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The purpose of this paper is to present two iterative schemes based on the relative resolvent and the generalized resolvent,
respectively. And, it is shown that the iterative schemes converge weakly to common solutions for two finite families of maximal
monotone operators in a real smooth and uniformly convex Banach space and one example is demonstrated to explain that some
assumptions in the main results are meaningful, which extend the corresponding works by some authors.

1. Introduction and Preliminaries

Let E be a real Banach space with norm | - | and let E*
denote the dual space of E. We use “— ” and “—” to denote
strong and weak convergence either in E or E*, respectively.
A Banach space E is said to be strictly convex if

Il = |y] = 1, x#y:>||¥|l<1. W)

Also, E is said to be uniformly convex if, for each € € (0,2],
there exists & > 0 such that

+
=l =1 fx-ylze=][Z2] <10 @
A Banach space E is said to be smooth if
L e -

t—0 t

exists for each x, y € {z € E : ||z| = 1} := S(E). In this case,
the norm of E is said to be Gateaux differentiable. The space E
is said to have a uniformly Géateaux differentiable norm if, for
each y € S(E), the limit (3) is attained uniformly for x € S(E).
The norm of E is said to be Fréchet differentiable if, for each
x € S(E), the limit (3) is attained uniformly for y € S(E). The
norm of E is said to be uniformly Fréchet differentiable if the
limit (3) is attained uniformly for x, y € S(E).

The normalized duality mapping J : E — 2F" is defined
by

Jx={f €E (o f) = x> = |f}}, xeE (@

We call that ] is weakly sequentially continuous if {x,} is
a sequence in E which converges weakly to x it follows that
{Jx,} converges in weak” to Jx.

We know the following properties of ] (see [1] for details):

(i) Jx + 0 for each x € E;

(ii) if E is smooth, then ] is single-valued and strictly
monotone;

(iii) if E is strictly convex, then J is one to one; that is,
xty=Jx(]y=0
(iv) if E has a uniformly Gateaux differentiable norm, then

J is norm to weak™ uniformly continuous on each
bounded subset of E;

(v) if E is a smooth and uniformly convex Banach space,
then J™! : E* — Eis also a duality mapping and is
uniformly continuous on each bounded subset of E*.

An operator A ¢ E x E" is said to be monotone if
(X, = %3, 9, — ¥,) = 0,for Vy; € Ax;, i = 1,2. A monotone
operator A is said to be maximal if its graph G(A) = {(x, y) :
y € Ax} is not properly contained in the graph of any other
monotone operator. If A is maximal monotone, then the set
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A7'01s closed and convex: moreover, if E is a real smooth and
uniformly convex Banach space, then G(A) is demiclosed;
that is, V{x,} ¢ D(A), x, — x,(n — o©0),Vy, € Ax,,
Yy, = ¥, (n > 00) = x € D(A),and y € Ax.If E is
reflexive and strictly convex, then a monotone operator A is
maximal if and only if R(J + AA) = E”, for each A > 0 (see [2]
for more details).

A mapping A :D(A) c E — Eissaid to be accretive (c.f.
[B]) if |, — 2, [l < oy — x5 +7(y; — W), for Vix; € D(A), y; €
Ax;, i=1,2,andr > 0. In a Hilbert space H, the m-accretive
mapping is exactly the maximal monotone operator.

The Lyapunov functional ¢ : E x E — R is defined as
follows:

o(xy) = IxI> =2 (. Jy) +|ly|°, VxyeE (5

It is obvious from the definition of Lyapunov functional that

(Il = IyD* < @ (x. 9) < (el + )’ (6)

for each x, y € E.
We have the following well-known result.

Lemma 1 (see [4]). Let E be a real smooth and uniformly
convex Banach space, and let {x,} and {y,} be two sequences in
E. If either {x,} or {y,} is bounded and ¢(x,, y,) — 0, n —
oo, then x, — y, — 0, n — ©0.

Definition 2 (see [5]). Let E be a real smooth and uniformly
convex Banach space and let A ¢ E X E* be a maximal
monotone operator. Then Vr > 0, define Q* : E — E by
Qfx = (J + rA) ' Jx, which is called the relative resolvent.

We have the following property of the relative resolvent.

Lemma 3 (see [5]). Let E be a real reflexive, strictly convex,
and smooth Banach space and let A ¢ E x E* be a maximal
monotone operator such that A”'0#0. Then Vx € E, y €
A0, and r > 0, we have o(y, Qfx) + (p(Qfx, x) < @(y, x).

Definition 4 (see [4]). Let E be areal reflexive, strictly convex,
and smooth Banach space and let C be a nonempty closed
and convex subset of E. Then Vx € E, there exists a unique
element x, € C satisfying ¢(x,, x) = inf{g(z,x) : z € C}. In
this case, Vx € E, define Il : E — Cby Il x = x;, and then
I is called the generalized projection from E onto C.

