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The purpose of this paper is to present two iterative schemes based on the relative resolvent and the generalized resolvent,
respectively. And, it is shown that the iterative schemes converge weakly to common solutions for two finite families of maximal
monotone operators in a real smooth and uniformly convex Banach space and one example is demonstrated to explain that some
assumptions in the main results are meaningful, which extend the corresponding works by some authors.

1. Introduction and Preliminaries

Let 𝐸 be a real Banach space with norm ‖ ⋅ ‖ and let 𝐸
∗

denote the dual space of 𝐸. We use “→ ” and “⇀” to denote
strong and weak convergence either in 𝐸 or 𝐸∗, respectively.
A Banach space 𝐸 is said to be strictly convex if

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 = 1, 𝑥 ̸= 𝑦 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
< 1. (1)

Also, 𝐸 is said to be uniformly convex if, for each 𝜀 ∈ (0, 2],
there exists 𝛿 > 0 such that

‖𝑥‖ =
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩 = 1,
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 ≥ 𝜀 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 + 𝑦

2

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
≤ 1 − 𝛿. (2)

A Banach space 𝐸 is said to be smooth if

lim
𝑡→0

󵄩󵄩󵄩󵄩𝑥 + 𝑡𝑦
󵄩󵄩󵄩󵄩 − ‖𝑥‖

𝑡

(3)

exists for each 𝑥, 𝑦 ∈ {𝑧 ∈ 𝐸 : ‖𝑧‖ = 1} := 𝑆(𝐸). In this case,
the norm of𝐸 is said to be Gâteaux differentiable.The space𝐸
is said to have a uniformly Gâteaux differentiable norm if, for
each 𝑦 ∈ 𝑆(𝐸), the limit (3) is attained uniformly for 𝑥 ∈ 𝑆(𝐸).
The norm of 𝐸 is said to be Frêchet differentiable if, for each
𝑥 ∈ 𝑆(𝐸), the limit (3) is attained uniformly for 𝑦 ∈ 𝑆(𝐸). The
norm of 𝐸 is said to be uniformly Frêchet differentiable if the
limit (3) is attained uniformly for 𝑥, 𝑦 ∈ 𝑆(𝐸).

The normalized duality mapping 𝐽 : 𝐸 → 2
𝐸
∗

is defined
by

𝐽𝑥 := {𝑓 ∈ 𝐸
∗

: ⟨𝑥, 𝑓⟩ = ‖𝑥‖
2

=
󵄩󵄩󵄩󵄩𝑓

󵄩󵄩󵄩󵄩

2

} , 𝑥 ∈ 𝐸. (4)

We call that 𝐽 is weakly sequentially continuous if {𝑥
𝑛
} is

a sequence in 𝐸 which converges weakly to 𝑥 it follows that
{𝐽𝑥
𝑛
} converges in weak∗ to 𝐽𝑥.
We know the following properties of 𝐽 (see [1] for details):

(i) 𝐽𝑥 ̸= 0 for each 𝑥 ∈ 𝐸;
(ii) if 𝐸 is smooth, then 𝐽 is single-valued and strictly

monotone;
(iii) if 𝐸 is strictly convex, then 𝐽 is one to one; that is,

𝑥 ̸= 𝑦 ⇒ 𝐽𝑥⋂𝐽𝑦 = 0;
(iv) if𝐸has a uniformlyGâteaux differentiable norm, then

𝐽 is norm to weak∗ uniformly continuous on each
bounded subset of 𝐸;

(v) if 𝐸 is a smooth and uniformly convex Banach space,
then 𝐽

−1

: 𝐸
∗

→ 𝐸 is also a duality mapping and is
uniformly continuous on each bounded subset of 𝐸∗.

An operator 𝐴 ⊂ 𝐸 × 𝐸
∗ is said to be monotone if

⟨𝑥
1
− 𝑥
2
, 𝑦
1
− 𝑦
2
⟩ ≥ 0, for ∀𝑦

𝑖
∈ 𝐴𝑥
𝑖
, 𝑖 = 1, 2. A monotone

operator 𝐴 is said to be maximal if its graph 𝐺(𝐴) = {(𝑥, 𝑦) :

𝑦 ∈ 𝐴𝑥} is not properly contained in the graph of any other
monotone operator. If 𝐴 is maximal monotone, then the set
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𝐴
−1

0 is closed and convex: moreover, if𝐸 is a real smooth and
uniformly convex Banach space, then 𝐺(𝐴) is demiclosed;
that is, ∀{𝑥

𝑛
} ⊂ 𝐷(𝐴), 𝑥

𝑛
⇀ 𝑥, (𝑛 → ∞), ∀𝑦

𝑛
∈ 𝐴𝑥

𝑛
,

𝑦
𝑛

→ 𝑦, (𝑛 → ∞) ⇒ 𝑥 ∈ 𝐷(𝐴), and 𝑦 ∈ 𝐴𝑥. If 𝐸 is
reflexive and strictly convex, then a monotone operator 𝐴 is
maximal if and only if 𝑅(𝐽+𝜆𝐴) = 𝐸

∗, for each 𝜆 > 0 (see [2]
for more details).

Amapping𝐴 : 𝐷(𝐴) ⊂ 𝐸 → 𝐸 is said to be accretive (c.f.
[3]) if ‖𝑥

1
−𝑥
2
‖ ≤ ‖𝑥

1
−𝑥
2
+ 𝑟(𝑦
1
−𝑦
2
)‖, for ∀𝑥

𝑖
∈ 𝐷(𝐴), 𝑦

𝑖
∈

𝐴𝑥
𝑖
, 𝑖 = 1, 2, and 𝑟 > 0. In a Hilbert space𝐻, the𝑚-accretive

mapping is exactly the maximal monotone operator.
The Lyapunov functional 𝜑 : 𝐸 × 𝐸 → 𝑅

+ is defined as
follows:

𝜑 (𝑥, 𝑦) = ‖𝑥‖
2

− 2 ⟨𝑥, 𝐽𝑦⟩ +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩

2

, ∀𝑥, 𝑦 ∈ 𝐸. (5)

It is obvious from the definition of Lyapunov functional that

(‖𝑥‖ −
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)
2

≤ 𝜑 (𝑥, 𝑦) ≤ (‖𝑥‖ +
󵄩󵄩󵄩󵄩𝑦

󵄩󵄩󵄩󵄩)
2

, (6)

for each 𝑥, 𝑦 ∈ 𝐸.
We have the following well-known result.

Lemma 1 (see [4]). Let 𝐸 be a real smooth and uniformly
convex Banach space, and let {𝑥

𝑛
} and {𝑦

𝑛
} be two sequences in

𝐸. If either {𝑥
𝑛
} or {𝑦

𝑛
} is bounded and 𝜑(𝑥

𝑛
, 𝑦
𝑛
) → 0, 𝑛 →

∞, then 𝑥
𝑛
− 𝑦
𝑛

→ 0, 𝑛 → ∞.

Definition 2 (see [5]). Let 𝐸 be a real smooth and uniformly
convex Banach space and let 𝐴 ⊂ 𝐸 × 𝐸

∗ be a maximal
monotone operator. Then ∀𝑟 > 0, define 𝑄

𝐴

𝑟
: 𝐸 → 𝐸 by

𝑄
𝐴

𝑟
𝑥 = (𝐽 + 𝑟𝐴)

−1

𝐽𝑥, which is called the relative resolvent.

We have the following property of the relative resolvent.

Lemma 3 (see [5]). Let 𝐸 be a real reflexive, strictly convex,
and smooth Banach space and let 𝐴 ⊂ 𝐸 × 𝐸

∗ be a maximal
monotone operator such that 𝐴

−1

0 ̸= 0. Then ∀𝑥 ∈ 𝐸, 𝑦 ∈

𝐴
−1

0, and 𝑟 > 0, we have 𝜑(𝑦, 𝑄𝐴
𝑟
𝑥) + 𝜑(𝑄

𝐴

𝑟
𝑥, 𝑥) ≤ 𝜑(𝑦, 𝑥).

