 𝐼
𝑗
(𝑗 = 1, 2, . . . , 𝑝)

are not sublinear as those in [13–18]. We note that there
are functions 𝐼

𝑗
(𝑗 = 1, 2, . . . , 𝑝) and 𝑓 which satisfy the

conditions of Theorem 2 but do not satisfy the conditions in
references we mentioned above. For example, let

𝐼

𝑗
(𝑠) = 𝑠

3
, 𝑗 = 1, 2, . . . , 𝑝,

𝐹 (𝑡, 𝑢) =

{

{

{

{

{

{

{

|𝑢|

3/2
, |𝑢| < 1,

(3 |𝑢| − 1)

2

, |𝑢| ≥ 1,

𝑓 (𝑡, 𝑢) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

3

2

, 𝑢 ≥ 1,

3

2

|𝑢|

1/2
, |𝑢| < 1,

−

3

2

, 𝑢 ≤ −1.

(11)

If we choose 𝛾
𝑗
= 3, 𝑅

0
= 1, 𝑑 = 1/4, 𝛿 = 3/2, 𝛾 = 1, and 𝜇 =

3/2, then it is easy to check that the conditions in Theorem 2
are satisfied.

The organization of this paper is as follows. In Section 2,
we shall give some lemmas and some preliminary results. In
Section 3, the proofs of the main results are given.

2. Preliminaries

In order to prove our main results, we recall the variant
fountain theorem. Let 𝐸 be a Banach space with the norm
‖ ⋅ ‖ and 𝐸 = ⨁

𝑘

𝑗=1
𝑋

𝑗
with dim𝑋

𝑗
< ∞ for any 𝑗 ∈ N. Set

𝑌

𝑘
= ⨁

𝑘

𝑗=1
𝑋

𝑗
, 𝑍
𝑘
= ⨁

∞

𝑗=𝑘
𝑋

𝑗
. Consider the following 𝐶1-

functional 𝐼
𝜆
: 𝐸 → R defined by

𝐼

𝜆
(𝑢) = 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ [1, 2] . (12)

Lemma 4 (see [21]). Suppose that the functional 𝐼
𝜆
(𝑢) defined

above satisfies the following.

(C1) 𝐼
𝜆
maps bounded sets to bounded sets uniformly for

𝜆 ∈ [1, 2]. Furthermore, 𝐼
𝜆
(−𝑢) = 𝐼

𝜆
(𝑢) for all (𝜆, 𝑢) ∈

[1, 2] × 𝐸.
(C2) 𝐵(𝑢) ≥ 0; 𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞ on any finite

dimensional subspace of 𝐸.
(C3) There exist 𝜌

𝑘
> 𝑟

𝑘
> 0 such that

𝑎

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌

𝑘

𝐼

𝜆
(𝑢) ≥ 0 > 𝑏

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼

𝜆
(𝑢)

(13)

for all 𝜆 ∈ [1, 2] and 𝑑
𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
‖𝑢‖≤𝜌

𝑘

𝐼

𝜆
(𝑢) → 0 as

𝑘 → ∞ uniformly for 𝜆 ∈ [1, 2]. Then there exist 𝜆
𝑛
→
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1, 𝑢

𝜆
𝑛

∈ 𝑌

𝑛
such that 𝐼󸀠

𝜆
𝑛

| 𝑌

𝑛
(𝑢(𝜆

𝑛
)) = 0, 𝐼

𝜆
𝑛

(𝑢(𝜆

𝑛
)) →

𝑐

𝑘
∈ [𝑑

𝑘
(2), 𝑏

𝑘
(1)] as 𝑛 → ∞. In particular, if {𝑢(𝜆

𝑛
)} has a

convergent subsequence for every 𝑘, then 𝐼
1
has infinitely many

nontrivial critical points {𝑢
𝑛
} ⊂ 𝐸 \ {0} satisfying 𝐼

1
(𝑢

𝑘
) → 0

−

as 𝑘 → ∞.