Lemma 5 (see [4]). Let E be a real reflexive, strictly convex,
and smooth Banach space and let C be a nonempty closed and
convex subset of E. ThenVx € E, Vy € C,

¢ (3, ex) + ¢ (Tlgx, x) < @ (p,x) . )

Lemma 6 (see [4]). Let E be a real smooth Banach space and
let C be a nonempty closed and convex subset of E. Let x € E,
and x, € C. Then ¢(xy, x) = infi{p(z,x) : z € C} if and only
if (z — x¢,Jxy — Jx) = 0,Vz € C.

Let E be a smooth Banach space and let C be a nonempty
closed and convex subset of E. A mapping T : C — Ciis
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said to be generalized nonexpansive (c.f. [5]) if F(T) # 0 and
o(Tx, y) < ¢(x, y), for Vx € Cand y € F(T), where F(T) isa
set of the fixed points of T; that is, F(T) := {x € C: Tx = x}.

Let C be a nonempty, closed subset of E and let Q be a
mapping of E onto C. Then Q is said to be sunny (c.f. [5]) if
Q(Q(x) + t(x = Q(x))) = Q(x), forallx € Eandt > 0. A
mapping Q : E — C is said to be a retraction (c.f. [5]) if
Q(z) = z for every z € C. If E is smooth and strictly convex,
then a sunny generalized nonexpansive retraction of E onto
C is uniquely decided (c.f. [5]). Then, if E is smooth and
strictly convex, a sunny generalized nonexpansive retraction
of E onto C is denoted by R..

A subset C of E is said to be a sunny nonexpansive retract
of E (c.f. [5]) if there exists a sunny nonexpansive retraction
of E onto C and it is called a generalized nonexpansive retract
of E if there exists a generalized nonexpansive retraction of E
onto C.

Definition 7 (see [5]). Let E be a real reflexive, strictly convex,
and smooth Banach space and let B ¢ E* x E be a maximal
monotone operator. Then Vr > 0, define R® : E — E by

Rf x = (I+rBJ) ' x, which is called the generalized resolvent.

Lemma 8 (see [5]). Let E be a real reflexive and strictly
Banach space with a Fréchet differential norm and let B C
E* x E be a maximal monotone operator with B™'0#0.
Then (i) (BJ)™'0 = F(RP); (i) (BJ)™'0 is closed; (iii) R? is
generalized nonexpansive, forr > 0.

Lemma 9 (see [5]). Let E be a real reflexive, smooth, and
strictly Banach space and let B ¢ E* x E be a maximal
monotone operator with B~'0# 0. Then

0] (x, fo) +¢ (fo, u) <o(xu),
(8)
ue (B0,

Yr >0, x € E.

Lemma 10 (see [6]). Let {a,} and {b,} be two sequences of
nonnegative real numbers and a,,, < a, + b, for Vn > 1. If
Yoo b, < +00, then lim, _, a, exists.

Finding zeros of maximal monotone operators is a hot
topic in applied mathematics since it has practical back-
ground. One classical method for studying the problem 0 €
Ax, where A is a maximal monotone operator, is the following
so-called proximal method (c.f. [7]), presented in a Hilbert
space:

.X'O € H, xn+1 = ]::xny n= O: (9)

where J4 := (I + r,A)”". It was shown that the sequence

generated by (9) converges weakly to a point in A0 under
some conditions.

In 2004, Kamimura et al. extended the study on zeros
of maximal monotone operators to the following iterative
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scheme based on the relative resolvent Qf in Banach spaces

(c.f. [8]):

x, €E,

(10)

o =T a5, (1= ) 1, .

And, they showed that {x,} generated by (10) converges
weakly to a point in A™'0, where A ¢ E x E* is a maximal
monotone operator.

In 2007, Ibaraki and Takahashi [9] studied the following
iterative scheme based on the generalized resolvent an in
Banach spaces:

x, €E,

(1)

X1 = 0, + (1 - ay) Rfixn.

And, they showed that {x,} generated by (11) converges
weakly to a point in (BJ)"'0, where B ¢ E* x E is a maximal
monotone operator.

In 2010, Shehu and Ezeora, [10] presented the following

iterative scheme for a family of m-accretive mappings {A;} |
in a real uniformly smooth and uniformly convex Banach
space E:

x, € E,

Yn = (1 - (xn) X (12)

Xn+1 = (l_ﬁn)xn+ﬁnsNyn’ nzl,

where Sy == ayl+a;Jy +aJ,, +- - +ayla, with ], =T+
Ay fori=1,2,...,N.0<a < 1,fork =0,1,2,...,N,
and Z,I(\]:O a, = 1. Then {x,} converges strongly to the common
pointin A;'0, wherei = 1,2,...,N.

