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This paper focuses on the stability issue of discrete-time networked control systems with randomMarkovian delays and uncertain
transition probabilities, wherein the random time delays exist in the sensor-to-controller and controller-to-actuator. The resulting
closed-loop system is modeled as a discrete-time Markovian delays system governed by two Markov chains. Using Lyapunov
stability theory, a result is established on the Markovian structure and ensured that the closed-loop system is stochastically stable.
A simulation example illustrates the validity and feasibility of the results.

1. Introduction

Networked control systems (NCS) find many successful
applications in power grids, manufacturing plants, vehicles,
aircrafts, spacecrafts, remote surgery, and so on [1]. Com-
pared with the traditional control systems, the use of the
communication networks brings many advantages such as
low cost, reduced weight, and simple installation and main-
tenance, as well as high efficiency, flexibility, and reliability.
However, inserting communication networks into feedback
control loops has also resulted in several interesting and chal-
lenging issues, such as packet dropouts [2], timedelays [3–10],
quantization [11], time-varying transmission intervals [12],
distributed synchronization [13], or some of the constraints
considered simultaneously [14–17], which make the analysis
and design of NCS complex. These imperfections block the
way of harvesting reliable NCS by implementing existing
control techniques [18]. To overcome these drawbacks, sig-
nificant attention has been paid to the NCS research ranging
from system identification and stability analysis to controller

and filter designs. See the survey papers [1, 19, 20] and the
references therein.

The network-induced time delays are known to be the
major challenges in NCS, which may be potential causes
for the deteriorating performance or instability of NCS.
Consequently, numerous works have been conducted on
the time-delay issue in the past years. For example, in
[21], the mixed 𝐻

2
/𝐻
∞

control issue of NCS with random
time delays has been investigated based on Markovian jump
linear systems method. In [9], the stability problem of NCS
with uncertain time-varying delays has been investigated.
The stability and stabilization of NCS with random time
delay usually use Markovian jump linear systems (MJLS)
approach, and, recently, many significant achievements have
been obtained for MJLS in [22–26]. However, most of the
approaches for NCS based on Markovian jump systems
framework assumed that the Markovian transition probabil-
ities are known a priori, which severely limit the utility of
the Markov model. Furthermore, such assumption may not
hold true especially in the case where networked control is
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applied to the remote plants. Recently, the𝐻
∞
filter problem

for a class of uncertain Markovian jumping systems with
bounded transition probabilities has been investigated in
[27], but the well-established results cannot be directly used
to NCS. To the best of the authors’ knowledge, up to now,
very limited efforts have been devoted to studying the system
with uncertain transition probabilitymatrices forNCS,which
motivates our investigation.

In this paper, we address the analysis and design of NCS
with random time delays modeled by Markov chains in for-
ward sensor-to-controller (S-C) and feedback controller-to-
actuator (C-A) communication links and with the uncertain
transition probability matrices. The main contributions of
this paper are highlighted as follows. (i) A model is proposed
for NCS with random Markovian delays and uncertain
transition probability matrices. (ii) The system modeled will
be more generalized and avoid the ideal assumption that the
transition probabilities are known a priori. (iii) New criteria
for stability are obtained based on a Lyapunov approach.
Finally, a numerical example is provided to demonstrate
the effectiveness of the proposed control scheme for NCS
with random time delays and uncertain transition probability
matrices.

The remainder of this paper is organized as follows.
A model with Markovian delays and uncertain transition
probabilities is obtained in Section 2. The main results are
obtained based on a Lyapunov approach and the linearmatrix
inequalities technique in Section 3. Section 4 presents the
simulation results. Finally, the conclusions are provided in
Section 5.

Notations.Matrices are assumed to have appropriate dimen-
sions. R𝑛 and R𝑛×𝑚 denote the 𝑛-dimensional Euclidean
space and the set of all 𝑛 × 𝑚 real matrices, respectively. The
notations 𝐴 > 0 (𝐴 < 0) indicate that 𝐴 is a real symmetric
positive (negative) definitematrix. 𝐼 and 0 denote the identity
matrix and the zero matrix with appropriate dimensions,
respectively. Superscripts “𝑇” and “−1” stand for the matrix
transposition and the matrix inverse, respectively. E[⋅] stands
for the mathematical expectation and diag{𝐴, 𝐵} stands for
a block-diagonal matrix of 𝐴 and 𝐵. 𝐼 and 0 denote the
identitymatrix and zeromatrix with appropriate dimensions,
respectively. sym{𝐴} denotes the expression 𝐴 + 𝐴𝑇, and ∗
means symmetric terms in symmetric entries.

2. NCS Model

The framework of networked control systems is depicted
in Figure 1. The plant, sensor, controller, and actuator are
spatially distributed and closed through a network. Random
time delays exist in both of S-C and C-A.

The plant is described by the following discrete-time
linear time-invariant plant model:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝑢 (𝑘) , (1)

where 𝑥(𝑘) ∈ R𝑛 is the system state vector and 𝑢(𝑘) ∈ R𝑚 is
the control input. 𝐴 and 𝐵 are known real constant matrices
with appropriate dimensions.

