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A simplified model predictive control algorithm is designed for discrete-time Markov jump systems with mixed uncertainties.
The mixed uncertainties include model polytope uncertainty and partly unknown transition probability. The simplified algorithm
involves finite steps. Firstly, in the previous steps, a simplified mode-dependent predictive controller is presented to drive the state
to the neighbor area around the origin. Then the trajectory of states is driven as expected to the origin by the final-step mode-
independent predictive controller. The computational burden is dramatically cut down and thus it costs less time but has the
acceptable dynamic performance. Furthermore, the polyhedron invariant set is utilized to enlarge the initial feasible area. The
numerical example is provided to illustrate the efficiency of the developed results.

1. Introduction

Hybrid systems are a class of dynamical systems denoted
by an interaction between the continuous and discrete
dynamics. In control community, the researchers tend to view
hybrid systems as continuous state and discrete switching
which focuses on the continuous state of dynamic system.
Switched systems are a natural result from this point of
view. Since switching systems can be applied to model the
systems involving abrupt sudden changes which are widely
found in the systems of economics and communications
as well as manufacturing, more attention has been paid to
them (see robust stabilization [1], finite-time analysis [2]
and asynchronous switching [3]). When the system model
is linear and the switching is driven by Markov process,
it leads to Markov jump linear system (MJS). Specifically,
MJS presents a stochastic Markov chain to describe the
random changes of system parameters or structures, where
the dynamic of MJS is switching among the models governed
by a finite Markov chain. Due to this superiority, MJS
has been widely investigated during the last twenty years.
Attractive pioneer works have been obtained (see controller
design [4], 2DMJS control [5], peak-to-peak filtering [6], and

finite-time control [7, 8]). However, the cases of completely
known transition probability (TP) considered in [4–8] are not
always achievable since theTP is not easy to be fully accessible
(see the delay or packet loss in networked control systems
[9]). Thus it is necessary to investigate the partly unknown
case [10–12].

On the other hand, the systems in practice are usually
subject to input/output constraints. Thus, model predictive
control (MPC) is then introduced to solve the problem of
MJS with constraints since MPC can explicitly solve the
constraints in control action. Successful MPC application in
discrete-timeMJS can be obtained in [13, 14]. Normally,MPC
is reformulated as online quadratic program and results have
been reported (see stability [15, 16] and enlarged terminal sets
[17]). It should be noted that the online computation in the
literature [15–17] leads to heavy computational burden.Thus,
the researchers attempted to try a new alternative method
to solve the problem. For this reason, explicit MPC [18] is
presented. However, when the size of system increases, the
time of searching explicit MPC law will also increase sharply.

Based on the above analysis, a simplified MPC design
framework is introduced to reduce the burden of online
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computation for the constrained MJS with mixed uncer-
tainties. The basic idea is that (𝑁 − 1) steps of mode-
dependent MPC are designed to steer the state to a final
neighbour area which includes the origin. Then the final
step of robust mode-independent MPC is devised to force
the state towards the origin regardless of model uncertainty
and transition probability uncertainty. This simplified MPC
dramatically reduces the burden of computation with minor
performance loss, which implies good balance between the
calculation time and dynamical performance. Furthermore,
the polyhedron invariant set is applied to further enlarge the
initial feasible area.

The construction of the paper is as follows. Section 2 gives
the basic dynamical of the system. Section 3 gives the finite-
step simplified MPC algorithm and it is formulated as LMIs.
Section 4 presents a numerical example to show the efficiency
of the results. Section 5 concludes the paper.
Notations. The notations are as follows: 𝑅𝑛 denotes a 𝑛-
dimensional Euclidean space,𝐴𝑇 stands for the transpose of a
matrix, 𝐸{⋅} denotes the expectation of the stochastic process
or vector, a positive-definite matrix is described as 𝑃 > 0,
𝐼 means the unit matrix with appropriate dimension, and ∗
means the symmetric term in a symmetric matrix.