In the Sobolev space 𝐸 := 𝐻

1

0
(0, 𝑇), consider the inner

product

(𝑢, V)
0
= ∫

𝑇

0

𝑢

󸀠

(𝑡) V󸀠 (𝑡) 𝑑𝑡, (14)

inducing the norm

‖𝑢‖

0
= (∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠

(𝑡)

󵄨

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡)

1/2

(15)

for any 𝑢, V ∈ 𝐸. Since 𝐸 is compactly embedded in
𝐿

𝑠
([0, 𝑇]) with norm |𝑢|

𝑠
= (∫

𝑇

0
|𝑢(𝑡)|

𝑠
𝑑𝑡)

1/2 for 𝑠 ∈ [2, +∞],
as in [18, 22], we know that the eigenvalues of operator
𝑆 = −(𝑑

2
/𝑑𝑡

2
) + 𝑔 with the Dirichlet boundary conditions

are numbered by 𝜆

1
≤ 𝜆

2
≤ ⋅ ⋅ ⋅ ≤ 𝜆

𝑛
≤ ⋅ ⋅ ⋅ →

∞ (counted in their multiplicities) and a corresponding
system of eigenfunctions {𝑒

𝑗
}, which forms the completely

orthogonal basis in 𝐿

2
([0, 𝑇]). Assume 𝜆

1
, . . . , 𝜆

𝑛
− < 0,

𝜆

𝑛
−
+1
= ⋅ ⋅ ⋅ = 𝜆

𝑛
0 = 0 and let 𝐸− = span{𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑛
−}, 𝐸0 =

span{𝑒
𝑛
−
+1
, . . . , 𝑒

𝑛
0}, and 𝐸+ = span{𝑒

𝑛
0
+1
, . . . , }. Then 𝐸 =

𝐸

−
⊕𝐸

0
⊕𝐸

+.We introduce on𝐸 the following product (𝑢, V) =
(|𝑆

1/2
|𝑢, |𝑆

1/2
|V)
𝐿
2 +(𝑢

0
, V0)
𝐿
2 and norm ‖𝑢‖ = (𝑢, 𝑢)

1/2, where
𝑢 = 𝑢

−
+ 𝑢

0
+ 𝑢

+, V = V− + V0 + V+ ∈ 𝐸− ⊕ 𝐸0 ⊕ 𝐸+. Then ‖ ⋅ ‖
and ‖ ⋅ ‖

0
are equivalent. By the Soblev imbedding theorem,

𝐸 is compactly embedded in 𝐶[0, 𝑇], and there exists 𝐶
3
> 0

such that

‖𝑢‖

∞
≤ 𝐶

3
‖𝑢‖ , (16)

where

‖𝑢‖

∞
= max
𝑡∈[0,𝑇]

|𝑢 (𝑡)| . (17)

Define a functional 𝜑 on 𝐸 by

𝜑 (𝑢) =

1

2

∫

𝑇

0

(

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

󸀠󵄨
󵄨

󵄨

󵄨

󵄨

2

+ 𝑔 (𝑡) 𝑢

2
) 𝑑𝑡 +

𝑝

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

− ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

=

1

2

(

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

−

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

) +

𝑝

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

− ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡,

(18)

where 𝑢 = 𝑢−+𝑢0+𝑢+ ∈ 𝐸with 𝑢− ∈ 𝐸−, 𝑢0 ∈ 𝐸0, 𝑢+ ∈ 𝐸+. By
the conditions of Theorem 2, we know that 𝜑 is continuously
differentiable and

⟨𝜑

󸀠

(𝑢) , V⟩

= ∫

𝑇

0

(𝑢

󸀠V󸀠 + 𝑔 (𝑡) 𝑢V) 𝑑𝑡 +
𝑝

∑

𝑗=1

𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
)

− ∫

𝑇

0

𝑓 (𝑡, 𝑢) V𝑑𝑡

= (𝑢

+
− 𝑢

−
, V) +

𝑝

∑

𝑗=1

𝐼

𝑗
(𝑢 (𝑡

𝑗
)) V (𝑡

𝑗
) − ∫

𝑇

0

𝑓 (𝑡, 𝑢) V𝑑𝑡,

(19)

for any 𝑢, V ∈ 𝐸.
Like for Lemma 2.4 in [17], one can prove that the critical

points of the functional 𝜑 are the classical solutions for
Problem (1).