Can we extend the study on m-accretive mappings [10]
to maximal monotone operators? Inspired by the work on

(10)-(12), in Section 2, we will present the following iterative
scheme based on the relative resolvent:

x, € E,

U, = ]_1 [(1 _(Xn) ]xn] >
. (4)
Vn = J [(1 - ﬁn) ]xn + ﬁn]Unun] ’

Xn+1 = I_l [Yn]xn + (1 - Yn) ]ann] >

where A, Bj C E x E* are maximal monotone
operators, i = 1,2,...,N,j = 1,2,...,M. Suppose
(Y AT NN B0 #0.U, = J ' ay) + aJQ +
BJQY + -+ ayJQIN], and QY = (J + 7,,A)7T
and r,; > 0,fori = L,2,...,Nandn > 1L W, :=
T + b Qs +b2J Qe Q) 4 +buJ QL Q- Q)
B, Z
and anj’j = (]+sn,ij) 'T and Suj > 05 forj =1,2,...,.M
and n > 1. ag,ay,...,ay; by, by ..., by, are real numbers in

(0,1) with Y'Yy a; = 1and ¥ b, = 1.

nx>1,

In Section 3, we will study the following iterative scheme
based on generalized resolvent:

x, €E,
U, = (1 - (xn) X
Vu = (1 - JBn) X, + ﬂnsnun’

Xpe1 = YnXn + (1 - Yn) Tnvn’

(B)

nx1,

where A;, B i C E* x E are maximal monotone operators,

i = 1,2,...,N,j = 12,...,M. Suppose (ﬂf\:’lAlflO)

NOZ B '0#0.S, = al + R + R + - +
A B B, pB

aNRg,Z’ znd T, B:= bl + blenl,l + bZRsnz,z}isnl,l + oo+

by R RV LR For i = 1,2, N, R = (I +

ruAJ) " For j = 1,2, M, Ry, = (I+ 5,;B,]) " ag.ay,

..»ay and by, by,...,by, are real numbers in (0,1) and
Yoo = LYiab; = 1.r,; > 0, fori = 1,2,...,N, and
Suj > 0, for j=1,2,...,Mandn> 1.

In this paper, some weak convergence theorems are
obtained, which can be regarded as the extension and
complement of the work done in [7-10], and so forth. At
the end of Section 3, one example is demonstrated to show
that the assumption that (Y, A7'0) ﬂ(ﬂ?ﬁl BJ_-IO) #{ in the

discussions of (A) and (B) is meaningful.

2. Weak Convergence Theorems Based on
the Relative Resolvent

Theorem 11. Let E be a real smooth and uniformly convex
Banach space. Let A;,B; ¢ E x E* be maximal monotone
operators, wherei = 1,2,...,N, j=1,2,..., M. Suppose that
both] : E — E*and J™' : E* — E are weakly sequentially
continuous and D = (ﬂfil AZIO)ﬂ(ﬂ?ﬁl BJTIO)#D. Let
{x,} be generated by the iterative scheme (A), where U, :=
T ao] + aJQ + a,JQ + oo+ ay QN ], and Q) =
J + rn),-A,-)_lf, fori = 1,2,...,N,0 < g < 1, for
k=012...N Yloa = LW, =] '[b] +bJQR

B, AB B 9 B B;
bJQ QY + o+ by QU Qe QL ], where Q)

Sn,M-1
J + sn,ij)_lj,forj = 12,...,M,0 < b <1, fork
0,1,2,...,M, Y™ b = 1. Suppose {a,}, {B,}, and {y,} are
three sequences in (0,1) and {r,;}, {sn’j} C (0, +00) satisfying
the following conditions:

“+

(i) ¢, = 0,asn — ©0;

(i) Yooy (1 = y,) < +00;
(iii) liminf, B, > 0and limsup, .y, <L
> 0 and liminf, S > 0, fori =

n— o00°n,j

(iv) liminf, , 7, ;

L,2,...,Nandj=1,2,...,M.

Then {x,,} converges weakly to the unique element v, € D
which satisfies

Vo = nangOHDxn. (13)



Proof. We will split the proof into six steps.

Step 1. {x,} is bounded.
For Vp € D, noticing the definition of the Lyapunov
functional and by using Lemma 3 repeatedly, we have

@ (P> Xni1)
< (0> %) + (1= 1) @ (P, W,1s,)
< (P> %) + (1= 7,)
x [t (pov) + bygp (P, Q2 v,)
+byo (p,QY QY v,)

+”'+bM(p(p’Qs]i:Z4QBM_1 SB;‘I‘IVH)]

<1 (Po%) + (1= 7) 9 (£.7,) (14)
<Y (P> %) + (1= 7,)

< [(1=B,) @ (p>x,) + Bup (P, Uptsy)]
<[1-B,(1-p)]e(px,)

N

+ (1 - yn) ﬁn AP (P’ un) + Zaigo (P’ Q:ii.un)

i=1

< [1 - ﬂn (1 - Yn)] go(p’xn) + (1 - Yn) ﬁn(P (p’ un)
<[1-a,B, (1))@ () + (1= 1) e, Bul ol

Lemma 10 ensures that lim,_, . ,¢(p,x,) exists, which
implies that {x,,} is bounded in view of (6).