2. Problem Statement and Preliminaries

The constrained discrete-timeMJSs withmixed uncertainties
are considered in this paper:

𝑥
𝑘+1
= 𝐴 (𝑟

𝑘
) 𝑥
𝑘
+ 𝐵 (𝑟

𝑘
) 𝑢
𝑘
,

𝑦
𝑘
= 𝐶 (𝑟

𝑘
) 𝑥
𝑘
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(1)
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𝑘
∈ 𝑅
𝑛
𝑥 , 𝑢
𝑘
∈ 𝑅
𝑛
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𝑘
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𝑛
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state vector, the input vector, and the controlled output vector.
The discrete-time Markov stochastic process {𝑟

𝑘
, 𝑘 ≥ 0} takes
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0
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𝑘
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(2)

Inputs and outputs constraints are subject to

−𝑢lim ≤ 𝑢𝑘 ≤ 𝑢lim , (3)

−𝑦lim ≤ 𝑦𝑘 ≤ 𝑦lim. (4)

The transition probability (TP) matrix is denoted by Π(𝑘) =
{𝜋
𝑖𝑗
(𝑘)}, 𝑖, 𝑗 ∈ Γ, where 𝜋

𝑖𝑗
(𝑘) = 𝑃(𝑟

𝑘+1
= 𝑗 | 𝑟

𝑘
= 𝑖) is

the transition probability from mode 𝑖 at time 𝑘 to mode 𝑗 at

time 𝑘 + 1. The elements in TP matrix satisfy 𝜋
𝑖𝑗
(𝑘) ≥ 0 and

∑
𝜎

𝑗=1
𝜋
𝑖𝑗
(𝑘) = 1:

𝜋 =

[
[
[
[

[

𝜋
11
𝜋
12
. . . 𝜋
1𝜎

𝜋
21
𝜋
22
. . . 𝜋
2𝜎

...
... d

...
𝜋
𝜎1
𝜋
𝜎2
. . . 𝜋
𝜎𝜎

]
]
]
]

]

. (5)

The uncertain transition probability (TP) implies that some
elements in 𝜋 are unknown; a four-mode transition probabil-
ity (TP) matrix 𝜋may be

𝜋 =
[
[
[

[

? 𝜋
12

? ?

𝜋
21
𝜋
22

? ?

𝜋
31

? ? ?

? ? 𝜋
43
?

]
]
]

]

, (6)

where “?” represents the inaccessible element in TP matrix.
For convenience, we denote 𝜋 = 𝜋

𝑘

𝑟
𝑘

+ 𝜋
𝑢𝑘

𝑟
𝑘

, for all mode
𝑟
𝑘
∈ Γ at sampling time 𝑘, if 𝜋𝑘

𝑟
𝑘

̸= 0, and redescribe it as
𝜋
𝑘

𝑟
𝑘

= (𝜅
1

𝑟
𝑘

, . . . , 𝜅
𝜏

𝑟
𝑘

), for all 1 ≤ 𝑙 ≤ 𝜏, where 𝜅𝑙
𝑟
𝑘

represents
the 𝑙th exact element in the 𝑖th row of 𝜋, Π𝑘

𝑟
𝑘

= ∑
𝑗∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

.
Some preliminaries are introduced before proceeding.

Definition 1 (see [6]). For any initial mode 𝑟
0
and state 𝑥

0
,

discrete-time MJS (1) is said to be stochastically stable if

lim
𝑘→∞

𝐸 {𝑥
𝑇

𝑘
𝑥
𝑘
| 𝑥
0
, 𝑟
0
} → 0. (7)

Definition 2. For MJS (1), an ellipsoid set Θ = {𝑥 ∈ 𝑅
𝑛
𝑥 |

𝑥
𝑇

𝑘
𝑃
𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 𝛾
𝑘
} associated with the state is said to be

asymptoticallymode-dependent stable, if the following holds,
whenever 𝑥

𝑘
0

∈ Θ, then 𝑥
𝑘
∈ Θ for 𝑘 ≥ 𝑘

0
and 𝑥

𝑘
→ 0 when

𝑘 → ∞.

Next, we first derive the online optimal MPC algorithm
for system (1). The aim is to minimize the function cost
related to worst-case performance and then in Section 4 the
corresponding simplified MPC algorithm will be derived.
Finally the polyhedron invariant set is applied to further
improve the initial feasible district.

3. Simplified MPC Design

3.1. Online Optimal MPC

Theorem 3. Consider MJS (1) with model uncertainties (2)
and partly unknown TPmatrix (6), at sampling time 𝑘, if there
exist a set of matrices 𝐹

𝑘
(𝑟
𝑘
), such that the following holds:

min
𝐹
𝑘(𝑟𝑘)

max
𝐴
𝜄(𝑟𝑘),𝐵𝜄(𝑟𝑘),𝜋𝑟

𝑘
𝑟
𝑘+1

,𝑟
𝑘
,𝑟
𝑘+1
∈Γ

𝐽
∞
(𝑘) (8)
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s.t.