3. Proofs of the Main Results

Now we define a class of functionals on 𝐸 by

𝜑

𝜆
(𝑢) :=

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

𝑝

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

− 𝜆(

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡)

:= 𝐴 (𝑢) − 𝜆𝐵 (𝑢) , 𝜆 ∈ [1, 2] ,

(20)

where 𝑢− ∈ 𝐸−, 𝑢+ ∈ 𝐸+. Denote by 𝑋
𝑗
:= span{𝑒

𝑗
}, 𝑗 ∈ N.

Clearly, we see that 𝜑
𝜆
∈ 𝐶

1
(𝐸,R) for all 𝜆 ∈ [1, 2] and the

critical points of 𝜑
1
correspond to the solutions to Problem

(1).

Lemma 5. Let (𝐻
3
) be satisfied. Then 𝐵(𝑢) ≥ 0. Furthermore,

𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞ on any finite dimensional subspace
of 𝐸.

Proof . Evidently, 𝐵(𝑢) ≥ 0 follows by the definition of the
functional 𝐵 and (𝐻

3
). Now we claim that for any finite

dimensional subspace of 𝐹 ⊂ 𝐸, there exists 𝜀 > 0 such that

meas ({𝑡 ∈ [0, 𝑇] : |𝑢 (𝑡)| ≥ 𝜀 ‖𝑢‖}) ≥ 𝜀, ∀𝑢 ∈ 𝐹 \ {0} , (21)

where meas denotes the Lebesgue measure in R.
Otherwise, for any 𝑛 ∈ N, there exists 𝑢

𝑛
∈ 𝐹 \ {0} such

that

meas({𝑡 ∈ [0, 𝑇] : 󵄨󵄨󵄨
󵄨

𝑢

𝑛
(𝑡)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

‖𝑢‖}) <

1

𝑛

. (22)

Let V
𝑛
= 𝑢

𝑛
/‖𝑢

𝑛
‖ ∈ 𝐹 \ {0} for all 𝑛 ∈ N. Then ‖V

𝑛
‖ = 1 and

meas({𝑡 ∈ [0, 𝑇] : 󵄨󵄨󵄨
󵄨

𝑢

𝑛
(𝑡)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

}) <

1

𝑛

, ∀𝑛 ∈ N. (23)
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Since dim𝐹 < ∞, it follows from the compactness of the unit
sphere of 𝐹 that there exists a subsequence, say {V

𝑛
}, such that

V
𝑛
→ V
0
in 𝐹. Hence, we have ‖V

0
‖ = 1. By the equivalence of

the norms on the finite dimensional space 𝐹, we have V
𝑛
→

V
0
in 𝐿2[0, 𝑇], that is,

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

V
𝑛
− V
0

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 󳨀→ 0 as 𝑛 󳨀→ ∞.

(24)

Thus there exist 𝜉
1
, 𝜉

2
> 0 such that

meas {𝑡 ∈ [0, 𝑇] : 󵄨󵄨󵄨
󵄨

V
0
(𝑡)

󵄨

󵄨

󵄨

󵄨

≥ 𝜉

1
} ≥ 𝜉

2
. (25)

In fact, if not, we have

meas {𝑡 ∈ [0, 𝑇] : 󵄨󵄨󵄨
󵄨

V
0
(𝑡)

󵄨

󵄨

󵄨

󵄨

≥

1

𝑛

} = 0, ∀𝑛 ∈ N. (26)

This implies that

0 < ∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

V
0

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡 <

1

𝑛

2
𝑇 󳨀→ 0, as 𝑛 󳨀→ ∞,

(27)

which gives a contradiction.
Now let

Ω

0
= {𝑡 ∈ [0, 𝑇] :

󵄨

󵄨

󵄨

󵄨

V
0
(𝑡)

󵄨

󵄨

󵄨

󵄨

≥ 𝜉

1
} ,

Ω

𝑛
= {𝑡 ∈ [0, 𝑇] :

󵄨

󵄨

󵄨

󵄨

V
𝑛
(𝑡)

󵄨

󵄨

󵄨

󵄨

<

1

𝑛

} ,

(28)

andΩ⊥
𝑛
= [0, 𝑇] \ Ω

𝑛
. We have

meas (Ω
𝑛
∩ Ω

0
) ≥ meas (Ω

0
) −meas (Ω⊥

𝑛
∩ Ω

0
) ≥ 𝜉

2
−

1

𝑛

(29)

for all positive integer 𝑛. Let 𝑛 be large enough such that 𝜉
2
−

(1/𝑛) ≥ (1/2)𝜉

2
and 𝜉
1
− (1/𝑛) ≥ (1/2)𝜉

1
. Then we have

󵄨

󵄨

󵄨

󵄨

V
𝑛
(𝑡) − V

0
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

≥ (𝜉

1
−

1

𝑛

)

2

≥

1

4

𝜉

2

1
, ∀𝑡 ∈ Ω

𝑛
∩ Ω

0
.