𝜏(k)

u(k) x(k)

d(k)

u(k) x(k)

Network

Controller

Actuator Plant Sensor

Figure 1: Diagram of a NCS with time delays.

For this system, we will consider a state feedback con-
troller as follows:

𝑢 (𝑘) = 𝐾𝑥 (𝑘) , (2)

where𝐾 is the state feedback controller gain.
Random S-C and C-A time delays are 𝑑(𝑘) and 𝜏(𝑘),

respectively. 𝑑(𝑘) and 𝜏(𝑘) are assumed be bounded; that is,
0 ≤ 𝑑 ≤ 𝑑(𝑘) ≤ 𝑑, 0 ≤ 𝜏 ≤ 𝜏(𝑘) ≤ 𝜏, where 𝑑 = min{𝑑(𝑘)},
𝑑 = max{𝑑(𝑘)}, 𝜏 = min{𝜏(𝑘)}, and 𝜏 = max{𝜏(𝑘)}. One
way to model delays 𝑑(𝑘) and 𝜏(𝑘) is by using the finite-state
Markov chains presented in [21]. The main advantages of the
Markov model considering the dependence between delays
are that the current time delays in real networks delays are
frequently related to the previous delays. In this paper 𝑑(𝑘)
and 𝜏(𝑘) are modeled as two homogeneous Markov chains.

By substituting controller (2) to plant (1), we obtain a
closed-loop system as follows:

𝑥 (𝑘 + 1) = 𝐴𝑥 (𝑘) + 𝐵𝐾𝑥 (𝑘 − 𝜂
𝑘
) , (3)

where 𝜂
𝑘
= 𝜏(𝑘) + 𝑑(𝑘 − 𝜏(𝑘)).

In system (3), {𝑑(𝑘), 𝑘 ∈ Z} and {𝜏(𝑘), 𝑘 ∈ Z} are
two finite state discrete-time homogeneous Markov chains
with values in the finite sets 𝑆

1
= {0, . . . , 𝑠

1
} and 𝑆

2
=

{0, . . . , 𝑠
2
} with the uncertain transition probability matrices

�̂� and �̂�. �̂� = {�̂�
𝑖𝑗
} and �̂� = {�̂�

𝑛𝑚
} denote the uncertain

transition probability matrices of Markov chain 𝑑(𝑘) and
𝜏(𝑘), respectively, with probabilities �̂�

𝑖𝑗
and �̂�

𝑛𝑚
, which are

defined by

Pr {𝑑 (𝑘 + 1) = 𝑗 | 𝑑 (𝑘) = 𝑖} = �̂�
𝑖𝑗
,

Pr {𝜏 (𝑘 + 1) = 𝑛 | 𝜏 (𝑘) = 𝑚} = �̂�
𝑚𝑛
,

(4)

where Pr{𝑑
0
= 𝑖} = �̂�

𝑖
≥ 0, Pr{𝜏

0
= 𝑚} = �̂�

𝑚
≥ 0 and

∑
𝑠
1

𝑗=0,𝑗 ̸= 𝑖
�̂�
𝑖𝑗
= 1 − �̂�

𝑖𝑖
, ∑𝑠2
𝑛=0,𝑛 ̸=𝑚

�̂�
𝑚𝑛
= 1 − �̂�

𝑚𝑚
for all {𝑖, 𝑗} ∈

𝑆
1
and {𝑚, 𝑛} ∈ 𝑆

2
. The transition probability matrices �̂� ≜

[�̂�
𝑖𝑗
] and �̂� ≜ [�̂�

𝑚𝑛
] are unknown a priori but belong to the

following bounded compact set:

�̂� = 𝜋 + Δ𝜋, �̂� = 𝜆 + Δ𝜆, (5)

where 𝜋 ≜ [𝜋
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

1
) and 𝜆 ≜ [𝜆

𝑚𝑛
] (𝑚, 𝑛 ∈ 𝑆

2
) are

known constant matrices. Δ𝜋 ≜ [Δ𝜋
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

1
) and Δ𝜆 ≜
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[Δ𝜆
𝑖𝑗
] (𝑖, 𝑗 ∈ 𝑆

2
) denote the uncertainty in the transition

probability matrices, where Δ𝜋 and Δ𝜆 satisfy

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

Δ𝜋
𝑖𝑗
= −Δ𝜋

𝑖𝑗
(𝑖, 𝑗 ∈ 𝑆

1
) ,

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
= −Δ𝜆

𝑚𝑛
(𝑚, 𝑛 ∈ 𝑆

2
) ,

(6)

where 0 ≤ |Δ𝜋
𝑖𝑗
| ≤ 𝜀
𝑖𝑗
, 0 ≤ |Δ𝜆

𝑚𝑛
| ≤ 𝜀
𝑚𝑛
, and 𝜀

𝑖𝑗
and 𝜀
𝑚𝑛

are the known small scalar for all (𝑖, 𝑗 ∈ 𝑆
1
) and (𝑚, 𝑛 ∈ 𝑆

2
),

respectively.