Then from iterative scheme (A), {u,} is bounded. Since
o(p,Uu,) < o¢(p,u,), for Vp € D, then {U,u,} is
bounded, which ensures that {v,} is bounded. For Vp €
D, ¢(p, Qfx/lQBM*I anll v,) < @(p,v,), then we know that

Su,M-1

{Qiz,\id QB Qil)l v,.} is bounded.

Sn.M-1

Step 2. w(x,) < D, where w(x,,) is the set of the weak limit
points of all of the weakly convergent subsequences of {x,,}.
Since {x,,} is bounded, then w(x,,) # @. And, there exists a
subsequence of {x,}; for simplicity, we still denote it by {x,}
such that x, — x, n — oo.
For Vp € D, using Lemma 3 again, we have the following:

@ (Ps Xpi1)
< Yu (P> %) + (1= 1) @ (P W,9,,)
< Y (P %) + (1= 1)
X[(bp+b, ++by_1) @ (pvy)
+oe (P QL QN - Q)]
< Yu (P> %) + (1= 7,) (1 = bag) @ (P> v,)
+by (1-7,) 9 (0 Q2 Q2 QP v,)

aM-1 Sn,M-2 Su1
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- bM (1 - Yn)
By 0Bu-1 ... B By-1 0Bu—2 ... 0B )
X (an,M an,M—l an,l V> QSn,M—l Q5»1,M—z Sn1 Vi

< Yu® (p’ xn) + (1 - YH)
x [(1 - lgn)(P(p’ xn) + ﬁn¢ (p’ Unun)] - bM(l - Yn)

o QR QB Q2 Q02 )
<[1-aB, (1= 1)) 0 () + (1= ) ol

= by (1-7,)

By By B Byt B B
<@ QU Q! Qo v QO QO+ Q0L W)

n,M—1 SiM-1 ~Sn,M-2

(15)
Then (15) implies that
bM (1 - Y”) 4 (Qil\;\[/lQiAj;l o Qill Vno Qiﬂﬁleiﬂ;—zz o Qill v”)
< [1 - anﬁn (1 - Vn)] (P(p’xn)
+ (1 - Yn) ‘xnﬂn”P”z - (p’ 'xn+1) .
(16)

. . . Byt Byt B .
Since lim,, , . @(p, x,,) exists and {anﬂjw anﬂj/l lesnl,lvn} is

bounded, then, using Lemma 1, we know that

B By B By By
anj,\LQle "'len_QleQst

n,M-1 Sn,1 nM-1 - Sn,M-2

QP 0, (1)
asn — 00. Revise (14) in the following way:

@ (P> Xpe1)
<Y (P> %) + (1= ) @ (P W,v,,)
<Y (P> %) + (1= 7,)
X [(by + by + -+ by, +by) @ (psv,)
+by19 (p QP QP2 QM v, )]

nM-1  Sn,M-2

< Yuf (p’xn) + (1 - Yn) (1 - bM*l)(P(p’Vn)

Bys ~Bar B
+by (L-1) 9 (P Q2 Q1M - Q7 v,)
= by (1 - Yn)
Bry ~Bar B By s ~Bar B,
X (an),\;/r—llenI,\;\r/r—zz o anl,1 Vi anl,\;\[/l—zz anj,\;\[/rjs o an,l V”) :
(18)

Then repeating the above process, we have

By By
QSMIQSMZ

. 0OB _Bu2 nBus .. 0B
n,M-1 n,M—-2 an,l Vn QS QS an,l Vn - 0,

n,M-2 n,M-3
(19)
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asn — 00. Similarly, we have

By-2 Bm-s . Byv-s Bu-s .. 0B
QnM zQ Sn,M-3 QS ARRC Q5 n,M— 3QnM 4 an,lvn — 0,
Br-s Bum-a . Byv-s Bu-s ... B
QnM 3Q Sn,M~4 QS SRR Qs 1, M~ 4Q Sn,M-5 an,lvn - 0’

Qf‘lvn -v, — 0.
(20)

On the other hand, noticing (14) and using Lemma 3, we
have

(P (P’ xn+l)

< [1 - ﬁn (1 - Yn)] (P(p’ xn)

+ (1 - Yn) ﬁn |:“0§0 (P’ un) + Zai(P (P’ Qzlun):|

i=1

< [1 - ﬁn (1 - Yn)] (P(p’xn) + (1 - YH)

ﬁn {%‘P (p’ un) + Zai [(P (p’ un) -9 (Q::i.un’ un)] }

< [1-0,B,(1=p)] @ (p.x,) + (1 =) Bl
- (1 - Yn) ﬁnzai(/) (Qéfiun’un) .
: 1)

Similar to the discussion of (20), we have
Q::lz Uy

asn — 00,i=1,2,...,N.