Definition 4 (see [4]). Let𝐸 be a real reflexive, strictly convex,
and smooth Banach space and let 𝐶 be a nonempty closed
and convex subset of 𝐸. Then ∀𝑥 ∈ 𝐸, there exists a unique
element 𝑥

0
∈ 𝐶 satisfying 𝜑(𝑥

0
, 𝑥) = inf{𝜑(𝑧, 𝑥) : 𝑧 ∈ 𝐶}. In

this case, ∀𝑥 ∈ 𝐸, defineΠ
𝐶
: 𝐸 → 𝐶 byΠ

𝐶
𝑥 = 𝑥

0
, and then

Π
𝐶
is called the generalized projection from 𝐸 onto 𝐶.

Lemma 5 (see [4]). Let 𝐸 be a real reflexive, strictly convex,
and smooth Banach space and let 𝐶 be a nonempty closed and
convex subset of 𝐸. Then ∀𝑥 ∈ 𝐸, ∀𝑦 ∈ 𝐶,

𝜑 (𝑦,Π
𝐶
𝑥) + 𝜑 (Π

𝐶
𝑥, 𝑥) ≤ 𝜑 (𝑦, 𝑥) . (7)

Lemma 6 (see [4]). Let 𝐸 be a real smooth Banach space and
let 𝐶 be a nonempty closed and convex subset of 𝐸. Let 𝑥 ∈ 𝐸,
and 𝑥

0
∈ 𝐶. Then 𝜑(𝑥

0
, 𝑥) = 𝑖𝑛𝑓{𝜑(𝑧, 𝑥) : 𝑧 ∈ 𝐶} if and only

if ⟨𝑧 − 𝑥
0
, 𝐽𝑥
0
− 𝐽𝑥⟩ ≥ 0, ∀𝑧 ∈ 𝐶.

Let 𝐸 be a smooth Banach space and let 𝐶 be a nonempty
closed and convex subset of 𝐸. A mapping 𝑇 : 𝐶 → 𝐶 is

said to be generalized nonexpansive (c.f. [5]) if 𝐹(𝑇) ̸= 0 and
𝜑(𝑇𝑥, 𝑦) ≤ 𝜑(𝑥, 𝑦), for ∀𝑥 ∈ 𝐶 and 𝑦 ∈ 𝐹(𝑇), where 𝐹(𝑇) is a
set of the fixed points of 𝑇; that is, 𝐹(𝑇) := {𝑥 ∈ 𝐶 : 𝑇𝑥 = 𝑥}.

Let 𝐶 be a nonempty, closed subset of 𝐸 and let 𝑄 be a
mapping of 𝐸 onto 𝐶. Then 𝑄 is said to be sunny (c.f. [5]) if
𝑄(𝑄(𝑥) + 𝑡(𝑥 − 𝑄(𝑥))) = 𝑄(𝑥), for all 𝑥 ∈ 𝐸 and 𝑡 ≥ 0. A
mapping 𝑄 : 𝐸 → 𝐶 is said to be a retraction (c.f. [5]) if
𝑄(𝑧) = 𝑧 for every 𝑧 ∈ 𝐶. If 𝐸 is smooth and strictly convex,
then a sunny generalized nonexpansive retraction of 𝐸 onto
𝐶 is uniquely decided (c.f. [5]). Then, if 𝐸 is smooth and
strictly convex, a sunny generalized nonexpansive retraction
of 𝐸 onto 𝐶 is denoted by 𝑅

𝐶
.

A subset𝐶 of 𝐸 is said to be a sunny nonexpansive retract
of 𝐸 (c.f. [5]) if there exists a sunny nonexpansive retraction
of𝐸 onto𝐶 and it is called a generalized nonexpansive retract
of 𝐸 if there exists a generalized nonexpansive retraction of 𝐸
onto 𝐶.

Definition 7 (see [5]). Let𝐸 be a real reflexive, strictly convex,
and smooth Banach space and let 𝐵 ⊂ 𝐸

∗

× 𝐸 be a maximal
monotone operator. Then ∀𝑟 > 0, define 𝑅

𝐵

𝑟
: 𝐸 → 𝐸 by

𝑅
𝐵

𝑟
𝑥 = (𝐼+𝑟𝐵𝐽)

−1

𝑥, which is called the generalized resolvent.

Lemma 8 (see [5]). Let 𝐸 be a real reflexive and strictly
Banach space with a Frêchet differential norm and let 𝐵 ⊂

𝐸
∗

× 𝐸 be a maximal monotone operator with 𝐵
−1

0 ̸= 0.
Then (i) (𝐵𝐽)

−1

0 = 𝐹(𝑅
𝐵

𝑟
); (ii) (𝐵𝐽)

−1

0 is closed; (iii)𝑅𝐵
𝑟
is

generalized nonexpansive, for 𝑟 > 0.

Lemma 9 (see [5]). Let 𝐸 be a real reflexive, smooth, and
strictly Banach space and let 𝐵 ⊂ 𝐸

∗

× 𝐸 be a maximal
monotone operator with 𝐵

−1

0 ̸= 0. Then

𝜑 (𝑥, 𝑅
𝐵

𝑟
𝑥) + 𝜑 (𝑅

𝐵

𝑟
𝑥, 𝑢) ≤ 𝜑 (𝑥, 𝑢) ,

∀𝑟 > 0, 𝑢 ∈ (𝐵𝐽)
−1

0, 𝑥 ∈ 𝐸.

(8)

Lemma 10 (see [6]). Let {𝑎
𝑛
} and {𝑏

𝑛
} be two sequences of

nonnegative real numbers and 𝑎
𝑛+1

≤ 𝑎
𝑛
+ 𝑏
𝑛
for ∀𝑛 ≥ 1. If

∑
∞

𝑛=0
𝑏
𝑛
< +∞, then lim

𝑛→∞
𝑎
𝑛
exists.

Finding zeros of maximal monotone operators is a hot
topic in applied mathematics since it has practical back-
ground. One classical method for studying the problem 0 ∈

𝐴𝑥, where𝐴 is amaximalmonotone operator, is the following
so-called proximal method (c.f. [7]), presented in a Hilbert
space:

𝑥
0
∈ 𝐻, 𝑥

𝑛+1
≈ 𝐽
𝐴

𝑟
𝑛

𝑥
𝑛
, 𝑛 ≥ 0, (9)

where 𝐽
𝐴

𝑟
𝑛

:= (𝐼 + 𝑟
𝑛
𝐴)
−1. It was shown that the sequence

generated by (9) converges weakly to a point in 𝐴
−1

0 under
some conditions.

In 2004, Kamimura et al. extended the study on zeros
of maximal monotone operators to the following iterative
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scheme based on the relative resolvent 𝑄𝐴
𝑟
𝑛

in Banach spaces
(c.f. [8]):

𝑥
1
∈ 𝐸,

𝑥
𝑛+1

= 𝐽
−1

[𝛼
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝐽𝑄
𝐴

𝑟
𝑛

𝑥
𝑛
] .

(10)

And, they showed that {𝑥
𝑛
} generated by (10) converges

weakly to a point in 𝐴
−1

0, where 𝐴 ⊂ 𝐸 × 𝐸
∗ is a maximal

monotone operator.
In 2007, Ibaraki and Takahashi [9] studied the following

iterative scheme based on the generalized resolvent 𝑅
𝐵

𝑟
𝑛

in
Banach spaces:

𝑥
1
∈ 𝐸,

𝑥
𝑛+1

= 𝛼
𝑛
𝑥
𝑛
+ (1 − 𝛼

𝑛
) 𝑅
𝐵

𝑟
𝑛

𝑥
𝑛
.

(11)

And, they showed that {𝑥
𝑛
} generated by (11) converges

weakly to a point in (𝐵𝐽)
−1

0, where 𝐵 ⊂ 𝐸
∗

× 𝐸 is a maximal
monotone operator.