(30)

This implies that

∫

𝑇

0

󵄨

󵄨

󵄨

󵄨

V
𝑛
(𝑡) − V

0
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡

≥ ∫

Ω
𝑛
∩Ω
0

󵄨

󵄨

󵄨

󵄨

V
𝑛
(𝑡) − V

0
(𝑡)

󵄨

󵄨

󵄨

󵄨

2

𝑑𝑡

≥

1

4

𝜉

2

1
meas (Ω

𝑛
∩ Ω

0
)

≥

1

4

𝜉

2

1
(𝜉

2
−

1

𝑛

) ≥

1

8

𝜉

2

1
𝜉

2
> 0

(31)

for all large 𝑛, which is a contradiction with (24). For the 𝜀
given in (21), let

Λ

𝑢
= {𝑡 ∈ [0, 𝑇] : |𝑢 (𝑡)| ≥ 𝜀 ‖ 𝑢 ‖} , ∀𝑢 ∈ 𝐹 \ {0} . (32)

Then

meas (Λ
𝑢
) ≥ 𝜀, ∀𝑢 ∈ 𝐹 \ {0} . (33)

Observing that for any 𝑢 ∈ 𝐹 with ‖𝑢‖ ≥ 𝑅
0
/𝜀, the following

inequality holds

|𝑢 (𝑡)| ≥ 𝑅

0
, ∀𝑡 ∈ Λ

𝑢
. (34)

Combining (34) and (𝐻
3
), for any 𝑢 ∈ 𝐹 with ‖𝑢‖ ≥ 𝑅

0
/𝜀, we

have

𝐵 (𝑢) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

≥ ∫

Λ
𝑢

𝐹 (𝑡, 𝑢) 𝑑𝑡

≥ ∫

Λ
𝑢

𝑑|𝑢|

𝛾
𝑑𝑡

≥ 𝑑(𝜀 ‖𝑢‖)

𝛾meas (Λ
𝑢
) ≥ 𝑑𝜀

𝛾+1

‖𝑢‖

𝛾
.

(35)

This implies 𝐵(𝑢) → ∞ as ‖𝑢‖ → ∞ on any finite
dimensional subspace of 𝐹 ⊂ 𝐸.

Lemma 6. Assume that (𝐻
1
), (𝐻
4
) are satisfied. Then there

exist a positive integer 𝑘
0
and a sequence 𝜌

𝑘
→ 0

+ as 𝑘 → ∞

such that

𝑎

𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
,‖𝑢‖=𝜌

𝑘

𝐼

𝜆
(𝑢) ≥ 0, ∀𝑘 ≥ 𝑘

0
, (36)

and 𝑑
𝑘
(𝜆) := inf

𝑢∈𝑍
𝑘
‖𝑢‖≤𝜌

𝑘

𝐼

𝜆
(𝑢) → 0 as 𝑘 → ∞ uniformly

for 𝜆 ∈ [1, 2], where 𝑍
𝑘
= ⨁

∞

𝑗=𝑘
𝑋

𝑗
= span{𝑒

𝑘,⋅⋅⋅
} for all 𝑘 ∈ N.