−𝑢lim ≤ 𝑢𝑘 ≤ 𝑢lim , (9)

−𝑦lim ≤ 𝑦𝑘 ≤ 𝑦lim , (10)

𝐸 {𝑉 (𝑥
𝑘+1
, 𝑟
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0
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0
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𝑘
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0
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𝑘
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𝑘
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T
𝑘
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𝑘
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𝑘
| 𝑥
0
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0
} .

(11)

Then, it decides an upper bound on 𝐽
∞
(𝑘), where 𝑢

𝑘
=

𝐹
𝑘
(𝑟
𝑘
)𝑥
𝑘
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𝑄(𝑟
𝑘
), 𝑅(𝑟
𝑘
) are positive definite weighting matrices.

Proof. It is assumed that at the sampling time 𝑘, a state-
feedback law 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹

𝑘
(𝑟
𝑘
)𝑥(𝑘 + 𝑖 | 𝑘), is applied to

minimize the worst cost function of 𝐽
𝑘
; it is easy to show that

𝑉(𝑥
𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
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∞
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𝑘
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𝑥
𝑇

𝑘
𝑃
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𝑘
)𝑥
𝑘
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𝑘
(𝑟
𝑘
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any [𝐴
𝜄
(𝑟
𝑘
), 𝐵
𝜄
(𝑟
𝑘
) ∈ Ω(𝑟

𝑘
)], the following constraint holds

𝐸 {𝑉 (𝑥
𝑘+1
, 𝑟
𝑘+1
| 𝑥
0
, 𝑟
0
)} − 𝐸 {𝑉 (𝑥

𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
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≤ −𝐸 {𝑥
𝑇
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𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑢
𝑇

𝑘
𝑅 (𝑟
𝑘
) 𝑢
𝑘
| 𝑥
0
, 𝑟
0
} .

(12)

Summing (12) from 𝑖 = 0 to∞ on both sides and using the
fact 𝑥

𝑘→∞
= 0 or 𝑉(𝑥

𝑘→∞
) = 0, we obtain

𝐽
∞
(𝑘) ≤ 𝑉 (𝑥

𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
) = 𝑥
𝑇

𝑘
𝑃
𝑘
(𝑟
𝑘
) 𝑥
𝑘

(13)

which implies that 𝑉(𝑥
𝑘
, 𝑟
𝑘
| 𝑥
0
, 𝑟
0
) is an upper bound on

𝐽
∞
(𝑘).

Theorem 4. Consider MJS (1) with polytope model uncertain-
ties (2) and partly unknown TPmatrix (4), if there exist a set of
positive definitematrices𝑋

𝑘
(𝑟
𝑘
),𝑌
𝑘
(𝑟
𝑘
), such that the following

optimization problem (12) has an optimal solution:

min
𝐹
𝑘(𝑟𝑘)

max
𝐴
𝜄(𝑟𝑘),𝐵𝜄(𝑟𝑘),𝜋𝑟

𝑘
𝑟
𝑘+1

,𝑟
𝑘
,𝑟
𝑘+1
∈Γ

𝛾
𝑘 (14)

s.t.

[
1 ∗

𝑥
𝑘
𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0, ∀𝑟

𝑘
∈ Γ, 𝑟
𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

, (15)

[
𝑍 𝑌
𝑘
(𝑟
𝑘
)

∗ 𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0, 𝑍

𝑡𝑡
≤ (𝑢
𝑡

lim)
2

, (16)

[
𝑋
𝑘
(𝑟
𝑘
) ∗

𝐶 (𝑟
𝑘
) 𝜃
𝑙
(𝑟
𝑘
) 𝑀

] ≥ 0, 𝑀
ℎℎ
≤ (𝑦
ℎ

lim)
2

, (17)

[
𝑋
𝑘
(𝑟
𝑘
) ∗

𝜃
𝑙
(𝑟
𝑘
) 𝑋
𝑘
(𝑟
𝑘+1
)
] ≥ 0, ∀𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘

, (18)

[
[
[

[

Π
𝑘

𝑟
𝑘

𝑋
𝑘
(𝑟
𝑘
) 𝑈

T
(𝑟
𝑘
) 𝑋
𝑘
(𝑟
𝑘
) 𝑄
1/2

(𝑟
𝑘
) 𝑌

T
𝑘
(𝑟
𝑘
) 𝑄
1/2

(𝑟
𝑘
)

∗ 𝑊(𝑟
𝑘+1
) 0 0

∗ ∗ 𝛾
𝑘
𝐼 0

∗ ∗ ∗ 𝛾
𝑘
𝐼

]
]
]