In 2010, Shehu and Ezeora, [10] presented the following
iterative scheme for a family of𝑚-accretive mappings {𝐴

𝑖
}
𝑁

𝑖=1

in a real uniformly smooth and uniformly convex Banach
space 𝐸:

𝑥
1
∈ 𝐸,

𝑦
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
,

𝑥
𝑛+1

= (1 − 𝛽
𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑁
𝑦
𝑛
, 𝑛 ≥ 1,

(12)

where 𝑆
𝑁

:= 𝑎
0
𝐼 + 𝑎
1
𝐽
𝐴
1

+ 𝑎
2
𝐽
𝐴
2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽
𝐴
𝑁

with 𝐽
𝐴
𝑖

= (𝐼 +

𝐴
𝑖
)
−1, for 𝑖 = 1, 2, . . . , 𝑁. 0 < 𝑎

𝑘
< 1, for 𝑘 = 0, 1, 2, . . . , 𝑁,

and∑
𝑁

𝑘=0
𝑎
𝑘
= 1.Then {𝑥

𝑛
} converges strongly to the common

point in 𝐴
−1

𝑖
0, where 𝑖 = 1, 2, . . . , 𝑁.

Can we extend the study on 𝑚-accretive mappings [10]
to maximal monotone operators? Inspired by the work on
(10)–(12), in Section 2, we will present the following iterative
scheme based on the relative resolvent:

𝑥
1
∈ 𝐸,

𝑢
𝑛
= 𝐽
−1

[(1 − 𝛼
𝑛
) 𝐽𝑥
𝑛
] ,

V
𝑛
= 𝐽
−1

[(1 − 𝛽
𝑛
) 𝐽𝑥
𝑛
+ 𝛽
𝑛
𝐽𝑈
𝑛
𝑢
𝑛
] ,

𝑥
𝑛+1

= 𝐽
−1

[𝛾
𝑛
𝐽𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝐽𝑊
𝑛
V
𝑛
] , 𝑛 ≥ 1,

(A)

where 𝐴
𝑖
, 𝐵
𝑗

⊂ 𝐸 × 𝐸
∗ are maximal monotone

operators, 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀. Suppose
(⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0)⋂(⋂

𝑀

𝑗=1
𝐵
−1

𝑗
0) ̸= 0. 𝑈

𝑛
:= 𝐽
−1

[𝑎
0
𝐽 + 𝑎

1
𝐽𝑄
𝐴
1

𝑟
𝑛,1

+

𝑎
2
𝐽𝑄
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽𝑄
𝐴
𝑁

𝑟
𝑛,𝑁

], and 𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

= (𝐽 + 𝑟
𝑛,𝑖
𝐴
𝑖
)
−1

𝐽

and 𝑟
𝑛,𝑖

> 0, for 𝑖 = 1, 2, . . . , 𝑁 and 𝑛 ≥ 1. 𝑊
𝑛

:=

𝐽
−1

[𝑏
0
𝐽+𝑏
1
𝐽𝑄
𝐵
1

𝑠
𝑛,1

+𝑏
2
𝐽𝑄
𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

+⋅ ⋅ ⋅+𝑏
𝑀
𝐽𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

],

and 𝑄
𝐵
𝑗

𝑠
𝑛,𝑗

= (𝐽 + 𝑠
𝑛,𝑗

𝐵
𝑗
)
−1

𝐽 and 𝑠
𝑛,𝑗

> 0, for 𝑗 = 1, 2, . . . ,𝑀

and 𝑛 ≥ 1. 𝑎
0
, 𝑎
1
, . . . , 𝑎

𝑁
; 𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑀
are real numbers in

(0, 1) with ∑
𝑁

𝑖=0
𝑎
𝑖
= 1 and ∑

𝑀

𝑗=0
𝑏
𝑗
= 1.

In Section 3, we will study the following iterative scheme
based on generalized resolvent:

𝑥
1
∈ 𝐸,

𝑢
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
,

V
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
) 𝑇
𝑛
V
𝑛
, 𝑛 ≥ 1,

(B)

where 𝐴
𝑖
, 𝐵
𝑗

⊂ 𝐸
∗

× 𝐸 are maximal monotone operators,
𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀. Suppose (⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0)

⋂(⋂
𝑀

𝑗=1
𝐵
−1

𝑗
0) ̸= 0. 𝑆

𝑛
:= 𝑎
0
𝐼 + 𝑎

1
𝑅
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝑅
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ +

𝑎
𝑁
𝑅
𝐴
𝑁

𝑟
𝑛,𝑁

, and 𝑇
𝑛

:= 𝑏
0
𝐼 + 𝑏

1
𝑅
𝐵
1

𝑠
𝑛,1

+ 𝑏
2
𝑅
𝐵
2

𝑠
𝑛,2

𝑅
𝐵
1

𝑠
𝑛,1

+ ⋅ ⋅ ⋅ +

𝑏
𝑀
𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

. For 𝑖 = 1, 2, . . . , 𝑁, 𝑅𝐴𝑖
𝑟
𝑛,𝑖

= (𝐼 +

𝑟
𝑛,𝑖
𝐴
𝑖
𝐽)
−1. For 𝑗 = 1, 2, . . . ,𝑀, 𝑅𝐵𝑗

𝑠
𝑛,𝑗

= (𝐼 + 𝑠
𝑛,𝑗

𝐵
𝑗
𝐽)
−1. 𝑎
0
, 𝑎
1
,

. . . , 𝑎
𝑁

and 𝑏
0
, 𝑏
1
, . . . , 𝑏

𝑀
are real numbers in (0, 1) and

∑
𝑁

𝑖=0
𝑎
𝑖
= 1,∑𝑀

𝑗=0
𝑏
𝑗

= 1. 𝑟
𝑛,𝑖

> 0, for 𝑖 = 1, 2, . . . , 𝑁, and
𝑠
𝑛,𝑗

> 0, for 𝑗 = 1, 2, . . . ,𝑀 and 𝑛 ≥ 1.
In this paper, some weak convergence theorems are

obtained, which can be regarded as the extension and
complement of the work done in [7–10], and so forth. At
the end of Section 3, one example is demonstrated to show
that the assumption that (⋂𝑁

𝑖=1
𝐴
−1

𝑖
0)⋂(⋂

𝑀

𝑗=1
𝐵
−1

𝑗
0) ̸= 0 in the

discussions of (A) and (B) is meaningful.

2. Weak Convergence Theorems Based on
the Relative Resolvent

Theorem 11. Let 𝐸 be a real smooth and uniformly convex
Banach space. Let 𝐴

𝑖
, 𝐵
𝑗

⊂ 𝐸 × 𝐸
∗ be maximal monotone

operators, where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀. Suppose that
both 𝐽 : 𝐸 → 𝐸

∗ and 𝐽
−1

: 𝐸
∗

→ 𝐸 are weakly sequentially
continuous and 𝐷 := (⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0)⋂(⋂

𝑀

𝑗=1
𝐵
−1

𝑗
0) ̸= 0. Let

{𝑥
𝑛
} be generated by the iterative scheme (A), where 𝑈

𝑛
:=

𝐽
−1

[𝑎
0
𝐽 + 𝑎
1
𝐽𝑄
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝐽𝑄
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝐽𝑄
𝐴
𝑁