Remark 1. Closed-loop system (3) is a linear system with
the Markovian delays 𝑑(𝑘) and 𝜏(𝑘), which describe the
behavior of the S-C and C-A random time delays, and with
the uncertain transition probabilities.

Remark 2. The uncertain transition probabilities �̂� and �̂�
contain the certain terms 𝜋 and 𝜆, and the uncertain terms
Δ𝜋 and Δ𝜆, respectively. The uncertain terms Δ𝜋 and Δ𝜆 are
bounded, and the sums of the elements in each row are zeros.

3. Stability Analysis and Controller Design

By applying a Lyapunov approach and a linear matrix
inequality technique, this section provides sufficient condi-
tions for the stochastic stability and the synthesis of state
feedback controller design of the system (3).

Definition 3 (see [21]). The closed-loop system (3) is said to
be stochastically stable if, for every finite 𝑥

0
= 𝑥(0), initial

mode 𝑑
0
= 𝑑(0) ∈ 𝑆

1
and 𝜏
0
= 𝜏(0) ∈ 𝑆

2
, there exists a finite

W > 0 such that

E{
∞

∑

𝑘=0

‖𝑥 (𝑘)‖
2
| 𝑥
0
, 𝑑
0
, 𝜏
0
} < 𝑥

𝑇

0
W𝑥
0
. (7)

Theorem 4. For the system (3), random but bounded scalars
𝑑(𝑘) ∈ [𝑑 𝑑] and 𝜏(𝑘) ∈ [𝜏 𝜏]. If, for each mode {𝑖, 𝑗} ∈ 𝑆

1

and {𝑚, 𝑛} ∈ 𝑆
2
andmatrices𝑃

𝑖,𝑚
> 0,𝑄

1
> 0,𝑄

2
> 0,𝑄

3
> 0,

𝑅
1
> 0, and 𝑅

2
> 0,M

𝑠
= [M1𝑠 M

2𝑠
M
3𝑠] and𝐾 exist that

satisfy the following matrix inequalities:

Γ
𝑖,𝑚
= [

[

−𝑅
−1

1
0 Ξ

1

∗ −𝑅
−1

2
Ξ
2

∗ ∗ Ξ
3

]

]

< 0, (8)

where

Ξ
1
= [𝑡 (𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0] ,

Ξ
2
= [(𝑡 − 𝑡) (𝐴 − 𝐼) 0 (𝑡 − 𝑡) 𝐵𝐾 0 0] ,

Ξ
3
= ✠ + symM

𝑇

Ω,

✠ =

[
[
[
[
[

[

✠
11
𝑃
𝑖,𝑚

𝑅
1

0 0

∗ ✠
22

0 0 0

∗ ∗ ✠
33
𝑅
1
+ 𝑅
2
𝑅
2

∗ ∗ ∗ ✠
44

0

∗ ∗ ∗ ∗ ✠
55

]
]
]
]
]

]

,

✠
11
= 𝑃
𝑖,𝑚
− 𝑃
𝑖,𝑚
− 𝑅
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

✠
22
= 𝑃
𝑖,𝑚
, ✠

33
= −𝑄
3
− 2𝑅
1
− 2𝑅
2
,

✠
44
= −𝑄
1
− 𝑅
1
− 𝑅
2
, ✠

55
= −𝑄
2
− 𝑅
2
,

M = [M1𝑠 M
2𝑠

M
3𝑠
0 0] ,

Ω = [𝐴 − 𝐼 −𝐼 𝐵𝐾 0 0] ,

𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
�̂�
𝑚𝑛
𝑃
𝑗,𝑛
,

𝑡 = 𝑑 + 𝜏, 𝑡 = 𝑑 + 𝜏,

(9)

and �̂�
𝑖𝑗
and �̂�

𝑚𝑛
are defined in (4) and (5).

Then the closed-loop system (3) is stochastically stable.

Proof. For the closed-loop system (3), the stochastic Lya-
punov functional candidate is constructed as follows:

𝑉 (𝑘) = 𝑉
1
(𝑘) + 𝑉

2
(𝑘) + 𝑉

3
(𝑘) + 𝑉

4
(𝑘) , (10)

with

𝑉
1
(𝑘) = 𝑥(𝑘)