]

≥ 0,

∀𝑟
𝑘+1
∈ 𝜋
𝑘

𝑟
𝑘

(19)

then, the mode-dependent state-feedback which minimizes the
upper bound 𝛾

𝑘
on 𝐽
∞
(𝑘) and simultaneously stabilizes the

closed-loop system within an ellipsoid 𝜀 = {𝑥T
𝑘
𝑋
−1

𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 1}

is calculated by 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹
𝑘
(𝑟
𝑘+𝑖
)𝑥
𝑘+𝑖|𝑘

,𝐹
𝑘
(𝑟
𝑘+𝑖
) =

𝑌
𝑘
(𝑟
𝑘+𝑖
)𝑋
−1

𝑘
(𝑟
𝑘+𝑖
), where 𝑋

𝑘
(𝑟
𝑘
) = 𝛾

𝑘
𝑃
−1

𝑘
(𝑟
𝑘
), 𝜃
𝑙
(𝑟
𝑘
) =

𝐴
𝑙
(𝑟
𝑘
)𝑋
𝑘
(𝑟
𝑘
) + 𝐵

𝑙
(𝑟
𝑘
)𝑌
𝑘
(𝑟
𝑘
),𝑈T

(𝑟
𝑘
) = [√𝜅

1

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
), . . . ,

√𝜅
𝜏

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
)], 𝑊(𝑟

𝑘+1
) = diag{𝑋

𝑘
(𝜅
1

𝑟
𝑘

), 𝑋
𝑘
(𝜅
2

𝑟
𝑘

), . . . , 𝑋
𝑘
(𝜅
𝜏

𝑟
𝑘

)},
𝑍
𝑡𝑡
, 𝑀
ℎℎ
, respectively, describe the 𝑡th, ℎth diagonal element

of 𝑍, 𝑀, 𝑢𝑡lim and 𝑦ℎlim, respectively, describe the 𝑡th and ℎth
element of input and output constraints, 𝑡 = 1, 2, . . . , 𝑛

𝑢
, ℎ =

1, 2, . . . , 𝑛
𝑦
.

Proof. Let 𝑋
𝑘
(𝑟
𝑘
) = 𝛾

𝑘
𝑃
−1

𝑘
(𝑟
𝑘
); 𝐽
∞
(𝑘) ≤ 𝛾

𝑘
in (13) can be

solved by the following LMIs:

[
1 ∗

𝑥
𝑘
𝑋
𝑘
(𝑟
𝑘
)
] ≥ 0,

∀𝑟
𝑘
∈ Γ, 𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

.

(20)

The input/output constraints are guaranteed by (16) and (17);
the proof is similar to [19]; here we omit the proof. Equation
(11) is equivalent to

Ξ (𝑟
𝑘
) = 𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))

× 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0.

(21)

Since ∑
𝑟
𝑘+1
∈𝜋
𝜋
𝑟
𝑘
𝑟
𝑘+1

= 1, 𝜋
𝑟
𝑘
𝑟
𝑘+1

≥ 0, Π𝑟𝑘
𝑘
= ∑
𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

, it
leads to

Ξ (𝑟
𝑘
) = ( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

)𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)

× ( ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
)) 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
)

− 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
)

= Π
𝑘

𝑟
𝑘

𝑃 (𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)

× ( ∑

𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))𝜃
𝑙
(𝑟
𝑘
)

+ ( ∑

𝑟
𝑘+1
∈𝜋
𝑢𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

)

× (𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
) 𝑃
𝑘
(𝑟
𝑘+1
) 𝜃
𝑙
(𝑟
𝑘
))

− 𝑄 (𝑟
𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0.

(22)
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One sufficient condition to ensure (22) is

Π
𝑘

𝑟
𝑘

𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
)( ∑

𝑟
𝑘+1
∈𝜋
𝑘

𝑟
𝑘

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃
𝑘
(𝑟
𝑘+1
))

× 𝜃
𝑙
(𝑟
𝑘
) − 𝑄 (𝑟

𝑘
) − 𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) ≥ 0,

𝑃
𝑘
(𝑟
𝑘
) − 𝜃
𝑇

𝑙
(𝑟
𝑘
) 𝑃
𝑘
(𝑟
𝑘+1
) 𝜃
𝑙
(𝑟
𝑘
) ≥ 0.

(23)

Considering the Schur theory complement lemma, (16) and
(17) can be derived.

Actually the feedback controller can make the closed-
loop system stable in the ellipsoid 𝜀 = {𝑥𝑇

𝑘
𝑋
−1

𝑘
(𝑟
𝑘
)𝑥
𝑘
≤ 1}.