Proof. Note first that 𝑍
𝑘
⊂ 𝐸

+ for all 𝑘 ≥ 𝑛0 + 1 by definition
of 𝐸+ in Section 2. Thus for any 𝑘 ≥ 𝑛0 + 1, by (𝐻

1
), (𝐻
4
), we

have

𝜑

𝜆
(𝑢) =

1

2

‖𝑢‖

2
+

𝑝

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠 − 𝜆∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡

≥

1

2

‖𝑢‖

2
− 2𝐶

1
∫

𝑇

0

(|𝑢| + |𝑢|

𝜇
) 𝑑𝑡

≥

1

2

‖𝑢‖

2
− 2𝑇𝐶

1
(‖𝑢‖

∞
+ ‖𝑢‖

𝜇

∞
)

(37)

for all (𝜆, 𝑢) ∈ [1, 2] ×𝑍
𝑘
. Set 𝛽

𝑘
:= sup

𝑢∈𝑍
𝑘
,‖𝑢‖=1

‖ 𝑢‖

∞
. Then

𝛽

𝑘
󳨀→ 0 as 𝑘 󳨀→ ∞. (38)

Indeed, it is clear that 0 < 𝛽

𝑘+1
≤ 𝛽

𝑘
, so 𝛽

𝑘
→ 𝛽 ≥ 0 as

𝑘 → ∞. For every 𝑘 ≥ 0, there exists 𝑢
𝑘
∈ 𝑍

𝑘
such that

‖𝑢

𝑘
‖ = 1 and ‖𝑢

𝑘
‖

∞
> 𝛽

𝑘
/2. By the definition of 𝑍

𝑘
, 𝑢
𝑘
⇀ 0

in 𝐸. Then this implies that 𝑢
𝑘
→ 0 in 𝐶[0, 𝑇]. Thus we have

proved that 𝛽 = 0. Therefore, for any 𝑘 ≥ 𝑛0 +1, the following
inequality holds:

𝜑

𝜆
(𝑢) ≥

1

2

‖𝑢‖

2
− 2𝑇𝐶

1
(𝛽

𝑘
‖𝑢‖ + 𝛽

𝜇

𝑘
‖𝑢‖

𝜇
) ,

(39)

for all (𝜆, 𝑢) ∈ [1, 2] × 𝑍

𝑘
. Let 𝜌

𝑘
= 16𝑇𝐶

1
𝛽

𝑘
+

[16𝑇𝐶

1
𝛽

𝜇

𝑘
]

1/(2−𝜇). Then by (38), we have 𝜌
𝑘
→ 0

+ as 𝑘 →

∞. Hence, by (39), straightforward computation shows that
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𝑎

𝑘
(𝜆) ≥ 𝜌

2

𝑘
/4 > 0. Furthermore, for any 𝑘 ≥ 𝑘

0
and 𝑢 ∈ 𝑍

𝑘

with ‖𝑢‖ ≤ 𝜌
𝑘
, we have

𝜑

𝜆
(𝑢) ≥ −2𝑇𝐶

1
(𝛽

𝑘
‖𝑢‖ + 𝛽

𝜇

𝑘
‖𝑢‖

𝜇
) . (40)

Clearly, we see that 𝐹(𝑡, 0) = 0 by the definition of 𝐹 and
𝜑

𝜆
(0) = 0. Therefore,

0 ≥ inf
𝑢∈𝑍
𝑘
,‖𝑢‖≤𝜌

𝑘

𝜑

𝜆
(𝑢) ≥ −2𝑇𝐶

1
(𝛽

𝑘
‖𝑢‖ + 𝛽

𝜇

𝑘
‖𝑢‖

𝜇
) . (41)

Combining (38) and (41), we have 𝑑

𝑘
(𝜆) :=

inf
𝑢∈𝑍
𝑘
‖𝑢‖≤𝜌

𝑘

𝐼

𝜆
(𝑢) → 0 as 𝑘 → ∞ uniformly for

𝜆 ∈ [1, 2].

Lemma 7. Let (𝐻
2
), (𝐻
5
) be satisfied. Then for the sequence

{𝜌

𝑘
}

𝑘∈N obtained in Lemma 6, there exist 0 < 𝑟

𝑘
< 𝜌

𝑘
for all

𝑘 ∈ N such that

𝑏

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼

𝜆
(𝑢) < 0, ∀𝑘 ∈ N, (42)

where 𝑌
𝑘
= ⨁

𝑘

𝑗=1
𝑋

𝑗
= span{𝑒

1
, 𝑒

2
, . . . , 𝑒

𝑘
} for all 𝑘 ∈ N.