𝑟
𝑛,𝑁

], and 𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

=

(𝐽 + 𝑟
𝑛,𝑖
𝐴
𝑖
)
−1

𝐽, for 𝑖 = 1, 2, . . . , 𝑁, 0 < 𝑎
𝑘

< 1, for
𝑘 = 0, 1, 2, . . . , 𝑁, ∑𝑁

𝑘=0
𝑎
𝑘

= 1. 𝑊
𝑛

:= 𝐽
−1

[𝑏
0
𝐽 + 𝑏
1
𝐽𝑄
𝐵
1

𝑠
𝑛,1

+

𝑏
2
𝐽𝑄
𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

+ ⋅ ⋅ ⋅ + 𝑏
𝑀
𝐽𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

], where 𝑄
𝐵
𝑗

𝑠,𝑗
=

(𝐽 + 𝑠
𝑛,𝑗

𝐵
𝑗
)
−1

𝐽, for 𝑗 = 1, 2, . . . ,𝑀, 0 < 𝑏
𝑘

< 1, for 𝑘 =

0, 1, 2, . . . ,𝑀, ∑𝑀
𝑘=0

𝑏
𝑘

= 1. Suppose {𝛼
𝑛
}, {𝛽
𝑛
}, and {𝛾

𝑛
} are

three sequences in (0, 1) and {𝑟
𝑛,𝑖
}, {𝑠
𝑛,𝑗

} ⊂ (0, +∞) satisfying
the following conditions:

(i) 𝛼
𝑛

→ 0, as 𝑛 → ∞;
(ii) ∑

∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
) < +∞;

(iii) liminf
𝑛→+∞

𝛽
𝑛
> 0 and lim sup

𝑛→+∞
𝛾
𝑛
< 1;

(iv) liminf
𝑛→∞

𝑟
𝑛,𝑖

> 0 and liminf
𝑛→∞

𝑠
𝑛,𝑗

> 0, for 𝑖 =

1, 2, . . . , 𝑁 and 𝑗 = 1, 2, . . . ,𝑀.

Then {𝑥
𝑛
} converges weakly to the unique element V

0
∈ 𝐷

which satisfies

V
0
= lim
𝑛→∞

Π
𝐷
𝑥
𝑛
. (13)
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Proof. We will split the proof into six steps.

Step 1. {𝑥
𝑛
} is bounded.

For ∀𝑝 ∈ 𝐷, noticing the definition of the Lyapunov
functional and by using Lemma 3 repeatedly, we have

𝜑 (𝑝, 𝑥
𝑛+1

)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝜑 (𝑝,𝑊

𝑛
V
𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× [𝑏
0
𝜑 (𝑝, V

𝑛
) + 𝑏
1
𝜑 (𝑝, 𝑄

𝐵
1

𝑠
𝑛,1

V
𝑛
)

+ 𝑏
2
𝜑 (𝑝, 𝑄

𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

+ ⋅ ⋅ ⋅ + 𝑏
𝑀
𝜑 (𝑝,𝑄

𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)]

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝜑 (𝑝, V

𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× [(1 − 𝛽
𝑛
) 𝜑 (𝑝, 𝑥

𝑛
) + 𝛽
𝑛
𝜑 (𝑝, 𝑈

𝑛
𝑢
𝑛
)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
)

+ (1 − 𝛾
𝑛
) 𝛽
𝑛
[𝑎
0
𝜑 (𝑝, 𝑢

𝑛
) +

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑝, 𝑄

𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝛽
𝑛
𝜑 (𝑝, 𝑢

𝑛
)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛
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.

(14)

Lemma 10 ensures that lim
𝑛→∞

𝜑(𝑝, 𝑥
𝑛
) exists, which

implies that {𝑥
𝑛
} is bounded in view of (6).

Then from iterative scheme (A), {𝑢
𝑛
} is bounded. Since

𝜑(𝑝, 𝑈
𝑛
𝑢
𝑛
) ≤ 𝜑(𝑝, 𝑢

𝑛
), for ∀𝑝 ∈ 𝐷, then {𝑈

𝑛
𝑢
𝑛
} is

bounded, which ensures that {V
𝑛
} is bounded. For ∀𝑝 ∈

𝐷, 𝜑(𝑝, 𝑄𝐵𝑀
𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
) ≤ 𝜑(𝑝, V

𝑛
), then we know that

{𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
} is bounded.

Step 2. 𝜔(𝑥
𝑛
) ⊂ 𝐷, where 𝜔(𝑥

𝑛
) is the set of the weak limit

points of all of the weakly convergent subsequences of {𝑥
𝑛
}.

Since {𝑥
𝑛
} is bounded, then 𝜔(𝑥

𝑛
) ̸= 0. And, there exists a

subsequence of {𝑥
𝑛
}; for simplicity, we still denote it by {𝑥

𝑛
}

such that 𝑥
𝑛
⇀ 𝑥, 𝑛 → ∞.

For ∀𝑝 ∈ 𝐷, using Lemma 3 again, we have the following:

𝜑 (𝑝, 𝑥
𝑛+1

)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝜑 (𝑝,𝑊

𝑛
V
𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× [(𝑏
0
+ 𝑏
1
+ ⋅ ⋅ ⋅ + 𝑏

𝑀−1
) 𝜑 (𝑝, V

𝑛
)

+𝑏
𝑀
𝜑 (𝑝, 𝑄

𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)]

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) (1 − 𝑏

𝑀
) 𝜑 (𝑝, V

𝑛
)

+ 𝑏
𝑀

(1 − 𝛾
𝑛
) 𝜑 (𝑝, 𝑄

𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

− 𝑏
𝑀

(1 − 𝛾
𝑛
)

× 𝜑 (𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× [(1 − 𝛽
𝑛
) 𝜑 (𝑝, 𝑥

𝑛
) + 𝛽
𝑛
𝜑 (𝑝, 𝑈

𝑛
𝑢
𝑛
)] − 𝑏
𝑀

(1 − 𝛾
𝑛
)

× 𝜑 (𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛
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− 𝑏
𝑀

(1 − 𝛾
𝑛
)

× 𝜑 (𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
) .

(15)

Then (15) implies that

𝑏
𝑀

(1 − 𝛾
𝑛
) 𝜑 (𝑄

𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
)

+ (1 − 𝛾
𝑛
) 𝛼
𝑛
𝛽
𝑛
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− 𝜑 (𝑝, 𝑥
𝑛+1

) .

(16)

Since lim
𝑛→∞

𝜑(𝑝, 𝑥
𝑛
) exists and {𝑄

𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
} is

bounded, then, using Lemma 1, we know that

𝑄
𝐵
𝑀

𝑠
𝑛,𝑀

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0, (17)

as 𝑛 → ∞. Revise (14) in the following way:

𝜑 (𝑝, 𝑥
𝑛+1

)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝜑 (𝑝,𝑊

𝑛
V
𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× [(𝑏
0
+ 𝑏
1
+ ⋅ ⋅ ⋅ + 𝑏

𝑀−2
+ 𝑏
𝑀
) 𝜑 (𝑝, V

𝑛
)

+𝑏
𝑀−1

𝜑 (𝑝, 𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)]

≤ 𝛾
𝑛
𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) (1 − 𝑏

𝑀−1
) 𝜑 (𝑝, V

𝑛
)

+ 𝑏
𝑀−1

(1 − 𝛾
𝑛
) 𝜑 (𝑝, 𝑄

𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
)

− 𝑏
𝑀−1

(1 − 𝛾
𝑛
)

× 𝜑 (𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
) .

(18)

Then repeating the above process, we have

𝑄
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0,

(19)
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as 𝑛 → ∞. Similarly, we have

𝑄
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

𝑄
𝐵
𝑀−4

𝑠
𝑛,𝑀−4

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0,

𝑄
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

𝑄
𝐵
𝑀−4

𝑠
𝑛,𝑀−4

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑄
𝐵
𝑀−4

𝑠
𝑛,𝑀−4

𝑄
𝐵
𝑀−5

𝑠
𝑛,𝑀−5

⋅ ⋅ ⋅ 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0,

...

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− V
𝑛
󳨀→ 0.

(20)

On the other hand, noticing (14) and using Lemma 3, we
have
𝜑 (𝑝, 𝑥

𝑛+1
)

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
)

+ (1 − 𝛾
𝑛
) 𝛽
𝑛
[𝑎
0
𝜑 (𝑝, 𝑢

𝑛
) +

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑝, 𝑄

𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
)

× 𝛽
𝑛
{𝑎
0
𝜑 (𝑝, 𝑢

𝑛
) +

𝑁

∑

𝑖=1

𝑎
𝑖
[𝜑 (𝑝, 𝑢

𝑛
) − 𝜑 (𝑄

𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
, 𝑢
𝑛
)]}

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝛾
𝑛
) 𝛽
𝑛

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
, 𝑢
𝑛
) .