Assume that the optimal 𝑃∗
𝑘
(𝑟
𝑘
), 𝐹∗
𝑘
(𝑟
𝑘
) at the moment 𝑘 are

𝑃
∗

𝑘
(𝑟
𝑘
) = 𝛾
∗

𝑘
(𝑋
∗

𝑘
(𝑟
𝑘
))
−1

,

𝐹
∗

𝑘
(𝑟
𝑘
) = 𝑌
∗

𝑘
(𝑋
∗

𝑘
(𝑟
𝑘
))
−1

,

𝜃
∗

𝑙𝑘
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
) + 𝐵
𝑙
(𝑟
𝑘
) 𝐹
∗

𝑘
(𝑟
𝑘
) ,

𝜗
∗

𝑙𝑘
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
)𝑋
∗

𝑘
(𝑟
𝑘
) + 𝐵
𝑙
(𝑟
𝑘
) 𝑌
∗

𝑘
(𝑟
𝑘
) .

(24)

Equations (18) and (19) lead to

𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
≥ 𝑥
𝑇

𝑘
(𝜃
∗

𝑙𝑘
(𝑟
𝑘
))
𝑇

× ∑

𝑟
𝑘+1
∈𝜋

𝜋
𝑟
𝑘
𝑟
𝑘+1

𝑃 (𝑟
𝑘+1
) 𝜃
∗

𝑙𝑘
(𝑟
𝑘
) 𝑥
𝑘

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
,

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
}

≥ 𝐸 {𝑥
𝑇

𝑘+1
𝑃
∗

𝑘
(𝑟
𝑘+1
) 𝑥
𝑘+1
}

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
.

(25)

𝑃
∗

𝑘+1
(𝑟
𝑘+1
) is the optimal value at moment 𝑘 + 1; 𝑃∗

𝑘
(𝑟
𝑘+1
) is a

feasible one at moment 𝑘 + 1. By the optimum definition,

𝑥
𝑇

𝑘+1
𝑃
∗

𝑘
(𝑟
𝑘+1
) 𝑥
𝑘+1
≥ 𝑥
𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
; (26)

then,

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
}

≥ 𝐸 {𝑥
𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
}

+ 𝑥
𝑇

𝑘
𝑄 (𝑟
𝑘
) 𝑥
𝑘
+ 𝑥
𝑇

𝑘
𝐹
𝑇

𝑘
(𝑟
𝑘
) 𝑅 (𝑟
𝑘
) 𝐹
𝑘
(𝑟
𝑘
) 𝑥
𝑘
.

(27)

It is shown that 𝐸{𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
)𝑥
𝑘
} decrease strictly as

𝐸{𝑥
𝑇

𝑘
Φ
∗

𝑘
(𝑟
𝑘
)𝑥
𝑘
} → 0, 𝑘 → ∞

From Definition 1, the system is stochastically stable.
From (27), then

𝐸 {𝑥
𝑇

𝑘
𝑃
∗

𝑘
(𝑟
𝑘
) 𝑥
𝑘
} ≥ 𝐸 {𝑥

𝑇

𝑘+1
𝑃
∗

𝑘+1
(𝑟
𝑘+1
) 𝑥
𝑘+1
} . (28)

This implies that the ellipsoid is an asymptotically stable
invariant one, which completes the proof.

Corollary 5. Consider MJS (1) with model uncertainties (2)
and TP matrix (4) at current moment 𝑘; supposing that there
exists a set of positive definite matrices 𝑋, 𝑌, such that the
following optimization problem has an optimal solution:

min
𝛾
𝑘
,𝑋,𝑌

𝛾
𝑘 (29)

s.t.

[
1 ∗

𝑥
𝑘
𝑋
] ≥ 0,

∀𝑟
𝑘
∈ Γ, 𝑟

𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘+1

,

[
𝑍 𝑌

∗ 𝑋
] ≥ 0, 𝑍

𝑡𝑡
≤ (𝑢
𝑡

lim)
2

,

[
𝑋 ∗

𝐶 (𝑟
𝑘
) 𝜃
𝑙
(𝑟
𝑘
) 𝑀

] ≥ 0, 𝑀
ℎℎ
≤ (𝑦
ℎ

lim)
2

,

[
𝑋 ∗

𝜃
𝑙
(𝑟
𝑘
) 𝑋

] ≥ 0, ∀𝑟
𝑘+1
∈ 𝜋
𝑢𝑘

𝑟
𝑘

,

[
[
[

[

Π
𝑘

𝑟
𝑘

𝑋 𝑈
T
(𝑟
𝑘
) 𝑋𝑄

1/2

(𝑟
𝑘
) 𝑌

T
𝑄
1/2

(𝑟
𝑘
)