Proof. Let 𝑢 ∈ 𝑌
𝑘
with 𝑢 = 𝑢− + 𝑢0 + 𝑢+ ∈ 𝐸 = 𝐸− ⊕ 𝐸0 ⊕ 𝐸+.

By (16), for any 𝑢 ∈ 𝑌
𝑘
with ‖𝑢‖ ≤ 𝑅

1
/𝐶

3
, one has ‖𝑢‖

∞
≤ 𝑅

1
.

By (𝐻
5
), we obtain

𝜑

𝜆
(𝑢) =

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

𝑝

∑

𝑗=1

∫

𝑢(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

− 𝜆(

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

−󵄩
󵄩

󵄩

󵄩

2

+ ∫

𝑇

0

𝐹 (𝑡, 𝑢) 𝑑𝑡)

≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

𝑝

∑

𝑗=1

𝑏

𝑗

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢 (𝑡

𝑗
)

󵄨

󵄨

󵄨

󵄨

󵄨

𝛾
𝑗
+1

− 𝐶

2
∫

𝑇

0

|𝑢|

𝛿
𝑑𝑡

≤

1

2

󵄩

󵄩

󵄩

󵄩

𝑢

+󵄩
󵄩

󵄩

󵄩

2

+

𝑝

∑

𝑗=1

𝑏

𝑗
𝐶

𝛾
𝑗
+1

3
‖𝑢‖

𝛾
𝑗
+1
− 𝐶

2
𝐶

4
‖𝑢‖

𝛿

(43)

for any 𝑢 ∈ 𝑌

𝑘
with ‖𝑢‖ ≤ 𝑅

1
/𝐶

3
, where the last

inequality follows by the equivalence of the norms on the
finite dimensional space 𝑌

𝑘
. Since 𝛿 < 2, 𝛾

𝑗
≥ 1 (𝑗 ∈

{1, 2, . . . , 𝑝}), for ‖𝑢‖ = 𝑟

𝑘
, are small enough, we can get

𝑏

𝑘
(𝜆) := max

𝑢∈𝑌
𝑘
,‖𝑢‖=𝑟

𝑘

𝐼

𝜆
(𝑢) < 0, ∀𝑘 ∈ N.

Proof of Theorem 2. By (𝐻
2
), (𝐻
4
), 𝜑
𝜆
maps bounded sets to

bounded sets uniformly for 𝜆 ∈ [1, 2]. Evidently, (𝐻
1
), (𝐻
6
)

imply that 𝜑
𝜆
(−𝑢) = 𝜑

𝜆
(𝑢) for all (𝜆, 𝑢) ∈ [1, 2] × 𝐸. Thus

by Lemma 4, there exist 𝜆
𝑛

→ 1, 𝑢
𝜆
𝑛

∈ 𝑌

𝑛
such that

𝜑

󸀠

𝜆
𝑛

|

𝑌
𝑛

(𝑢(𝜆

𝑛
)) = 0, 𝜑

𝜆
𝑛

(𝑢(𝜆

𝑛
)) → 𝑐

𝑘
∈ [𝑑

𝑘
(2), 𝑏

𝑘
(1)] as

𝑛 → ∞. For the sake of notational simplicity, in what follows
we always set 𝑢

𝑛
= 𝑢

𝜆
𝑛

for all 𝑛 ∈ N. By (𝐻
1
), (𝐻
3
), one has

−𝜑

𝜆
𝑛

(𝑢

𝑛
) =

1

2

𝜑

󸀠

𝜆
𝑛

|

𝑌
𝑛

(𝑢

𝑛
) 𝑢

𝑛
− 𝜑

𝜆
𝑛

(𝑢

𝑛
)

=

𝑝

∑

𝑗=1

[

1

2

𝐼

𝑗
(𝑢

𝑛
(𝑡

𝑗
)) 𝑢

𝑛
(𝑡

𝑗
) − ∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠]