(21)

Similar to the discussion of (20), we have

𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
− 𝑢
𝑛
󳨀→ 0, (22)

as 𝑛 → ∞, 𝑖 = 1, 2, . . . , 𝑁.
Since both 𝐽 and 𝐽

−1 are weakly sequentially continuous,
𝐽𝑢
𝑛
= (1 − 𝛼

𝑛
)𝐽𝑥
𝑛
, and 𝑥

𝑛
⇀ 𝑥, then 𝑢

𝑛
⇀ 𝑥, as 𝑛 → ∞.

Now, (22) implies that 𝑄𝐴𝑖
𝑟
𝑛,𝑖

𝑢
𝑛

⇀ 𝑥. If we set 𝑧
𝑛,𝑖

= 𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
,

then from (22) and the fact that 𝐽 is uniformly norm to norm
continuous on each bounded subset of 𝐸, we have 𝐴

𝑖
𝑧
𝑛,𝑖

=

(𝐽𝑢
𝑛
− 𝐽𝑧
𝑛,𝑖
)/𝑟
𝑛,𝑖

→ 0, as 𝑛 → ∞, for 𝑖 = 1, 2, . . . , 𝑁. Since
𝐺(𝐴
𝑖
) is demiclosed, then 𝑥 ∈ ⋂

𝑁

𝑖=1
𝐴
−1

𝑖
0.

Now, from 𝑄
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛

⇀ 𝑥, we have 𝑈
𝑛
𝑢
𝑛

⇀ 𝑥, and then
𝐽𝑈
𝑛
𝑢
𝑛
⇀ 𝐽𝑥, which implies that V

𝑛
⇀ 𝑥, as 𝑛 → ∞, since

𝐽V
𝑛
= (1−𝛽

𝑛
)𝐽𝑥
𝑛
+𝛽
𝑛
𝐽𝑈
𝑛
𝑢
𝑛
.Thus (20) implies that𝑄𝐵1

𝑠
𝑛,1

V
𝑛
⇀

𝑥. In the sameway as the proof of𝑥 ∈ 𝐴
−1

𝑖
0, we have𝑥 ∈ 𝐵

−1

1
0.

From the fact that 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛

⇀ 𝑥 and (20), we have
𝑄
𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛

⇀ 𝑥, and 𝑄
𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛

→ 0, as 𝑛 →

∞. Then, if we set 𝑤
𝑛,2

= 𝑄
𝐵
2

𝑠
𝑛,2

𝑄
𝐵
1

𝑠
𝑛,1

V
𝑛

= 𝑄
𝐵
2

𝑠
𝑛,2

𝑤
𝑛,1
, we have

𝐵
2
𝑤
𝑛,2

= (𝐽𝑤
𝑛,1

− 𝐽𝑤
𝑛,2

)/𝑠
𝑛,2

→ 0, which ensures that
𝑥 ∈ 𝐵

−1

2
0. By induction, using (20) repeatedly, we know that

𝑥 ∈ ⋂
𝑀

𝑗=1
𝐵
−1

𝑗
0.

Therefore, 𝑥 ∈ 𝐷, and then 𝜔(𝑥
𝑛
) ⊂ 𝐷.

Step 3. There exists a unique element V
0
∈ 𝐷 such that

lim
𝑛→∞

𝜑 (V
0
, 𝑥
𝑛
) = min
𝑦∈𝐷

lim
𝑛→∞

𝜑 (𝑦, 𝑥
𝑛
) . (23)

In fact, let ℎ(𝑦) = lim
𝑛→∞

𝜑(𝑦, 𝑥
𝑛
), ∀𝑦 ∈ 𝐷. Then ℎ :

𝐷 → 𝑅
+ is proper, convex, and lower-semicontinuous and

ℎ(𝑦) → +∞, as ‖𝑦‖ → +∞. Thus there exists V
0
∈ 𝐷 such

that ℎ(V
0
) = min

𝑦∈𝐷
ℎ(𝑦). Since ℎ is strictly convex, then V

0
is

unique.

Step 4. lim
𝑛→∞

𝜑(Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
) exists.

From the definition of Π
𝐷
, we have 𝜑(Π

𝐷
𝑥
𝑛+1

, 𝑥
𝑛+1

) ≤

𝜑(Π
𝐷
𝑥
𝑛
, 𝑥
𝑛+1

).
Using (14), we have

𝜑 (Π
𝐷
𝑥
𝑛
, 𝑥
𝑛+1

) ≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (Π

𝐷
𝑥
𝑛
, 𝑥
𝑛
)

+ (1 − 𝛾
𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

≤ 𝜑 (Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(24)

Thus

𝜑 (Π
𝐷
𝑥
𝑛+1

, 𝑥
𝑛+1

) ≤ 𝜑 (Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

. (25)

Then Lemma 10 ensures that lim
𝑛→∞

𝜑(Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
) exists.

Step 5. lim
𝑛→∞

Π
𝐷
𝑥
𝑛

= V
0
, where V

0
is the same as that in

Step 3.
From Lemma 5, we have 𝜑(V

0
, Π
𝐷
𝑥
𝑛
) ≤ 𝜑(V

0
, 𝑥
𝑛
) −

𝜑(Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
). Thus

lim sup
𝑛→∞

𝜑 (V
0
, Π
𝐷
𝑥
𝑛
) ≤ lim
𝑛→∞

𝜑 (V
0
, 𝑥
𝑛
)

− lim
𝑛→∞

𝜑 (Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
)

=ℎ (V
0
)− lim
𝑛→∞

𝜑 (Π
𝐷
𝑥
𝑛
, 𝑥
𝑛
)≤0

(26)

Therefore, Lemma 1 implies that Π
𝐷
𝑥
𝑛

→ V
0
, as 𝑛 →

∞.
Step 6. 𝑥

𝑛
⇀ V
0
where V

0
is the same as that in Step 3.

From Lemma 6, we know that,

∀𝑦 ∈ 𝐷, ⟨Π
𝐷
𝑥
𝑛
− 𝑦, 𝐽Π

𝐷
𝑥
𝑛
− 𝐽𝑥
𝑛
⟩ ≤ 0. (27)

Since 𝐽 is weakly sequentially continuous, then from Step 5,
we have 𝐽Π

𝐷
𝑥
𝑛
⇀ 𝐽V
0
, as 𝑛 → ∞.

Since {𝑥
𝑛
} is bounded, then there exists a subsequence

{𝑥
𝑛
𝑗

} of {𝑥
𝑛
} such that 𝑥

𝑛
𝑗

⇀ 𝑥
0
, as 𝑗 → ∞. From Step 2,

𝑥
0
∈ 𝐷. And, 𝐽𝑥

𝑛
𝑗

⇀ 𝐽𝑥
0
, as 𝑗 → ∞. Substituting {𝑥

𝑛
} by

{𝑥
𝑛
𝑗

} in (27) and taking limits on both sides, we have

∀𝑦 ∈ 𝐷, ⟨V
0
− 𝑦, 𝐽V

0
− 𝐽𝑥
0
⟩ ≤ 0. (28)

Letting 𝑦 = 𝑥
0
in (28), then ⟨V

0
−𝑥
0
, 𝐽V
0
−𝐽𝑥
0
⟩ ≤ 0, which

implies that 𝑥
0
= V
0
, since 𝐽 is strictly monotone.

Suppose there exists another subsequence {𝑥
𝑛
𝑙

} of {𝑥
𝑛
}

such that 𝑥
𝑛
𝑙

⇀ 𝑥
1
, as 𝑙 → ∞. Then 𝑥

1
∈ 𝐷 and 𝐽𝑥

𝑛
𝑙

⇀ 𝐽𝑥
1
,
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as 𝑙 → +∞. Repeating the above process, we know that
𝑥
1
= V
0
.Therefore, all of the weakly convergent subsequences

of {𝑥
𝑛
} converge weakly to the same element V

0
, and then

𝑥
𝑛
⇀ V
0
which satisfies (13), as 𝑛 → ∞.