∗ 𝑊 (𝑟
𝑘+1
) 0 0

∗ ∗ 𝛾
𝑘
𝐼 0

∗ ∗ ∗ 𝛾
𝑘
𝐼

]
]
]

]

≥ 0,

∀𝑟
𝑘+1
∈ 𝜋
𝑘

𝑟
𝑘

(30)

then the mode-independent state-feedback law can minimize
the upper bound 𝛾

𝑘
on the objective function 𝐽

∞
(𝑘) and

stabilize the closed-loop system in the ellipsoid 𝜀 = {𝑥T
𝑘
𝑋
−1

𝑥
𝑘
≤

1} and it is obtained by 𝑢(𝑘 + 𝑖 | 𝑘) = 𝐹𝑥
𝑘+𝑖|𝑘

, 𝐹 = 𝑌𝑋−1,
where 𝑋 = 𝛾

𝑘
𝑃
−1, 𝜃
𝑙
(𝑟
𝑘
) = 𝐴

𝑙
(𝑟
𝑘
)𝑋 + 𝐵

𝑙
(𝑟
𝑘
)𝑌, 𝑈T

(𝑟
𝑘
) =

[√𝜅
1

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
), . . . , √𝜅

𝜏

𝑟
𝑘

𝜃
T
𝑙
(𝑟
𝑘
)], 𝑊(𝑟

𝑘+1
) = diag{𝑋,𝑋, . . . , 𝑋},

𝑍
𝑡𝑡
and 𝑀

ℎℎ
, respectively, describe the 𝑡th and ℎth diagonal

element of 𝑍, 𝑀, and 𝑢𝑡lim and 𝑦ℎlim, respectively, describe the
𝑡th and ℎth element of input and output constraints, 𝑡 =

1, 2, . . . , 𝑛
𝑢
, ℎ = 1, 2, . . . , 𝑛

𝑦
.

3.2. Simplified MPC Design. In this section, a simplified
MPC for uncertain MJS (1) is developed based on the online
algorithm in Theorem 4; Figure 1 shows the simplified MPC
schematic diagram. Then the simplified mode-independent
feedback controller is designed regardless of model uncer-
tainty and TP uncertainty since much more constraints will
be nonactive in the neighboring region of origin and this
freedom of feasibility is applied to improve the procedure of
controller design.

Theorem 6. Consider uncertain MJS (1) associated with an
initial state 𝑥

0
satisfying 𝑥𝑇

0
𝑄
−1

0
(𝑟
0
)𝑥
0
≤ 1; the simplified MPC

Algorithm 7 robustly stabilizes the closed-loop system.

Proof. For the 𝑁-step implementation at 𝑥
𝑗
, 𝑗 = 1, . . . , 𝑁,

the selection for 𝑥
𝑗
in Algorithm 7 implies 𝑄−1

𝑗−1
(𝑟
𝑘
) <

𝑄
−1

𝑗
(𝑟
𝑘
), which means the constructed ellipsoid 𝜉

𝑗
= {𝑥 |
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Figure 1: Simplified MPC schematic diagram.

𝑥
𝑇

𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} is embedded in 𝜉

𝑗−1
, that is, 𝜉

𝑗
⊂ 𝜉
𝑗−1

. For a
settled 𝑥, 𝜉

𝑗
= {𝑥 | 𝑥

𝑇

𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} is decreasing monotoni-

cally associated with 𝑗, which guarantees the unique search in
the search table for the largest 𝑗 for 𝜉

𝑗
= {𝑥 | 𝑥

𝑇

𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1}.

If 𝑥
𝑘
belongs to 𝜉

𝑗
= {𝑥 | 𝑥

𝑇

𝑄
−1

𝑗
(𝑟
𝑘
)𝑥 ≤ 1} and 𝜉

𝑗+1
=

{𝑥 | 𝑥
𝑇

𝑄
−1

𝑗+1
(𝑟
𝑘
)𝑥 > 1}, 𝑗 = 1, . . . , 𝑁 − 1, by applying

Theorem 3, the control law 𝑢
𝑘
= 𝐹
𝑗
(𝑟
𝑘
)𝑥
𝑘
will steer the state

in 𝜉
𝑗−1

to 𝜉
𝑗
. Finally, the controller 𝑢

𝑘
= 𝐹
𝑁
𝑥
𝑘
(applying

Corollary 5) make the state to be in 𝜉
𝑁

and converge to
the origin. Furthermore, the LP programming algorithm is
utilized to remove redundant constraints [20] and construct a
sequence of polyhedral invariant set forMJS and thus enlarge
the feasible domain.

