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In this paper a HBV infection model with impulsive vaccination is considered. By using fixed point theorem and stroboscopic
map we prove the existence of disease-free T-periodic solution. Also by comparative theorem of impulsive differential equation
we get the global asymptotic stability of the disease-free periodic solution and permanence of the disease. Numerical simulations
show the influence of parameters on the dynamics of HBV, which provided references for seeking optimal measures to control the
transmission of HBV.

1. Introduction

Hepatitis B is a potentially life-threatening liver infection
caused by the hepatitis B virus (HBV) and is a major global
health problem. According to the data of World Health
Organization (WHO), more than 2,000 million people have
been infected with HBV and about 350 million remain
infected chronically. Every year there are over 4 million acute
clinical cases of HBV and about 25% of carriers. Hepatitis
B causes about 1 million people to die from chronic active
hepatitis, cirrhosis, or primary liver cancer annually [1].

The transmission of HBV occurs normally on contact
with infected blood or body fluids. In high prevalence
populations, transmission is largely vertical, that is, through
mother to child during delivery or horizontal through house-
hold contact as skin breaches, open sores, or scratches in
the early years of life. In contrast, HBV transmission in
low endemicity populations typically occurs in adults via
parenteral exposures and intravenous drug use or through
sexual contact [2]. It can cause acute and chronic infection
status. In acute infection status the individuals have highly
infectiousness, and about 90% of adults who are infected with
HBV will recover and be completely rid of the virus within
six months. The rest of acute infectors turn into chronic

infectors and acute hepatitis B occurs rarely in infants. The
major routes of chronic hepatitis B infection are mother-
infant vertical transmission and early childhood horizontal
transmission [3]. Only a small fraction of chronic infectors
could be cured completely [4]. Continuous chronic HBV
infection exhibits various kinds of clinical symptoms, such as
hepatocirrhosis and even hepatocellular carcinoma [5].

Vaccination is an effective control measures for HBV
infection, an universal vaccination programme promoted in
more than 170 countries since 1982 [6]. In New Zealand, the
widespread introduction of infant hepatitis B vaccination in
1988 led to a dramatic decline in cases of acute HBV infection
[7]. From 2002, the Ministry of Health of China integrated
the infant HepB vaccination into the national immunization
program with vaccine provided entirely by the government.
According to 2006–2010 hepatitis B control program, China
will consistently strengthen the general newborn hepatitis
B vaccination and especially supply the first dose of 3-dose
HepB series as soon as possible after birth [8].

Mathematical models have been used frequently to study
the transmission dynamics of HBV, and qualitative results
on such models can be found. Anderson and May first
used a simple mathematical model to illustrate the effects
of carriers on the transmission of HBV [9]. Thornley et al.
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[10] develop a hepatitis B mathematical model, proposed by
Medley et al. [11], that was used to develop a strategy for
eliminating the HBV spread in New Zealand in 2008. Zou
et al. also proposed a mathematical model to understand the
transmission dynamics and prevalence of HBV in mainland
China [12]. Pang et al. [13] develop a model to explore the
impact of vaccination and other controlling measures of
HBV infection and a mathematical model which describes
the spread of HBV is formulated in [14]. Zou et al. [15]
promote an age structure model to predict the dynamics of
HBV transmission and evaluate the long-term effectiveness
of the vaccination programme inChina.Wang et al. proposed
and analyzed the hepatitis B virus infection in a diffusion
model confined to a finite domain [16]. A hepatitis B virus
(HBV) model with spatial diffusion and saturation response
of the infection rate is investigated by Xu and Ma [17].
Transmission model of hepatitis B virus with the migration
effect is presented by Khan et al. [18] who analyzed the effect
of immigrants in the model to study the effect of immigrants
for the host population.