This completes the proof.

If, in Theorem 11, the Banach space 𝐸 reduces to the
Hilbert space𝐻, then we have the following theorem.

Theorem 12. Let 𝐻 be a Hilbert space and let 𝐷 be the
same as that in Theorem 11. Let 𝐴

𝑖
, 𝐵
𝑗

⊂ 𝐻 × 𝐻 be m-
accretive mappings, where 𝑖 = 1, 2, . . . , 𝑁; 𝑗 = 1, 2, . . . ,𝑀.
Let {𝑎

𝑛
}
∞

𝑛=0
and {𝑏

𝑛
}
∞

𝑛=0
be the same as those in Theorem 11. Let

{𝛼
𝑛
}, {𝛽
𝑛
}, {𝛾
𝑛
} ⊂ (0, 1) and {𝑟

𝑛,𝑖
}, {𝑠
𝑛,𝑗

} ⊂ (0, +∞) satisfy
some conditions presented in Theorem 11.

Let {𝑥
𝑛
} be generated by the following scheme:

𝑥
1
∈ 𝐻,

𝑢
𝑛
= (1 − 𝛼

𝑛
) 𝑥
𝑛
,

V
𝑛
= (1 − 𝛽

𝑛
) 𝑥
𝑛
+ 𝛽
𝑛
𝑈
𝑛
𝑢
𝑛
,

𝑥
𝑛+1

= 𝛾
𝑛
𝑥
𝑛
+ (1 − 𝛾

𝑛
)𝑊
𝑛
V
𝑛
, 𝑛 ≥ 1,

(C)

where𝑈
𝑛
= 𝑎
0
𝐼+𝑎
1
(𝐼+𝑟
𝑛,1

𝐴
1
)
−1

+⋅ ⋅ ⋅+𝑎
𝑁
(𝐼+𝑟
𝑛,𝑁

𝐴
𝑁
)
−1 and

𝑊
𝑛
= 𝑏
0
𝐼 + 𝑏
1
(𝐼 + 𝑠
𝑛,1

𝐵
1
)
−1

+ 𝑏
2
(𝐼 + 𝑠
𝑛,2

𝐵
2
)
−1

(𝐼 + 𝑠
𝑛,1

𝐵
1
)
−1

+

⋅ ⋅ ⋅+𝑏
𝑀
(𝐼+𝑠
𝑛,𝑀

𝐵
𝑀
)
−1

(𝐼+𝑠
𝑛,𝑀−1

𝐵
𝑀−1

)
−1

⋅ ⋅ ⋅ (𝐼+𝑠
𝑛,1

𝐵
1
)
−1.Then

{𝑥
𝑛
} converges weakly to the unique element 𝑝

0
∈ 𝐷, where

𝑝
0
= lim

𝑛→∞
𝑃
𝐷
𝑥
𝑛
and 𝑃

𝐷
is the metric projection from 𝐻

onto𝐷.

Remark 13. Compared to the work in [10], we may find that
Theorem 11 is not a simple extension from the case of 𝑚-
accretive mappings to maximal monotone operators. In (A),
different 𝐴

𝑖
and 𝐵

𝑗
have different coefficients while in (12),

different 𝐴
𝑖
have the same coefficients.

3. Weak Convergence Theorems Based on
the Generalized Resolvent

Theorem 14. Let 𝐸 be a real smooth and uniformly convex
Banach space. Let 𝐴

𝑖
, 𝐵
𝑗

⊂ 𝐸
∗

× 𝐸 be maximal monotone
operators, where 𝑖 = 1, 2, . . . , 𝑁, 𝑗 = 1, 2, . . . ,𝑀. Suppose that
both 𝐽 : 𝐸 → 𝐸

∗ and 𝐽
−1

: 𝐸
∗

→ 𝐸 are weakly sequentially
continuous and ̃̃

𝐷 := (⋂
𝑁

𝑖=1
𝐴
−1

𝑖
0)⋂(⋂

𝑀

𝑗=1
𝐵
−1

𝑗
0) ̸= 0. Let {𝑥

𝑛
}

be generated by the iterative scheme (𝐵), where 𝑆
𝑛

:= 𝑎
0
𝐼 +

𝑎
1
𝑅
𝐴
1

𝑟
𝑛,1

+ 𝑎
2
𝑅
𝐴
2

𝑟
𝑛,2

+ ⋅ ⋅ ⋅ + 𝑎
𝑁
𝑅
𝐴
𝑁

𝑟
𝑛,𝑁

, and 𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

= (𝐼 + 𝑟
𝑛,𝑖
𝐴
𝑖
𝐽)
−1, for

𝑖 = 1, 2, . . . , 𝑁, 0 < 𝑎
𝑘
< 1, for 𝑘 = 0, 1, 2, . . . , 𝑁, ∑𝑁

𝑘=0
𝑎
𝑘
=

1. 𝑊
𝑛
:= 𝑏
0
𝐼+𝑏
1
𝑅
𝐵
1

𝑠
𝑛,1

+𝑏
2
𝑅
𝐵
2

𝑠
𝑛,2

𝑅
𝐵
1

𝑠
𝑛,1

+⋅ ⋅ ⋅+𝑏
𝑀
𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

,

where 𝑅
𝐵
𝑗

𝑠,𝑗
= (𝐼 + 𝑠

𝑛,𝑗
𝐵
𝑗
𝐽)
−1, for 𝑗 = 1, 2, . . . ,𝑀, 0 < 𝑏

𝑘
< 1,

for 𝑘 = 0, 1, 2, . . . ,𝑀, ∑𝑀
𝑘=0

𝑏
𝑘
= 1. Suppose {𝛼

𝑛
},{𝛽
𝑛
}, and {𝛾

𝑛
}

are three sequences in (0, 1) and {𝑟
𝑛,𝑖
}, {𝑠
𝑛,𝑗

} ⊂ (0, +∞) satisfy
the following conditions:

(i) 𝛼
𝑛

→ 0, as 𝑛 → ∞;
(ii) ∑

∞

𝑛=1
𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
) < +∞;

(iii) liminf
𝑛→+∞

𝛽
𝑛
> 0 limsup

𝑛→+∞
𝛾
𝑛
< 1;

(iv) liminf
𝑛→∞

𝑟
𝑛,𝑖

> 0 and liminf
𝑛→∞

𝑠
𝑛,𝑗

> 0, for 𝑖 =

1, 2, . . . , 𝑁 and 𝑗 = 1, 2, . . . ,𝑀.

Then {𝑥
𝑛
} converges weakly to the unique element V

0
∈ 𝐷,

where

𝐷 := [

𝑁

⋂

𝑖=1

(𝐴
𝑖
𝐽)
−1

0]⋂[

[

𝑀

⋂

𝑗=1

(𝐵
𝑗
𝐽)
−1

0]

]

. (29)

Proof. We will split the proof into four steps.

Step 1.𝐷 ̸= 0.
Since ̃̃

𝐷 ̸= 0, then we may choose 𝑝 ∈
̃̃
𝐷, which implies

that 𝑝 ∈ 𝐴
−1

𝑖
0 and 𝑝 ∈ 𝐵

−1

𝑗
0, for 𝑖 = 1, 2, . . . , 𝑁; 𝑗 =

1, 2, . . . ,𝑀. Thus 0 ∈ 𝐴
𝑖
𝑝 = 𝐴

𝑖
𝐽𝐽
−1

𝑝 and 0 ∈ 𝐵
𝑗
𝑝 =

𝐵
𝑗
𝐽𝐽
−1

𝑝, for 𝑖 = 1, 2, . . . , 𝑁; 𝑗 = 1, 2, . . . ,𝑀. And then
𝐽
−1

𝑝 ∈ (𝐴
𝑖
𝐽)
−1

0 and 𝐽
−1

𝑝 ∈ (𝐵
𝑗
𝐽)
−1

0, for 𝑖 = 1, 2, . . . , 𝑁; 𝑗 =

1, 2, . . . ,𝑀. Therefore, 𝐽−1𝑝 ∈ 𝐷 which implies that𝐷 ̸= 0.