Algorithm 7 (simplified MPC applying polyhedral invariant
set). Simplified MPC design is as follows.

(1) Select 𝑥
𝑗
, 𝑗 = 1, . . . , 𝑁, which satisfy 𝜀

𝑗+1
⊂ 𝜀
𝑗
, 𝜀
𝑁
=

𝛿(0).
(2) For step 1 to𝑁−1, calculate the correspondingmode-

dependent gains 𝛾
𝑗
(𝑟
𝑘
), 𝑄
𝑗
(𝑟
𝑘
), 𝑋
𝑗
(𝑟
𝑘
), 𝑌
𝑗
(𝑟
𝑘
), 𝐹
𝑗
(𝑟
𝑘
)

by applying Theorem 4 and store them in a search
table.

(3) For each 𝐹
𝑗
(𝑟
𝑘
), construct the corresponding poly-

hedral invariant set by the following algorithm: let
𝑆
𝑗
(𝑟
𝑘
) = [𝐶

𝑇

(𝑟
𝑘
), −𝐶
𝑇

(𝑟
𝑘
), 𝐹
𝑇

𝑗
(𝑟
𝑘
), −𝐹
𝑇

𝑗
(𝑟
𝑘
)]
𝑇, 𝑑
𝑗
(𝑟
𝑘
)=

[𝑦
𝑇

max(𝑟𝑘), 𝑦
𝑇

min(𝑟𝑘), 𝑢
𝑇

max(𝑟𝑘), 𝑢
𝑇

min(𝑟𝑘)]
𝑇. Select row 𝑚

from (𝑆
𝑗
(𝑟
𝑘
), 𝑑
𝑗
(𝑟
𝑘
)) and then check ∀𝑗 if

𝑆
𝑗,𝑚
(𝑟
𝑘
(𝐴
𝑗
(𝑟
𝑘
) + 𝐵
𝑗
𝐹
𝑗
)(𝑟
𝑘
) ≤ 𝑑

𝑗,𝑚
(𝑟
𝑘
)) is redundant

through solving the Linear programming:

max 𝜌
𝑗,𝑚

s.t. 𝜌
𝑗,𝑚
= 𝑆
𝑗,𝑚
(𝑟
𝑘
) (𝐴
𝑗
(𝑟
𝑘
) + 𝐵
𝑗
𝐹
𝑗
(𝑟
𝑘
)) 𝑥 − 𝑑

𝑗,𝑚
(𝑟
𝑘
)

𝑆
𝑗
(𝑟
𝑘
) 𝑥 ≤ 𝑑

𝑗
(𝑟
𝑘
) .

(31)

If 𝜌
𝑗,𝑚

> 0, it implies that the constraint
𝑆
𝑗,𝑚
(𝑟
𝑘
(𝐴
𝑗
(𝑟
𝑘
) + 𝐵

𝑗
𝐹
𝑗
)(𝑟
𝑘
) ≤ 𝑑

𝑗,𝑚
(𝑟
𝑘
)) is

nonredundant; then renew the nonredundant

Table 1: The partly unknown TP matrix.

1 2 3 4
0.361 ? 0.092 ?
? 0.090 ? 0.248
0.162 0.489 ? ?
? ? 0.251 ?

constraints as 𝑆
𝑗
(𝑟
𝑘
) = [𝑆

𝑇

𝑗
(𝑟
𝑘
), (𝑆
𝑗,𝑚
(𝑟
𝑘
)(𝐴
𝑗
(𝑟
𝑘
) +

𝐵
𝑗
(𝑟
𝑘
)𝐹
𝑗
(𝑟
𝑘
)))
𝑇

]
𝑇, 𝑑
𝑗
(𝑟
𝑘
) = [𝑑

𝑗
(𝑟
𝑘
)
𝑇

, 𝑑
𝑗,𝑚
(𝑟
𝑘
)
𝑇

]
𝑇.

(4) Online implementation: search the state in the search
table to fix the needed index 𝑗(𝑗 < 𝑁), decide
the smallest polyhedral invariant set 𝜒

𝑗
(𝑟
𝑘
) = {𝑥 |

𝑆
𝑗
(𝑟
𝑘
)𝑥 ≤ 𝑑

𝑗
(𝑟
𝑘
)}, and finally implement 𝑢

𝑘
=

𝐹
𝑗
(𝑟
𝑘
)𝑥
𝑘
.