Since both J and J ' are weakly sequentially continuous,
Ju, = (1 -«a, )]xn,andx — x, thenu, — x,asn — oo.
Now, (22) implies that Q ‘u, — x. Ifwesetz,; = Q Uy

-u, — 0, (22)

then from (22) and the fact that J is uniformly norm to norm
continuous on each bounded subset of E, we have Az, ; =
(Ju, - Jz,)[r,; — 0,asn — oo, fori = 1,2,...,N. Since
G(A)) is demiclosed, then x € ﬂlNl ATIO.

Now, from Q
JUu, — Jx, Wthh implies that v, — x,asn — 00, since
Jv, = (1= B,)]x,+ B,JU,u,. Thus (20) implies that Q7" v, —
x. In the same way as the proof of x € A;'0, we have x € B;0.

From the fact that QB1 v,

u, — x, we have U,u, — x, and then

— x and (20), we have

QEZZQEIIV — x, and QB2 'V, - Blv — 0,asn —
n, n,

B
00. Then, if we set w,,, = anzzanlan Q w,,;, we have
Byw,, = (Jw,, - Jw,,)/s,, — 0, Wthh ensures that

x € B,'0. By induction, using (20) repeatedly, we know that
x € ()2, Bj0.
Therefore, x € D, and then w(x,,) ¢ D.

5
Step 3. There exists a unique element v, € D such that
lim ¢ (vy, x,) = min lim ¢ (y,x,). (23)

yeDn—00

In fact, let h(y) = lim,, @(y,x,), Vy € D. Then h :
D — R" is proper, convex, and lower-semicontinuous and
h(y) — 400, as ||yl = +o0o. Thus there exists v, € D such
that h(vy) = min ph(y). Since h is strictly convex, then v, is
unique.

Step 4. lim,, _, . ¢(Ilpx,,, x,,) exists.

From the definition of IIj,, we have ¢(ITpx,, 1, X,,;) <
(P(HDxn’ Xn+1 )

Using (14), we have

'xn+1) < [1 - (Xnﬁn (1 - Yn)] ¢ (HDxn’xn)
+(1=y,) Bl (24)

< o (TIpx,, x,) + ‘Xnﬁn"PHZ'

¢ (HDxn’

(1 - Yn)
Thus

¢ (HD'xn+1"xn+l) < ¢ (HDxn’xn) + (1 - Yn) (xnﬁn”pllz' (25)

Then Lemma 10 ensures that lim,, , . @(Il5x,, x,,) exists.

Step 5. lim,, ,  IIpx, = v,, where v, is the same as that in
Step 3.

From Lemma 5, we have ¢(vy,IIpx,) < ¢y, x,) —
o(IIpx,, x,). Thus
lim supg (v,, px,) < Jim ¢ (vo x,)
- lim ¢ (Ipx,, x,,) (26)

n— o0

=h (VO)_nli_{réo(P (HDxn’ xn)S 0

Therefore, Lemma 1 implies that IIpx, — vy, asn —
0.

Step 6. x,, — v, where v, is the same as that in Step 3.
From Lemma 6, we know that,

Vy € D,{llpx, — ¥, JTIpx, — Jx,) < 0. (27)
Since ] is weakly sequentially continuous, then from Step 5,
we have JTIpx, — Jvy,, asn — oo.

Since {x,} is bounded, then there exists a subsequence
{xnj} of {x,} such that Xy, = X a8 j — oo. From Step 2,
X, € D. And, Jxn, — Jxg.as j — oo. Substituting {x,} by
{xnj} in (27) and taking limits on both sides, we have

Vy € D, (v

— v, Jvy— Jx,) <O0. (28)

Letting y = x,, in (28), then (v, —x,, Jv,—Jx,) < 0, which
implies that x,, = v,, since ] is strictly monotone.

Suppose there exists another subsequence {x,,} of {x,}
such that x,, — x;,as/ — co.Thenx; € Dand Jx, — Jxi,



as | — +00. Repeating the above process, we know that
x, = v,. Therefore, all of the weakly convergent subsequences
of {x,} converge weakly to the same element v,, and then
x, — v, which satisfies (13),asn — oo.

This completes the proof. O

If, in Theorem 11, the Banach space E reduces to the
Hilbert space H, then we have the following theorem.

Theorem 12. Let H be a Hilbert space and let D be the
same as that in Theorem 11. Let Ai,Bj c H x H be m-
accretive mappings, where i = 1,2,...,N; j = 1,2,..., M.
Let {a,}>2, and {b,},2, be the same as those in Theorem 11. Let
{a,}, 1B} {y.} ¢ (0,1) and {ruib{snt € (0,+00) satisfy

some conditions presented in Theorem 11.
Let {x,} be generated by the following scheme:
x, € H,
ty = (1= ;) x,
vy = (1= B,) X+ BuUthy

Xp1 = YnXn + (1 - Yn) ann’

©

nx1,

whereU,, = g,I +a, (I+rn,1A1)_1 +- -+al\,(I+rnJ\,AI\,)_1 and
W, = byl +b,(I+5,,B)" +b,(I +5,,B,)" (I +5,,B)" +
cootby (48, 0Bar) " T +8, 001 Bagoy) ' -+ (I+s,,B;) " Then
{x,} converges weakly to the unique element p, € D, where
P = lim Ppyx, and P is the metric projection from H
onto D.

n— 00

Remark 13. Compared to the work in [10], we may find that
Theorem 11 is not a simple extension from the case of m-
accretive mappings to maximal monotone operators. In (A),
different A; and B j have different coeflicients while in (12),
different A; have the same coefficients.