Step 2. {𝑥
𝑛
} is bounded.

For ∀𝑝 ∈ 𝐷, noticing the definition of the Lyapunov
functional and by using Lemma 9 repeatedly, we have

𝜑 (𝑥
𝑛+1

, 𝑝)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
) 𝜑 (𝑇
𝑛
V
𝑛
, 𝑝)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
)

× [𝑏
0
𝜑 (V
𝑛
, 𝑝) + 𝑏

1
𝜑 (𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑝) + 𝑏

2
𝜑 (𝑅
𝐵
2

𝑠
𝑛,2

𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑝)

+ ⋅ ⋅ ⋅ + 𝑏
𝑀
𝜑 (𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑝)]

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
) 𝜑 (V
𝑛
, 𝑝)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
)

× [(1 − 𝛽
𝑛
) 𝜑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝜑 (𝑆
𝑛
𝑢
𝑛
, 𝑝)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝)

+ (1 − 𝛾
𝑛
) 𝛽
𝑛
[𝑎
0
𝜑 (𝑢
𝑛
, 𝑝) +

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
, 𝑝)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝) + (1 − 𝛾

𝑛
) 𝛽
𝑛
𝜑 (𝑢
𝑛
, 𝑝)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

.

(30)

Lemma 10 ensures that lim
𝑛→∞

𝜑(𝑥
𝑛
, 𝑝) exists, which ensures

that {𝑥
𝑛
} is bounded.

Step 3. 𝜔(𝑥
𝑛
) ⊂ 𝐷, where 𝜔(𝑥

𝑛
) is the set of weak limit points

of all of the weakly convergent subsequences of {𝑥
𝑛
}.

Since {𝑥
𝑛
} is bounded, then 𝜔(𝑥

𝑛
) ̸= 0. So there exists a

subsequence of {𝑥
𝑛
}; for simplicity, we still denote it by {𝑥

𝑛
}

such that 𝑥
𝑛
⇀ 𝑥, 𝑛 → ∞.
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Using Lemma 9 again, we have for ∀𝑝 ∈ 𝐷

𝜑 (𝑥
𝑛+1

, 𝑝)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
) 𝜑 (𝑇
𝑛
V
𝑛
, 𝑝)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
)

× [(𝑏
0
+ 𝑏
1
+ ⋅ ⋅ ⋅ + 𝑏

𝑀−1
) 𝜑 (V
𝑛
, 𝑝)

+𝑏
𝑀
𝜑 (𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑝)]

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
) (1 − 𝑏

𝑀
) 𝜑 (V
𝑛
, 𝑝)

+ 𝑏
𝑀

(1 − 𝛾
𝑛
) 𝜑 (𝑅

𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑝)

− 𝑏
𝑀

(1 − 𝛾
𝑛
)

× 𝜑 (𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ 𝛾
𝑛
𝜑 (𝑥
𝑛
, 𝑝) + (1 − 𝛾

𝑛
)

× [(1 − 𝛽
𝑛
) 𝜑 (𝑥
𝑛
, 𝑝) + 𝛽

𝑛
𝜑 (𝑆
𝑛
𝑢
𝑛
, 𝑝)] − 𝑏

𝑀
(1 − 𝛾

𝑛
)

× 𝜑 (𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
)

+ (1 − 𝛾
𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 𝑏
𝑀

(1 − 𝛾
𝑛
)

× 𝜑 (𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
) .

(31)

Then (31) implies that

𝑏
𝑀

(1 − 𝛾
𝑛
) 𝜑 (𝑅

𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
, 𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
)

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝)

+ (1 − 𝛾
𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− 𝜑 (𝑥
𝑛+1

, 𝑝) .

(32)

Similar to the discussion of (17) in Step 2 in Theorem 11,
we have

𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0, (33)

as 𝑛 → ∞.
Then, similar to the discussions of (19) and (20), we have

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑅
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0,

𝑅
𝐵
𝑀−2

𝑠
𝑛,𝑀−2

𝑅
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
− 𝑅
𝐵
𝑀−3

𝑠
𝑛,𝑀−3

𝑅
𝐵
𝑀−4

𝑠
𝑛,𝑀−4

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
󳨀→ 0,

...

𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
− V
𝑛
󳨀→ 0.

(34)

On the other hand, noticing (30) and using Lemma 9, we
have

𝜑 (𝑥
𝑛+1

, 𝑝)

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝)

+ (1 − 𝛾
𝑛
) 𝛽
𝑛
[𝑎
0
𝜑 (𝑢
𝑛
, 𝑝) +

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
, 𝑝)]

≤ [1 − 𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑥

𝑛
, 𝑝) + (1 − 𝛾

𝑛
)

× 𝛽
𝑛
{𝑎
0
𝜑 (𝑢
𝑛
, 𝑝) +

𝑁

∑

𝑖=1

𝑎
𝑖
[𝜑 (𝑢
𝑛
, 𝑝) − 𝜑 (𝑢

𝑛
, 𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
)]}

≤ [1 − 𝛼
𝑛
𝛽
𝑛
(1 − 𝛾

𝑛
)] 𝜑 (𝑝, 𝑥

𝑛
) + (1 − 𝛾

𝑛
) 𝛼
𝑛
𝛽
𝑛

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩

2

− (1 − 𝛾
𝑛
) 𝛽
𝑛

𝑁

∑

𝑖=1

𝑎
𝑖
𝜑 (𝑢
𝑛
, 𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
) ,

(35)

which implies that

𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
− 𝑢
𝑛
󳨀→ 0, (36)

as 𝑛 → ∞, 𝑖 = 1, 2, . . . , 𝑁.
Since 𝑢

𝑛
= (1 − 𝛼

𝑛
)𝑥
𝑛
and 𝑢

𝑛
⇀ 𝑥, then 𝑢

𝑛
⇀ 𝑥, as

𝑛 → ∞. Now, (36) implies that 𝑅𝐴𝑖
𝑟
𝑛,𝑖

𝑢
𝑛
⇀ 𝑥. Let 𝑧∗

𝑖
∈ 𝐴
𝑖
𝑧
𝑖
,

then

⟨𝑧
∗

𝑖
−

𝑢
𝑛
− 𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛

𝑟
𝑛,𝑖

, 𝑧
𝑖
− 𝐽𝑅
𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛
⟩ ≥ 0. (37)

Since 𝐽 is weakly sequentially continuous, then, letting 𝑛 →

∞, (37) ensures that

⟨𝑧
∗

𝑖
, 𝑧
𝑖
− 𝐽𝑥⟩ ≥ 0. (38)

Since 𝐴
𝑖
is maximal monotone, then 𝐽𝑥 ∈ 𝐴

−1

𝑖
0, which

implies that 𝑥 ∈ ⋂
𝑁

𝑖=1
(𝐴
𝑖
𝐽)
−1

0.
From 𝑅

𝐴
𝑖

𝑟
𝑛,𝑖

𝑢
𝑛

⇀ 𝑥, we have 𝑆
𝑛
𝑢
𝑛

⇀ 𝑥, as 𝑛 →

∞. Since V
𝑛

= (1 − 𝛽
𝑛
)𝑥
𝑛
+ 𝛽
𝑛
𝑆
𝑛
𝑢
𝑛
, then V

𝑛
⇀ 𝑥, as

𝑛 → ∞. Using (34), we have 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛

⇀ 𝑥,𝑅
𝐵
2

𝑠
𝑛,2

𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛

⇀

𝑥, . . . , 𝑅
𝐵
𝑀

𝑠
𝑛,𝑀

𝑅
𝐵
𝑀−1

𝑠
𝑛,𝑀−1

⋅ ⋅ ⋅ 𝑅
𝐵
1

𝑠
𝑛,1

V
𝑛
⇀ 𝑥, as 𝑛 → ∞. By induction,

similar to the proof of 𝑥 ∈ (𝐴
𝑖
𝐽)
−1

0, we know that 𝑥 ∈

⋂
𝑀

𝑗=1
(𝐵
𝑗
𝐽)
−1

0.
Therefore, 𝑥 ∈ 𝐷, and then 𝜔(𝑥

𝑛
) ⊂ 𝐷.