𝑇
𝑃 (𝑑 (𝑘) , 𝜏 (𝑘)) 𝑥 (𝑘) ,

𝑉
2
(𝑘) =

𝑘−1

∑

𝑙=𝑘−𝑡

𝑥(𝑙)
𝑇
𝑄
1
𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝑡

𝑥(𝑙)
𝑇
𝑄
2
𝑥 (𝑙) ,

𝑉
3
(𝑘) =

−𝑡+1

∑

𝜃=−𝑡+2

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑥(𝑙)
𝑇
𝑄
3
𝑥 (𝑙) +

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝑥(𝑙)
𝑇
𝑄
3
𝑥 (𝑙) ,

𝑉
4
(𝑘) =

0

∑

𝜃=−𝑡+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

+

−𝑡

∑

𝜃=−𝑡+1

𝑘−1

∑

𝑙=𝑘+𝜃−1

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙) ,

(11)

where 𝑃(𝑑(𝑘), 𝜏(𝑘)) > 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, 𝑅

1
> 0, and

𝑅
2
> 0.
Let 𝛿(𝑙) = 𝑥(𝑙 + 1) − 𝑥(𝑙), noting that 𝑥(𝑘 + 1) = 𝐴𝑥(𝑘) +

𝐵𝐾𝑥(𝑘 − 𝜂
𝑘
). Then 0 = (𝐴 − 𝐼)𝑥(𝑘) − 𝛿(𝑘) + 𝐵𝐾𝑥(𝑘 −

𝜂
𝑘
). For simplicity, we will use the following notations:
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𝜁(𝑘) = [𝑥(𝑘)
𝑇
𝛿(𝑘)
𝑇
𝑥(𝑘 − 𝜂

𝑘
)
𝑇
]
𝑇

. Then, for any weighting
matrices M

𝑠
with compatible dimensions (and let M

𝑠
=

[M1𝑠 M
2𝑠

M
3𝑠]), we have 2𝜁(𝑘)𝑇M𝑇𝑠 ((𝐴 − 𝐼)𝑥(𝑘) − 𝛿(𝑘) +

𝐵𝐾𝑥(𝑘 − 𝜂
𝑘
)) = 0. Along the trajectory of the solution of the

closed-loop system (3), we obtain

E [Δ𝑉
1
(𝑘)] = E {[𝑥 (𝑘) + 𝛿 (𝑘)]

𝑇
𝑃
𝑖,𝑚 [𝑥 (𝑘) + 𝛿 (𝑘)]}

− 𝑥(𝑘)
𝑇
𝑃
𝑖,𝑚
𝑥 (𝑘) + 2𝜁(𝑘)

𝑇
M
𝑇

𝑠

× ((𝐴 − 𝐼) 𝑥 (𝑘) + 𝐵𝐾 (𝑘 − 𝜂
𝑘
) − 𝛿 (𝑘)) ,

(12)

E [Δ𝑉
2
(𝑘)] = 𝑥(𝑘)

𝑇
(𝑄
1
+ 𝑄
2
) 𝑥 (𝑘)

− 𝑥(𝑘 − 𝑡)
𝑇

𝑄
1
𝑥 (𝑘 − 𝑡)

− 𝑥(𝑘 − 𝑡)
𝑇

𝑄
2
𝑥 (𝑘 − 𝑡) ,

(13)

E [Δ𝑉
3
(𝑘)] ≤ (𝑡 − 𝑡 + 1) 𝑥(𝑘)

𝑇
𝑄
3
𝑥 (𝑘)

− 𝑥(𝑘 − 𝜂
𝑘
)
𝑇

𝑄
3
𝑥 (𝑘 − 𝜂

𝑘
) ,

(14)

E [Δ𝑉
4
(𝑘)] = 𝑡

2

𝛿(𝑘)
𝑇
𝑅
1
𝛿 (𝑘) + (𝑡 − 𝑡)

2

𝛿(𝑘)
𝑇
𝑅
2
𝛿 (𝑘)

−

𝑘−1

∑

𝑙=𝑘−𝑡

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

−

𝑘−𝑡−1

∑

𝑙=𝑘−𝑡

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙) .

(15)

By Jensen’s inequality, we can obtain

−

𝑘−1

∑

𝑙=𝑘−𝑡

𝑡𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

= −(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

+

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

)(𝑡 − 𝜂
𝑘
+ 𝜂
𝑘
) 𝛿(𝑙)
𝑇
𝑅
1
𝛿 (𝑙)

≤ −((𝑡 − 𝜂
𝑘
)

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿
𝑇
(𝑙) 𝑅
1
𝛿 (𝑙) + 𝜂

𝑘

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿
𝑇
(𝑙) 𝑅
1
𝛿 (𝑙))

≤ −((

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

𝑇

𝑅
1
(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

+ (

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

𝑇

𝑅
1
(

𝑘−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙)))

= −(𝑥 (𝑘 − 𝜂
𝑘
) − 𝑥 (𝑘 − 𝑡))

𝑇

𝑅
1
(𝑥 (𝑘 − 𝜂

𝑘
) − 𝑥 (𝑘 − 𝑡))

− (𝑥 (𝑘) − 𝑥 (𝑘 − 𝜂
𝑘
))
𝑇

𝑅
1
(𝑥 (𝑘) − 𝑥 (𝑘 − 𝜂

𝑘
)) .