3. Weak Convergence Theorems Based on
the Generalized Resolvent

Theorem 14. Let E be a real smooth and uniformly convex
Banach space. Let A;B; ¢ E* x E be maximal monotone
operators, wherei = 1,2,...,N, j=1,2,..., M. Suppose that
both] : E — E*and J™' : E* — E are weakly sequentially
continuous and D = (ﬂfil A;IO) ﬂ(ﬂ;\il B;.IO) #0. Let {x,}
be generated by the iterative scheme (B), where S, := a,I +
alRél1 + azRﬁ:i et aNR::’;, and R::"i =+ rn,iAi])fl,for

i=1,2...,N,0<a<1fork=012...,N, Yo a =

B B, pB By B B

1. W, = bol+b1Rsnf1 +b2Ran’2Rsnl)l +-- -+bMR5n{‘;ARsnfflel "'Rsnl,l’
B: -1 .

where R: = (I +5,;B;]), for j = 1,2,...,M, 0 < b <1,

fork=0,1,2,...,M, Y2 b, = 1. Suppose {a, },{B,}, and {y,}
are three sequences in (0,1) and {r, ;}, {sn,j} C (0, +00) satisfy
the following conditions:

(i), = 0,asn — 00;
(ii) Zzil (xnﬂn(l - Vn) < +00;
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(ii) liminf, _, B, > Olimsup, _, .y, < L;

> 0 and liminf, s

n— 00 °n,j

(iv) liminf T

n— 00" n,i

1,2,...,Nand j=1,2,..., M.

> 0, fori =

Then {x,} converges weakly to the unique element v, € D,
where

D=

A a]n|Aess]. e

j=1
Proof. We will split the proof into four steps.

Step 1. D #0.

Since 5#0, then we may choose p € 5, which implies
that p € Aj'0and p € B;'0, fori = 1,2,...,N; j =
1,2,...,M.Thus 0 € A;p = AJ] 'pand0 € Bjp =
B;JJ 'p, fori = 1,2,...,N; j = 1,2,...,M. And then
J'pe(A) " 0and J p € (B;) M0, fori=1,2,...,N; j=
1,2,..., M. Therefore, ] ' p € D which implies that D # 0.

Step 2. {x,,} is bounded.
For Vp € D, noticing the definition of the Lyapunov
functional and by using Lemma 9 repeatedly, we have

@ (%115 P)
< Yu® (%0 P) + (1 =) @ (T P)
< Yu (%0 P) + (1= 7,)
x [bogo (v p) + by (Ri{lvn,p) + by (Rs‘iszil,l Vo p)

+o+ bye (RBM RBvr -Rf:,l Vs p)]

< Yu® (%0 P) + (1= 7) @ (v, )
< Yu (%0 P) + (1= 7,)

< [(1=Ba) @ (x P) + Bup (Suttys P)]
<[1-B,(1-y)] e (x0p)

N
+ (1 - YH) /371 AP (un’ p) + ZdiQD (Réiun’ p)
i1

< [1 _ﬁn(l _yn)] ¢(xn’p) + (1 _Vn) /3n(P (un’p)

< [1 - (xnﬁn (1 - Yn)] ¢ (xn’p) + (1 - yn) ‘Xnﬁn"puz'
(30)

Lemma 10 ensures thatlim,, _, . ¢(x,,, p) exists, which ensures
that {x,} is bounded.

Step 3. w(x,) c D, where w(x,) is the set of weak limit points
of all of the weakly convergent subsequences of {x,,}.

Since {x,} is bounded, then w(x,)# 0. So there exists a
subsequence of {x,}; for simplicity, we still denote it by {x,}
such that x, — x, n — oo.
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Using Lemma 9 again, we have for Vp € D

( n+1’ )

<Yn(P(xn’p) (I_Yn)(P( n n’p)

< Vu® (xn’p) + (1 - Yn)

X [(by + b+ + by1) @ (v, )
+bM§D (Rfl\fvaij\;\lAll o Rillv”’p)]

(1-y,)(1 _bM)q)(Vn’P)

+ by (1= y,) @ (RO RO

SuM-1" SuM-2

< Y9 (%, p) +
R} v,, p)
- bM (1 - yn)