Step 4. 𝑥
𝑛
⇀ V
0
, as 𝑛 → ∞, where V

0
is the unique element

in𝐷.
From Steps 2 and 3, we know that there exists a subse-

quence {𝑥
𝑛
𝑖

} of {𝑥
𝑛
} such that 𝑥

𝑛
𝑖

⇀ V
0

∈ 𝐷, as 𝑖 → ∞.
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If there exists another subsequence {𝑥
𝑛
𝑗

} of {𝑥
𝑛
} such that

𝑥
𝑛
𝑗

⇀ V
1
∈ 𝐷, as 𝑗 → ∞, then from Step 1, we know that

lim
𝑛→∞

[𝜑 (𝑥
𝑛
, V
0
) − 𝜑 (𝑥

𝑛
, V
1
)]

= lim
𝑖→∞

[𝜑 (𝑥
𝑛
𝑖

, V
0
) − 𝜑 (𝑥

𝑛
𝑖

, V
1
)]

= lim
𝑖→∞

[
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩

2

+ 2 ⟨𝑥
𝑛
𝑖

, 𝐽V
1
− 𝐽V
0
⟩]

=
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩

2

+ 2 ⟨V
0
, 𝐽V
1
− 𝐽V
0
⟩ .

(39)

Similarly,

lim
𝑛→∞

[𝜑 (𝑥
𝑛
, V
0
) − 𝜑 (𝑥

𝑛
, V
1
)]

= lim
𝑗→∞

[𝜑 (𝑥
𝑛
𝑗

, V
0
) − 𝜑 (𝑥

𝑛
𝑗

, V
1
)]

= lim
𝑖→∞

[
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩

2

+ 2⟨𝑥
𝑛
𝑗

, 𝐽V
1
− 𝐽V
0
⟩]

=
󵄩󵄩󵄩󵄩V0

󵄩󵄩󵄩󵄩

2

−
󵄩󵄩󵄩󵄩V1

󵄩󵄩󵄩󵄩

2

+ 2 ⟨V
1
, 𝐽V
1
− 𝐽V
0
⟩ .

(40)

From (39) and (40), we have ⟨V
1
−V
0
, 𝐽V
1
−𝐽V
0
⟩ = 0, which

implies that V
0
= V
1
.

This completes the proof.

Remark 15. If, in Theorem 14, the Banach space 𝐸 reduces
to the Hilbert space 𝐻, then the result of Theorem 12 is still
true. That is, Theorems 14 and 11 are the same in the frame of
Hilbert spaces.

Remark 16. Next, we will present an example to show that
the assumptions that 𝐷 ̸= 0 in Theorem 11 and 𝐷 ̸= 0 in
Theorem 14 are meaningful.

Consider the following 𝑝
𝑖
-𝐿𝑎𝑝𝑙𝑎𝑐𝑖𝑎𝑛 Dirichlet boundary

value problem:

− div (|∇𝑢|
𝑝
𝑖
−2

∇𝑢) = 𝑓 (𝑥) , 𝑎.𝑒. 𝑥 ∈ Ω;

]𝑢 = 𝑤, 𝑎.𝑒. 𝑥 ∈ Γ,

(D)

where Ω is a bounded conical domain of the Euclidean
space 𝑅

𝑁

(𝑁 ≥ 1) with its boundary Γ ∈ 𝐶
1, 2𝑁/(𝑁 +

1) < 𝑝
𝑖

< +∞, 𝑓 ∈ 𝑊
1,𝑝
𝑖(Ω), and 𝑤 ∈ 𝑊

1−1/𝑝
𝑖
,𝑝
𝑖(Γ)

are given functions, where 𝑊
1−1/𝑝

𝑖
,𝑝
𝑖(Γ) is the trace space of

𝑊
1,𝑝
𝑖(Ω), ] : 𝑊

1,𝑝
𝑖(Ω) → 𝑊

1−1/𝑝
𝑖
,𝑝
𝑖(Γ) is the trace operator,

𝑖 = 1, 2, . . . ,𝑀.

Similar to the discussion in [11], we have the following
results.

Proposition 17 (see [11]). Define the mapping 𝐶
𝑝
𝑖

:

𝑊
1,𝑝
𝑖(Ω) → (𝑊

1,𝑝
𝑖(Ω))
∗ by

(V, 𝐶
𝑝
𝑖

𝑢) = ∫
Ω

⟨|∇𝑢|
𝑝
𝑖
−2

∇𝑢, ∇V⟩ 𝑑𝑥 − ∫
Ω

𝑓V 𝑑𝑥, (41)

for ∀𝑢, V ∈ 𝑊
1,𝑝
𝑖(Ω). Define the mapping 𝐵

𝑝
𝑖

: 𝑊
1,𝑝
𝑖(Ω) →

(𝑊
1,𝑝
𝑖(Ω))
∗ by

(V, 𝐵
𝑝
𝑖

𝑢) = ∫
Ω

⟨|∇𝑢|
𝑝
𝑖
−2

∇𝑢, ∇V⟩ 𝑑𝑥, (42)

for ∀𝑢, V ∈ 𝑊
1,𝑝
𝑖(Ω).

Then both 𝐵
𝑝
𝑖

and𝐶
𝑝
𝑖

are maximal monotone, for each 𝑖 =

1, 2, . . . ,𝑀.

Proposition 18 (see [11]). For 𝑓 ∈ 𝑊
1,𝑝
𝑖(Ω) and 𝑤 ∈

𝑊
1−1/𝑝

𝑖
,𝑝
𝑖(Γ), nonlinear boundary problem (D) has a unique

solution 𝑢(𝑥) ∈ 𝑊
1,𝑝
𝑖(Ω), for each 𝑖 = 1, 2, . . . ,𝑀. Moreover,

𝑢(𝑥) ∈ 𝐶
−1

𝑝
𝑖

(0) if and only if 𝑢(𝑥) is the solution of (D), which
ensures that 𝐶−1

𝑝
𝑖

(0) ̸= 0, for each 𝑖 = 1, 2, . . . ,𝑀.

We can easily get the following result.

Proposition 19. 𝐵
−1

𝑝
𝑖

(0) = {𝑢(𝑥) ∈ 𝑊
1,𝑝
𝑖(Ω) : 𝑢(𝑥) ≡

𝐶𝑜𝑛𝑠𝑡𝑎𝑛𝑡}, for each 𝑖 = 1, 2, . . . ,𝑀, which ensures that
⋂
𝑀

𝑖=1
𝐵
−1

𝑝
𝑖

(0) ̸= 0. And,⋂𝑀
𝑖=1

𝐶
−1

𝑝
𝑖

(0) ̸= 0, whichmeans the follow-
ing nonlinear (𝑝

1
, 𝑝
2
, . . . , 𝑝

𝑀
)-Laplacian elliptic systems (E)

with Dirichlet boundary share the same solution:

− div (|∇𝑢|
𝑝
1
−2

∇𝑢) = 𝑓 (𝑥) , 𝑎.𝑒. 𝑥 ∈ Ω;

− div (|∇𝑢|
𝑝
2
−2

∇𝑢) = 𝑓 (𝑥) , 𝑎.𝑒. 𝑥 ∈ Ω;

...

− div (|∇𝑢|
𝑝M−2∇𝑢) = 𝑓 (𝑥) , 𝑎.𝑒. 𝑥 ∈ Ω;

]𝑢 = 𝑤, 𝑎.𝑒. 𝑥 ∈ Γ.
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