(16)

Similarly, we have

−

𝑘−𝑡−1

∑

𝑙=𝑘−𝑡

(𝑡 − 𝑡) 𝛿(𝑙)
𝑇
𝑅
2
𝛿 (𝑙)

≤ −(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

𝑇

𝑅
2
(

𝑘−𝜂
𝑘
−1

∑

𝑙=𝑘−𝑡

𝛿 (𝑙))

+ (

𝑘−𝑡−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

𝑇

𝑅
2
(

𝑘−𝑡−1

∑

𝑙=𝑘−𝜂
𝑘

𝛿 (𝑙))

= −(𝑥 (𝑘 − 𝜂
𝑘
) − 𝑥 (𝑘 − 𝑡))

𝑇

𝑅
2
(𝑥 (𝑘 − 𝜂

𝑘
) − 𝑥 (𝑘 − 𝑡))

− (𝑥 (𝑘 − 𝑡) − 𝑥 (𝑘 − 𝜂
𝑘
))
𝑇

𝑅
2
(𝑥 (𝑘 − 𝑡) − 𝑥 (𝑘 − 𝜂

𝑘
)) .

(17)

By substituting (16) and (17) to (15) and then combining (12),
(13), and (14), we have

E [Δ𝑉]

≤ 𝜉(𝑘)
𝑇
{Ξ
3
+ [𝑡(𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0]

𝑇

× 𝑅
1
[𝑡 (𝐴 − 𝐼) 0 𝑡𝐵𝐾 0 0]

+ [(𝑡 − 𝑡)(𝐴 − 𝐼) 0 (𝑡 − 𝑡)𝐵𝐾 0 0]
𝑇

×𝑅
2
[ (𝑡 − 𝑡) (𝐴 − 𝐼) 0 (𝑡 − 𝑡) 𝐵𝐾 0 0 ] } 𝜉 (𝑘)

= 𝜉(𝑘)
𝑇
Γ
𝑖,𝑚
𝜉 (𝑘) ,

(18)

where 𝜉(𝑘) = [𝜁(𝑘)
𝑇
𝑥(𝑘 − 𝑡)

𝑇
𝑥(𝑘 − 𝑡)

𝑇
]
𝑇

. By using the
Schur complement, (8) guarantees that Γ

𝑖,𝑚
< 0. Therefore,

E [Δ𝑉] ≤ −𝜆min (−Γ𝑖,𝑚) 𝜉(𝑘)
𝑇
𝜉 (𝑘) ≤ −𝜂𝑥(𝑘)

𝑇
𝑥 (𝑘) , (19)

where 𝜆min(−Γ𝑖,𝑚) denotes the minimal eigenvalue of −Γ
𝑖,𝑚

and 𝜂 = inf{𝜆min(−Γ𝑖,𝑚)}. From (19), it follows that, for any
𝑡 > 0,

E [𝑉 (𝑘 + 1)] − E [𝑉 (0)] ≤ −𝜂
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] . (20)

Furthermore
𝑡

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] ≤

1

𝜂
E [𝑉 (0)] . (21)

By taking 𝑡 → ∞ as the limit, we obtain
∞

∑

𝑘=0

E [𝑥(𝑘)
𝑇
𝑥 (𝑘)] ≤

1

𝜂
E [𝑉 (0)] =

1

𝜂
𝑥
𝑇

0
𝑃 (𝑑
0
, 𝜏
0
) 𝑥
0
< ∞.

(22)

According toDefinition 3, the closed-loop system (3) exhibits
stochastic stability for all uncertain transition probability
matrices.
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Theorem 4 gives a sufficient condition for the stochastic
stability of the system (3). However, it should be noted that
the controller gain 𝐾 cannot be obtained according to the
condition in (8) because of the nonlinear terms 𝑅−1

1
and 𝑅−1

2

and the uncertain terms Δ𝜋 and Δ𝜆. To handle this problem,
the equivalent LMI conditions are given as follows.

Before proceeding further, we provide the following
lemma thatwill play a significant role in processing the uncer-
tainty terms Δ𝜋 and Δ𝜆 of uncertain transition probability
matrices �̂� and �̂�.

Lemma 5 (see [28]). For any vectors of 𝑎, 𝑏 ∈R𝑛 and positive
matrix 𝑍 ∈R𝑛𝑍,𝑛𝑍 , the following holds:

2𝑎
𝑇
𝑏 ≤ 𝑎
𝑇
𝑍𝑎 + 𝑏

𝑇
𝑍
−1
𝑏. (23)

Theorem 6. For the system (3), the random but bounded
scalars 𝑑(𝑘) ∈ [𝑑 𝑑] and 𝜏(𝑘) ∈ [𝜏 𝜏]. If, for each mode
{𝑖, 𝑗} ∈ 𝑆