In the above literatures, most models involving HepB
vaccine strategy often assumed that the vaccine is completely
effective in preventing the infection of vaccinated individuals.
In fact, it is well known to all that the HepB vaccine should
be taken in three doses at 0, 1, and 6 months. Usually 30–
50% of individuals will gain anti-HBs antibody after the first
dose, 80–90% will gain after the second dose, and almost all
the individuals will have high anti-HBs concentrations one
month after the last dose that 99.8% of vaccinees gained anti-
HBs antibody [19]. So, as soon as the susceptible individuals
begin the vaccination process, they are different from sus-
ceptible individuals. But they should also be distinguished
from recovered individuals who have immunity against the
disease. It means that a few of vaccinated individuals may still
be susceptible to infection, but they will be infected at a lower
rate than unvaccinated susceptible individuals. Epidemic
models including incomplete immune compartment 𝑉 have
been studied in [20–24], but the HBV transmission with the
incomplete HepB vaccine immune is rarely considered.

Motivated by the above consideration, and based on
the natural course of HBV infection, we promote a novel
model to describe the transition dynamic of HBV. It is more
reasonable to consider the impulsive vaccination strategy
for the susceptible individuals; there are fewer literatures
that researched HBV infection with impulsive vaccination
already [25, 26]. We also consider the incomplete immune
compartment in our model.

The remaining parts of this paper are organized as follows.
In Section 2, we formulate the model. In Section 3, we study
the global asymptotic stability of disease-free periodic solu-
tion and the conditions for the permanence of the disease by
comparison techniques. Numerical simulations are presented
in Section 4. In Section 5, we conclude this paper with some
remarks.

2. Modeling

Based on the fact that HepB vaccination is not completely
effective, we improve the model of Zou et al. [12] in three

aspects. Firstly, we considered that vaccinated individuals
may still be susceptible to infection. Secondly, we studied
impulsive vaccination strategy for the susceptible individuals.
Finally, we add a latent period 𝜏. We divide the population
into six epidemiological groups: the susceptible individuals
to infection 𝑆; latently infected 𝐿; those acute infectors
𝐼
1
; chronic sufferers 𝐼

2
; and recovered 𝑅; 𝑉 denotes the

density of vaccinees who have begun the vaccination process.
The individuals in 𝑉 are different from those in 𝑆 and 𝑅;
the immune system will create antibody of HBV because
vaccination doses are taken during this process, but itmay not
be in a fully protective level. According to the characteristics
of HBV transmission, the flow diagram is shown in Figure 1.

The mathematical model of the transmission dynamics
and prevalence of HBV is as follows:

𝑆

(𝑡) = 𝜇𝜔 (1 − 𝜐𝐼

2
) + 𝜑𝑉 − (𝜇 + 𝛽𝐼

1
+ 𝜀𝛽𝐼
2
) 𝑆,

𝐿

(𝑡) = (𝛽𝐼

1
+ 𝜀𝛽𝐼
2
) (𝑆 + 𝜃𝑉) − 𝑒

−𝜇𝜏

× (𝛽𝐼
1
(𝑡 − 𝜏) + 𝜀𝛽𝐼

2
(𝑡 − 𝜏))

× (𝑆 (𝑡 − 𝜏) + 𝜃𝑉 (𝑡 − 𝜏)) − 𝜇𝐿,

𝐼


1
(𝑡) = 𝑒

−𝜇𝜏
(𝛽𝐼
1
(𝑡 − 𝜏) + 𝜀𝛽𝐼

2
(𝑡 − 𝜏))

× (𝑆 (𝑡 − 𝜏) + 𝜃𝑉 (𝑡 − 𝜏)) − (𝜇 + 𝛾
1
) 𝐼
1
,

𝐼


2
(𝑡) = 𝜇𝜔𝜐𝐼

2
+ 𝑞𝛾
1
𝐼
1
− (𝜇 + 𝜇

1
+ 𝛾
2
) 𝐼
2
,

𝑉

(𝑡) = 𝜇 (1 − 𝜔) − 𝜃 (𝛽𝐼

1
+ 𝜀𝛽𝐼
2
) 𝑉 − (𝜇 + 𝜑)𝑉,

𝑅

(𝑡) = (1 − 𝑞) 𝛾

1
𝐼
1
+ 𝛾
2
𝐼
2
− 𝜇𝑅,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑆 (𝑡
+
) = (1 − 𝑝) 𝑆 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝𝑆 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(1)