X ¢ (RBM—I RBMfz X

B B B B
Rlv R™R™! ...R'v
SuM-1" SnM—2

S SmM-1 Sul n)
= Ve (xn’p) + (1 - Yn)
X [(1 - ﬁn)q)(xn’ p) + ﬂn(P (Snun’p)]

B B
X (R M-1 ROM-2
q) SaM-1" SnM-2

[1 - ‘xn/jn (1 - Vn)] (P(p’xn)
+(L=p) @by ol

X GD(RBM_l RBu-2 ...RB1 Vs RBu RBM 1L RBy

SuM-1" Sn,M-2 SuM~ SnM-1 Sn,1 ")

(31)

_bM(1 _YH)

SR v RO R
SmM~ Sn,M-1

Bl
' Rsn,l Vn)

IN

_bM(1 _Vn)

Then (31) implies that

SR v, R R RD v, )

SuM~ SpM-1 Sn,1

b (1= ) @ (R R2:2 -
< [1 _(xnﬁn (1 - YW)] (P(xn’p)

+ (1= 1) @Bl = 9 (1 p) -

(32)

Similar to the discussion of (17) in Step 2 in Theorem 11,
we have

B B B B B B
RO R o RY y, — R Rz L RD y 0, (33)
SuM SnM-1 SmM-1" SpM-2
asn — O©O.

Then, similar to the discussions of (19) and (20), we have

By RBM—z RBI RBM—Z RBM—S RBI

e — .. N
SuM-1" SnM-2 Sn1 Vn SuM-2" SnM-3 Sn1 Vn 0,
By RBM—3 RBI B3 pBy-a B,

e v, — R R Ry, — 0
SaM-2" SpM-3 Spa 1 SnM-3" SnM-4 Sp1 1 >

(34)
B
R'v, —v, — 0.

Sp1 1 n

On the other hand, noticing (30) and using Lemma 9, we
have

¢ (xn+1’ P)

< [1 - ﬁn (1 - Yn)] (P(xn’p)
+ (1 - Vn) /3n [a0¢ (un’p) + Zai(P (R;:;un’ p):|

< [1 _ﬁn(l _YH)](P(xn’p)-" (1 _Yrt)

x ﬁn {aO(P (un’ P) + Zai [(P (un’ P) 4 (un’Rziun)] }

2
< [1 - (XmBn (1 - Vn)] ¢ (p’xn) + (1 - yn) anﬁn”p”
S A
- (1 - Vn) ﬁnzaiq) (un’ ani-un) >
i=1
(35)
which implies that
Rf:"iun -u, — 0, (36)
asn — 00,i=1,2,...,N.
Since u, = (1 - ,)x, and u,, — x, then u,, — x, as

n — 00. Now, (36) implies that R;‘:fiun — x.Letz] € Az,
then ,

e - JR > > 0. (37)

u, —RA
P
i
rn,i

Since ] is weakly sequentially continuous, then, letting n —
00, (37) ensures that

(z],2z; - Jx) > 0. (38)

Since A; is maximal monotone, then Jx € AITIO, which
implies that x € (Y, (A;]) 0.
From R U, — X, we have S,u, X, as n —
. Since v, = (1 - B,)x, + B,S,u,, then v, X, as
n — 00. Using (34), we have Ri‘)lvn — X, RfZZRfllv —

X, RBM RBM_

Bl
N Rsn,1 v, — X,asn — 00. By induction,

similar to the proof of x € (A,])™'0, we know that x €
N (B0,
Therefore, x € D, and then w(x,,) ¢ D.

Step 4. x,, — vy, asn — 00, where v, is the unique element
in D.

From Steps 2 and 3, we know that there exists a subse-
quence {x, } of {x,} such that x, — v, € D,asi — oo.



If there exists another subsequence {xnj} of {x,} such that

Xy, = V) € D,as j — 00, then from Step 1, we know that

Jim [9 (x5 v0) = 9 (%, v1)]

lim [(p (x,,i, Vo) -9 (x,,i, Vl)]

i— 00 2 2 (39)
= 111}1(}0 [”1}0" - ||V1|| +2 <xn,->]"1 - ]V0>]
= ”"0"2 - ”"1"2 +2 (v, Jvy = Jvp) -
Similarly,
nh—»ngo [@ (2, v9) = 9 (5, 11)]
= i, [ (%) = 9 (1)
(40)

Jim [l = [l +2 (v, = T ) |

Ivol* =il + 2 (vis Jvy = o)

From (39) and (40), we have (v, —v,, Jv, —Jv,) = 0, which
implies that v, = v,.
This completes the proof. O

Remark 15. 1f, in Theorem 14, the Banach space E reduces
to the Hilbert space H, then the result of Theorem 12 is still
true. That is, Theorems 14 and 11 are the same in the frame of
Hilbert spaces.

Remark 16. Next, we will present an example to show that
the assumptions that D#0 in Theorem1l and D#0 in
Theorem 14 are meaningful.