1
and {𝑚, 𝑛} ∈ 𝑆

2
, the tuning parameters 𝜑

1
> 0 and

𝜑
2
> 0, the scalars 𝜀

𝑖𝑗
> 0 and 𝜀

𝑛𝑚
> 0, and matrices �̂�

𝑖,𝑚
> 0,

𝑋 > 0, 𝑄
1
> 0, 𝑄

2
> 0, 𝑄

3
> 0, �̂�

1
> 0, �̂�

2
> 0, 𝑍

𝑖
> 0,

𝑍
𝑚
> 0, and 𝑍

𝑗,𝑛
> 0, and 𝑌 exist such that

[
[
[

[

Θ
11

0 0 Θ
14

∗ Θ
22

0 Θ
24

∗ ∗ Θ
33
Θ
34

∗ ∗ ∗ Θ
44

]
]
]

]

< 0, (24)

where

Θ
11
= − sym {𝑋} + �̂�

1
, Θ

22
= − sym {𝑋} + �̂�

2
,

Θ
33
= diag {−𝑍

𝑚
, −𝑍
𝑖
, −𝑍
𝑗,𝑛
} ,

Θ
14
= [𝑡 (𝐴𝑋 − 𝑋) 0 𝑡𝐵𝑌 0 0] ,

Θ
24
= [(𝑡 − 𝑡) (𝐴𝑋 − 𝑋) 0 (𝑡 − 𝑡) 𝐵𝑌 0 0] ,

Θ
34
= [

[

Ψ
1
Ψ
1
0 0 0

Ψ
2
Ψ
2
0 0 0

Ψ
3
Ψ
3
0 0 0

]

]

,

𝑍
𝑚
= diag {𝑍

𝑚
, . . . , 𝑍

𝑚
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠
1
(𝑠
2
−1)

, 𝑍
𝑖
= diag {𝑍

𝑖
, . . . , 𝑍

𝑖
}⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

(𝑠
1
−1)𝑠
2

,

𝑍
𝑗,𝑛
= diag {𝑍

𝑗,𝑛
, . . . , 𝑍

𝑗,𝑛
}

⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

𝑠
1
𝑠
2

,

Ψ
1
= [

[

√𝜋𝑖1Δ�̂�1,𝑚

⋅ ⋅ ⋅

√𝜋𝑖𝑠
1

Δ�̂�
𝑠
1
,𝑚

]

]

, Ψ
2
=
[
[

[

√𝜆
𝑚1
Δ�̂�
𝑖,1

⋅ ⋅ ⋅

√𝜆𝑚𝑠
2

Δ�̂�
𝑖,𝑠
2

]
]

]

,

Ψ
3
= [

[

�̂�
1,1

⋅ ⋅ ⋅

�̂�
𝑠
1
,𝑠
2

]

]

,

Δ�̂�
𝑗,𝑚
=

[
[
[
[
[
[
[
[

[

�̂�
𝑗,1
− �̂�
𝑗,𝑚

⋅ ⋅ ⋅

�̂�
𝑗,𝑚−1

− �̂�
𝑗,𝑚

�̂�
𝑗,𝑚+1

− �̂�
𝑗,𝑚

⋅ ⋅ ⋅

�̂�
𝑗,𝑠
2

− �̂�
𝑗,𝑚

]
]
]
]
]
]
]
]

]

, Δ�̂�
𝑖,𝑛
=

[
[
[
[
[
[
[
[

[

�̂�
1,𝑛
− �̂�
𝑗,𝑛

⋅ ⋅ ⋅

�̂�
𝑖−1,𝑛

− �̂�
𝑗,𝑛

�̂�
𝑖+1,𝑛

− �̂�
𝑗,𝑛

⋅ ⋅ ⋅

�̂�
𝑠
1
,𝑛
− �̂�
𝑗,𝑛

]
]
]
]
]
]
]
]

]

,

Θ
44
= sym {Π𝑇Ω̂}

+

[
[
[
[
[

[

✠̂
11
𝜗
1
⊛ 𝜗
2
�̂�
1

0 0

∗ 𝜗
2

1
⊛ 0 0 0

∗ ∗ 𝜗
2

2
✠̂
33
𝜗
2
(�̂�
1
+ �̂�
2
) 𝜗
2
�̂�
2

∗ ∗ ∗ ✠̂
44

0

∗ ∗ ∗ ∗ ✠̂
55

]
]
]
]
]

]

,

✠̂
11
= ⊛ − �̂�

𝑖,𝑚
− �̂�
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

✠̂
33
= −𝑄
3
− 2�̂�
1
− 2�̂�
2
, ✠̂

44
= −𝑄
1
− �̂�
1
− �̂�
2
,

✠̂
55
= −𝑄
2
− �̂�
2
,

⊛ =

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

(𝜀
𝑖𝑗
𝜀
𝑚𝑛
)
2

4
𝑍
𝑗,𝑛
)

+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

𝜋
𝑖𝑗
𝜀
2

𝑚𝑛

4
𝑍
𝑚
+

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

𝑠
2

∑

𝑛=0

𝜆
𝑚𝑛
𝜀
2

𝑖𝑗

4
𝑍
𝑖
,

Π = [𝐼 𝐼 𝐼 0 0] ,

Ω̂ = [𝐴𝑋 − 𝑋 −𝜗
1
𝑋 𝜗
2
𝐵𝑌 0 0] .