(5) Online implementation: continue to check if 𝑥 ∈

𝜒
𝑁
(𝑟
𝑘
) = {𝑥 | 𝑆

𝑁
(𝑟
𝑘
)𝑥 ≤ 𝑑

𝑁
(𝑟
𝑘
)} is satisfied; if it is

true, then apply 𝑢
𝑘
= 𝐹
𝑁
𝑥
𝑘
.

Remark 8. It should be noted that the more approximation
of optimality can be obtained as 𝑁 increases; here 𝑁 can be
chosen according to different prior requirements. Thus, we
can adjust the numbers of design step in terms of different
requirements.

4. Illustrative Example

Consider the discrete-time MJS with four modes (𝜎 = 4):

𝐴
11
= [

1 0.1

0.01 0.99
] , 𝐵

11
= [

0.1

0.187
] ,

𝐴
12
= [
1 0.1

0 0.05
] , 𝐵

12
= [

0.1

0.187
] ,

𝐴
21
= [

1 0.1

−0.1 0.99
] , 𝐵

21
= [

0.1

0.187
] ,

𝐴
22
= [

1 0.1

0.1 0.05
] , 𝐵

22
= [

0.1

0.187
] ,

𝐴
31
= [

1 0.1

0.2 0.99
] , 𝐵

31
= [

0.1

0.187
] ,

𝐴
32
= [

1 0.1

0.15 0.1
] , 𝐵

32
= [

0.1

0.187
] ,

𝐴
41
= [

1 0.1

0.05 0.5
] , 𝐵

41
= [

0.1

0.187
] ,

𝐴
42
= [

1 0.1

0.05 0.1
] , 𝐵

42
= [

0.1

0.187
] .

(32)

The detailed constraints are 𝑢max = 2 and 𝑦max = 1.5,
initial state 𝑥

0
is [−0.65 1]𝑇, and 𝐶(𝑟

𝑘
) = [

1 0

0 1
] . The

positive definite weighting matrices are 𝑄(𝑟
𝑘
) = [

1 0

0 1
] and

𝑅(𝑟
𝑘
) = 0.00002. The partly unknown TPmatrix is randomly

generated in Table 1.
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Figure 2: Trajectory of system states.

Table 2: 20 times’ average of 30 iterations of system state.

Algorithm 20 times’ average Variance
Online 11.6779 s 0.0069
5-step 0.0055 s 1.3173𝑒 − 006

Here we will show the 5-step example of the proposed
Algorithm 7. Firstly, a state set {𝑥

𝑗
| 𝑥
𝑗
= (0.5, −0.9), (0.4,

−0.8), (0.3, −0.7), (0.2, −0.6), (0.1, −0.5)} is designed to com-
pute the corresponding feedback gains 𝐹

𝑗
(𝑟
𝑘
). It is noted that

the sequence of states 𝑥
𝑗
guarantees that the constructed

polyhedral invariant sets are embedded, that is, 𝑆
𝑗
⊂ 𝑆
𝑗−1

.
In this example, the first four mode-dependent feedback laws
𝐹
𝑗
(𝑟
𝑘
), 𝑗 = 1, . . . , 4 are obtained. When the state goes into

the smallest polyhedral invariant set, the final-step (the fifth-
step) gain 𝐹

5
is designed to steer the state to the origin

regardless of model uncertainty and TP uncertainty.
For each chosen 𝑥

𝑗
in Figure 2, the 5-step ellipsoid

invariant sets (purple solid lines) and 5-step polyhedral
invariant sets (blue and orange alternant dot dash lines) are
illustrated using the numbers 1 to 5. The stabilizable region
of polyhedral invariant set constructed by Algorithm 7 is
dramatically larger than that of ellipsoid invariant set while
the dynamic response of simplified algorithm is comparable
with online algorithm.

The results are computed at the same platform (AMD
2.1 GHz, memory 3.0GB and MATLAB R2010a); the average
time and variances of 30 times’ running of the system are
shown in Table 2. From the table, the burden of computation
is significantly reduced by simplified algorithm.

5. Conclusions

The problem of simplified predictive controller design for
MJS with mixed uncertainties is investigated. The simpli-
fied algorithm drastically reduces the online computational

burden with only a little loss of performance. A numerical
example is provided to illustrate the validity of the results.
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