+ 𝜆

𝑛
∫

𝑇

0

[𝐹 (𝑡, 𝑢

𝑛
) −

1

2

𝑓 (𝑡, 𝑢

𝑛
) 𝑢

𝑛
] 𝑑𝑡

≥ 𝜆

𝑛
∫

Γ
𝑛

[𝐹 (𝑡, 𝑢

𝑛
) −

1

2

𝑓 (𝑡, 𝑢

𝑛
) 𝑢

𝑛
] 𝑑𝑡 − 𝐶

5

≥ 𝑑𝜆

𝑛
∫

Γ
𝑛

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝛾

𝑑𝑡 − 𝐶

5
, 𝑛 ∈ N,

(44)

where Γ
𝑛
= {𝑡 ∈ [0, 𝑇] : |𝑢

𝑛
(𝑡)| ≥ 𝑅

0
} and 𝐶

5
> 0 is a

constant. Hence, there exists a constant 𝐶
6
> 0 such that

∫

Γ
𝑛

|𝑢

𝑛
|

𝛾
𝑑𝑡 ≤ 𝐶

6
, ∀𝑛 ∈ N. On the other hand, we can easily

obtain that ∫
[0,𝑇]\Γ

𝑛

|𝑢

𝑛
|

𝛾
𝑑𝑡 ≤ 𝑇𝑅

𝛾

0
, ∀𝑛 ∈ N. Thus, we have

∫

𝑇

0
|𝑢

𝑛
|

𝛾
𝑑𝑡 ≤ 𝐶

7
. In view of the equivalence of any two norms

on finite dimensional space 𝐸− ⊕ 𝐸0 and (16), we obtain
󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨

2

2
= (𝑢

−

𝑛
+ 𝑢

0

𝑛
, 𝑢

𝑛
)

2

=

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨𝛾

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨𝛾
󸀠

≤ 𝐶

8

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨2
,

(45)

where 𝛾󸀠 = (𝛾/(𝛾 − 1)) (𝛾󸀠 = ∞ when 𝛾 = 1). Therefore, we
have

󵄨

󵄨

󵄨

󵄨

󵄨

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄨

󵄨

󵄨

󵄨

󵄨2
≤ 𝐶

8
. (46)

In view of the equivalence of norms on 𝐸− ⊕ 𝐸0, we obtain
‖𝑢

−

𝑛
+ 𝑢

0

𝑛
‖ ≤ 𝐶

9
, ∀𝑛 ∈ N. Note that

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

= 2𝜑

𝜆
𝑛

(𝑢

𝑛
) + 𝜆

𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+ 2𝜆

𝑛
∫

𝑇

0

𝐹 (𝑡, 𝑢

𝑛
) 𝑑𝑡

−

𝑝

∑

𝑗=1

∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠.

(47)

Thus
󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

2

=

󵄩

󵄩

󵄩

󵄩

𝑢

+

𝑛

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

≤ 2𝜑

𝜆
𝑛

(𝑢

𝑛
) + 𝜆

𝑛

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛

󵄩

󵄩

󵄩

󵄩

2

+

󵄩

󵄩

󵄩

󵄩

󵄩

𝑢

−

𝑛
+ 𝑢

0

𝑛

󵄩

󵄩

󵄩

󵄩

󵄩

2

+ 2𝜆

𝑛
∫

𝑇

0

𝐹 (𝑡, 𝑢

𝑛
) 𝑑𝑡 −

𝑝

∑

𝑗=1

∫

𝑢
𝑛
(𝑡
𝑗
)

0

𝐼

𝑗
(𝑠) 𝑑𝑠

≤ 𝐶

10
+ 𝐶

11
∫

𝑇

0

[

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

+

󵄨

󵄨

󵄨

󵄨

𝑢

𝑛

󵄨

󵄨

󵄨

󵄨

𝜇

]

≤ 𝐶

12
+ 𝐶

13
𝑇 [𝐶

3

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

+ 𝐶

𝜇

3

󵄩

󵄩

󵄩

󵄩

𝑢

𝑛

󵄩

󵄩

󵄩

󵄩

𝜇

] .

(48)
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Since 𝜇 < 2, we have ‖𝑢
𝑛
‖ ≤ 𝐶

14
; that is, {𝑢

𝑛
} is bounded

in 𝐸. By a standard argument, this yields a critical point 𝑢𝑘

of 𝜑 such that 𝜑(𝑢𝑘) ∈ [𝑑

𝑘
(2), 𝑐

𝑘
(1)]. Since 𝑑

𝑘
(2) → 0

− as
𝑘 → ∞, we can obtain infinitely many critical points.
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