(25)

Then the closed-loop system (3) is stochastically stable and
the controller 𝑢(𝑘) = 𝐾𝑥(𝑘) = 𝑌𝑋−1𝑥(𝑘) is a state feedback
controller of the system (3).

Proof. Let Δ
𝑖
= diag{𝐼, 𝐼, 𝑋

𝑖,𝑚
, 𝜗
1
𝑋
𝑖,𝑚
, 𝜗
2
𝑋
𝑖,𝑚
, 𝑋
𝑖,𝑚
, 𝑋
𝑖,𝑚
},

M−1
1𝑠
= 𝑋
𝑖,𝑚
,M−1
2𝑠
= 𝜗
1
𝑋
𝑖,𝑚
, andM−1

3𝑠
= 𝜗
2
𝑋
𝑖,𝑚
, where 𝜗

1
> 0

and 𝜗
2
> 0 are known tuning parameters. We restrict 𝑋

𝑖,𝑚
to

be the same for all {𝑖, 𝑚} (namely, 𝑋
𝑖,𝑚

= 𝑋) and give the
notations as

�̂�
𝑖,𝑚
= 𝑋
𝑇
𝑃
𝑖,𝑚
𝑋,

̂
𝑃
𝑖,𝑚
= 𝑋
𝑇
𝑃
𝑖,𝑚
𝑋, �̂�

1
= 𝑋
𝑇
𝑅
1
𝑋,

�̂�
2
= 𝑋
𝑇
𝑅
2
𝑋,

𝑄
1
= 𝑋
𝑇
𝑄
2
𝑋, 𝑄

2
= 𝑋
𝑇
𝑄
2
𝑋, 𝑄

3
= 𝑋
𝑇
𝑄
3
𝑋.

(26)

Pre- and postmultiplying Δ𝑇
𝑖
and Δ

𝑖
to (8), respectively, we

have

[

[

−𝑋�̂�
−1

1
𝑋
𝑇

0 Ξ̂
1

∗ −𝑋�̂�
−1

2
𝑋
𝑇
Ξ̂
2

∗ ∗ Ξ̂
3

]

]

< 0, (27)
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where

Ξ̂
1
= [𝑡 (𝐴𝑋 − 𝑋) 0 𝑡𝐵𝑌 0 0] ,

Ξ̂
2
= [(𝑡 − 𝑡) (𝐴𝑋 − 𝑋) 0 (𝑡 − 𝑡) 𝐵𝑌 0 0] ,

Ξ̂
3
= ✠̃ + symΠ𝑇Ω̂,

✠̃ =

[
[
[
[
[
[

[

✠̃
11
𝜗
1

̂
𝑃
𝑖,𝑚

𝜗
2
�̂�
1

0 0

∗ 𝜗
2

1

̂
𝑃
𝑖,𝑚

0 0 0

∗ ∗ 𝜗
2

2
✠̂
33
𝜗
2
(�̂�
1
+ �̂�
2
) 𝜗
2
�̂�
2

∗ ∗ ∗ ✠̂
44

0

∗ ∗ ∗ ∗ ✠̂
55

]
]
]
]
]
]

]

,

✠̃
11
=
̂
𝑃
𝑖,𝑚
− �̂�
𝑖,𝑚
− �̂�
1
+ 𝑄
1
+ 𝑄
2
+ (𝑡 − 𝑡 + 1)𝑄

3
,

𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
�̂�
𝑚𝑛
�̂�
𝑗,𝑛
,

(28)

where 𝑡 and 𝑡 are defined inTheorem 4 and ✠̂
33
, ✠̂
44
, and ✠̂

55

are defined inTheorem 6.
According to the assumption on uncertain transition

probabilities �̂� and �̂� and the fact that ∑𝑠1
𝑗=0,𝑗 ̸= 𝑖

Δ𝜋
𝑖𝑗
= −Δ𝜋

𝑖𝑖

and ∑𝑠2
𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
= −Δ𝜆

𝑚𝑚
, one has

̂
𝑃
𝑖,𝑚
=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

�̂�
𝑖𝑗
�̂�
𝑚𝑛
�̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(𝜋
𝑖𝑗
+ Δ𝜋
𝑖𝑗
) (𝜆
𝑚𝑛
+ Δ𝜆
𝑚𝑛
) �̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛
.

(29)

Note that

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

=

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗
(

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛
+ Δ𝜆
𝑚𝑚
�̂�
𝑗,𝑚
)

=

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

Δ𝜆
𝑚𝑛
(�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
) .

(30)

By Lemma 5 and the fact that |Δ𝜆
𝑚𝑛
| ≤ 𝜀
𝑚𝑛
, we have

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0

𝜋
𝑖𝑗

𝑠
2

∑

𝑛=0,𝑛 ̸=𝑚

(
1

4
𝜀
2

𝑚𝑛
𝑍
𝑚
+ (�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
)
𝑇

×𝑍
−1

𝑚
(�̂�
𝑗,𝑛
− �̂�
𝑗,𝑚
) ) .