Consider the following p;-Laplacian Dirichlet boundary
value problem:

- div(qulP"_ZVu) =f(x), ae xecQ
(D)
yvwu=w, ae x€I,

where Q) is a bounded conical domain of the Euclidean
space RN (N > 1) with its boundary I' € C', 2N/(N +
1) < p < +00, f € W'Pi(Q), and w € W'VPP(T)
are given functions, where W=1/PoPi(T) is the trace space of
WEP(Q), v : WHPI(Q) — WIVPeP(T) is the trace operator,
i=1,2,...,M.

Similar to the discussion in [11], we have the following
results.

Proposition 17 (see [11]). Define the mapping C,
WH(Q) — (WHP(Q))" by

(v, Cp,.”) = J <|Vu|pi—2Vu, Vv> dx - J fvdx, (41)
Q Q
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for Yu,v € W"Pi(Q). Define the mapping B, : WhP(Q) —
WHP(Q))" by

(v, Bp,-“) = JQ <|Vu|p"_2Vu, Vv> dx, (42)

for Yu,v € WHPi(Q).
Then both B, and C,, are maximal monotone, for eachi =
1,2,...,M.

Proposition 18 (see [11]). For f € WYP(Q) and w €
W'VPePi(T), nonlinear boundary problem (D) has a unique
solution u(x) € W"Pi(Q), for eachi = 1,2,..., M. Moreover,
u(x) € C;}(O) if and only if u(x) is the solution of (D), which
ensures that C;_l (0) #0, foreachi=1,2,..., M.

We can easily get the following result.

Proposition 19. B‘;x_l 0) = {u(x) € WhP(Q) : u(x) =
Constant}, for each i = 1,2,...,M, which ensures that
ﬂf\fl B;il(O) +0. And, ﬂf\fl C;il (0) # @, which means the follow-
ing nonlinear (py, pys---> pPp)-Laplacian elliptic systems (E)
with Dirichlet boundary share the same solution:

—diV(|Vu|p‘72Vu) =f(x), ae xeQ;
—div(|Vu|P2_2Vu) =f(x), ae xeQ
(E)

—div(qu|PM—2Vu) =f(x), ae xe€Q

yvwu=w, ae xe€I.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This paper is supported by the National Natural Science
Foundation of China (no. 11071053), the Natural Science
Foundation of Hebei Province (no. A2014207010), the Key
Project of Science and Research of Hebei Educational Depart-
ment (ZH2012080), and the Key Project of Science and
Research of Hebei University of Economics and Business
(2013KYZ01).

References

[1] W. Takahashi, Nonlinear Functional Analysis, Fixed Point Theory
and Its Application, Yokohama Publishers, Yokohama, Japan,
2000.

[2] R. T. Rockafellar, “On the maximality of sums of nonlinear
monotone operators,” Transactions of the American Mathemat-
ical Society, vol. 149, pp. 75-88, 1970.

[3] V. Barbu, Nonlinear Semigroups and Differential Equations in
Banach Space, Noordhoff, Leyden, Mass, USA, 1976.



Abstract and Applied Analysis

[4] S. Kamimura and W. Takahashi, “Strong convergence of a

[5

(10

J

proximal-type algorithm in a Banach space,” SIAM Journal on
Optimization, vol. 13, no. 3, pp- 938-945, 2003.

W. Takahashi, “Proximal point algorithms and four resolvents
of nonlinear operators of monotone type in Banach spaces,
Taiwanese Journal of Mathematics, vol. 12, no. 8, pp. 1883-1910,
2008.

M. O. Osilike, “Tterative solution of nonlinear equations of the
®-strongly accretive type,” Journal of Mathematical Analysis and
Applications, vol. 200, no. 2, pp. 259-271, 1996.

R. T. Rockafellar, “Monotone operators and the proximal point
algorithm,” SIAM Journal on Control and Optimization, vol. 14,
no. 5, pp. 877-898, 1976.

S. Kamimura, E Kohsaka, and W. Takahashi, “Weak and strong
convergence theorems for maximal monotone operators in a
Banach space,” Set-Valued Analysis, vol. 12, no. 4, pp. 417-429,
2004.

T. Ibaraki and W. Takahashi, “Weak and strong convergence
theorems for new resolvents of maximal monotone operators

in Banach spaces;” in Advances in Mathematical Economics,
Volume 10, pp. 51-64, Springer, 2007.

Y. Shehu and J. N. Ezeora, “Path convergence and approxi-
mation of common zeroes of a finite family of m-accretive
mappings in Banach spaces,” Abstract and Applied Analysis, vol.
2010, Article ID 285376, 14 pages, 2010.

L. Wei, R. P. Agarwal, and P. J. Y. Wong, “Existence and iterative
construction of solutions to non-linear Dirichlet boundary
value problems with p-Laplacian operator,” Complex Variables
and Elliptic Equations, vol. 55, no. 5-6, pp. 601-608, 2010.