(31)

Similarly, we have
𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0,𝑗 ̸= 𝑖

𝑠
2

∑

𝑛=0

𝜆
𝑚𝑛

× (
1

4
𝜀
2

𝑖𝑗
𝑍
𝑖
+ (�̂�
𝑗,𝑛
− �̂�
𝑖,𝑛
)
𝑇

𝑍
−1

𝑖
(�̂�
𝑗,𝑛
− �̂�
𝑖,𝑛
)) .

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

Δ𝜋
𝑖𝑗
Δ𝜆
𝑚𝑛
�̂�
𝑗,𝑛

≤

𝑠
1

∑

𝑗=0

𝑠
2

∑

𝑛=0

(
1

4
𝜀
2

𝑖𝑗
𝜀
2

𝑚𝑛
𝑍
𝑗,𝑛
+ �̂�
𝑇

𝑗,𝑛
𝑍
−1

𝑗,𝑛
�̂�
𝑗,𝑛
) .

(32)

Note that, for any matrix 𝑋, we have 𝑋𝑊−1𝑋𝑇 ≥

sym{𝑋} − 𝑊 for𝑊 = �̂�
1
and𝑊 = �̂�

2
. Combining (29), (31),

and (32) and by the Schur complement, (24) can be yielded
easily from (27); this completes the proof of Theorem 6.

4. Numerical Example

In this section, we illustrate our results through an example.
We apply the results in Theorem 6 to a simple inverted
pendulum system [5] shown in Figure 2, which is a two-order
unstable system. The state variables are [𝜑 �̇�]

𝑇, where 𝜑 is
the angular position of the pendulum. The parameters used
are 𝑚 = 0.1 kg and 𝐿 = 1m, without friction surfaces. The
sampling time is 𝑇

𝑠
= 0.05 s. The plant matrices are given by

𝐴 = [
1.0123 0.0502

0.4920 1.0123
] , 𝐵 = [

0.0125

0.5020
] . (33)

We assume that the stochastic Markovian jumping S-C
delay 𝑑(𝑘) ∈ {0, 1} and C-A delay 𝜏(𝑘) ∈ {0, 1, 2} and their
uncertain transition probability matrices are given as follows:

𝜋 = [
0.4 0.6

0.7 0.3
] , 𝜆 = [

[

0.4 0.3 0.3

0.2 0.5 0.3

0.4 0.2 0.4

]

]

,

Δ𝜋 = [
0.02 −0.02

−0.01 0.01
] , Δ𝜆 = [

[

0.03 −0.03 0

−0.02 0.01 0.01

−0.03 0.02 0.01

]

]

.

(34)
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Figure 2: A simple inverted pendulum.
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Figure 3: Values of the S-C delay 𝑑(𝑘).

The eigenvalues of 𝐴 are 1.1695 and 0.8551. Therefore, the
discrete-time model is unstable.

Figures 3 and 4 show part of the simulation of theMarkov
chains mode. The initial conditions are as follows: 𝑑(0) = 0,
𝜏(0) = 0, and 𝑥(0) = [0.1 −0.1]

𝑇. By Theorem 6, when
𝜀
𝑖𝑗
= 0.02, 𝜀

𝑚𝑛
= 0.03, 𝜗

1
= 0.09, and 𝜗

2
= 12, we can obtain

the gain matrix 𝐾 of state feedback controller (2) which is
constructed as

𝐾 = 𝑌𝑋
−1
= [−0.1046 −0.1177] [

0.1636 −0.3923

0.3923 1.4211
]

−1

= [−2.4757 −0.7662] .

(35)

The state trajectories of the system (3) are shown in Figure
5, where two curves represent state trajectories under the
controller gains𝐾. Figure 5 also indicates that the system (3)
is stochastically stable.

Remark 7. In this example, the uncertain transition probabil-
ities are given as a discrete probability distribution function.
When the uncertain transition probability is given as a
continuous probability distribution function, we can use the

𝜏
(k
)

0.5

1

0

0 10 20 30 40 50 60 70 80 90

k

2

1.5

100

Figure 4: Values of the C-A delay 𝜏(𝑘).
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Figure 5: State trajectories under 𝐾.

𝐻
2
norm of the continuous probability distribution function

as the upper bound to simulation.

5. Conclusions

The state feedback stabilization problem for a class of NCS
with the S-C and C-A random time delays is investigated
in this paper. The resulting closed-loop NCS is modeled as
a linear system with uncertain Markovian transition proba-
bilities. New sufficient conditions on stochastic stability and
stabilization are obtained by Lyapunov stability theory and
linear matrix inequalities method. An example is presented
to illustrate the effectiveness of the approach. Although only
the time-delay issue for NCS is addressed in this paper, the
method can be extended to the NCS with the random packet
dropouts, time delays, and packet dropouts and to the MJLS
with the uncertain Markovian transition probabilities.
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