In these equations, all the parameters are nonnegative.𝜇 is the
per capita natural death rate and the birth rate of newborns,
and 𝜇

1
is the per capita disease-induced death rate. 𝛽 is the

transmission coefficient of acute HBV, and 𝜀𝛽 is the reduced
transmission coefficient of chronic HBV. 𝜔 is the proportion
of birthswithout successful vaccination. 𝛾

1
is the rate at which

individuals leave the acute infection class; a proportion 𝑞 of
acute infection individuals become chronic carriers and other
proportion (1-q) rid of HBV, move directly to immunity class
𝑅. 𝛾
2
is the recovery conversion rate of chronic infectors. 𝜐

is the proportion of unimmunized children born to chronic
carrier mothers who have been infected (ignore perinatal
infection of children born to mothers with acute infection).
That 𝜇𝜔𝜐𝐼

2
denotes newborns who have been infected in

perinatal infection and in chronic infection compartment,
the rest𝜇𝜔(1−𝜐𝐼

2
) newborns become susceptible individuals.
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Figure 1: Flow diagram of HBV transmission in a population.

The factor 𝜃 (0 < 𝜃 < 1) reflects the efficacy of vaccine, which
means that the vaccine is not completely effective and that
the vaccinated individuals have only partial immunity. For
the vaccinated individuals, let 𝜑 denote the per capita rate
coefficient at which the immunity wears off, which implies
that the vaccinated individuals have the temporary immunity.
𝑝 (0 < 𝑝 < 1) is the fraction of impulsive vaccination, and
𝜏 is latent period. The period of vaccination is 𝑇, and the
vaccination is dose at time 𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑁 = {1, 2, 3, . . .}.

Since the equations for the variables 𝐿 and 𝑅 in model (1)
are both independent of other equations, then the dynamical
behavior of (1) is determined by the following system:

𝑆

(𝑡) = 𝜇𝜔 (1 − 𝜐𝐼

2
) + 𝜑𝑉 − (𝜇 + 𝛽𝐼

1
+ 𝜀𝛽𝐼
2
) 𝑆,

𝐼


1
(𝑡) = 𝑒

−𝜇𝜏
(𝛽𝐼
1
(𝑡 − 𝜏) + 𝜀𝛽𝐼

2
(𝑡 − 𝜏))

× (𝑆 (𝑡 − 𝜏) + 𝜃𝑉 (𝑡 − 𝜏)) − (𝜇 + 𝛾
1
) 𝐼
1
,

𝐼


2
(𝑡) = 𝜇𝜔𝜐𝐼

2
+ 𝑞𝛾
1
𝐼
1
− (𝜇 + 𝜇

1
+ 𝛾
2
) 𝐼
2
,

𝑉

(𝑡) = 𝜇 (1 − 𝜔) − 𝜃 (𝛽𝐼

1
+ 𝜀𝛽𝐼
2
) 𝑉 − (𝜇 + 𝜑)𝑉,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑆 (𝑡
+
) = (1 − 𝑝) 𝑆 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝𝑆 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(2)

The initial conditions for system (2) take the forms

𝑆 (0
+
) = 𝑆
0
, 𝐼

1
(0
+
) = 𝐼
0

1
,

𝐼
2
(0
+
) = 𝐼
0

2
, 𝑉 (0

+
) = 𝑉
0
,

Φ = (𝑆 (𝜃) , 𝐼
1
(𝜃) , 𝐼
2
(𝜃) , 𝑉 (𝜃) ∈ 𝐶 ([−𝜏, 0] , 𝑅

4

+
)) .

(3)

For (𝑆 + 𝐼
1
+ 𝐼
2
+ 𝑉)

≤ 𝜇[1 − (𝑆 + 𝐼

1
+ 𝐼
2
+𝑉)] it follows that

sup
𝑡→∞

(𝑆 + 𝐼
1
+ 𝐼
2
+𝑉) ≤ 1. SetΩ = {(𝑆 + 𝐼

1
+ 𝐼
2
+𝑉) ∈ 𝑅

4

+
:

𝑆 + 𝐼
1
+ 𝐼
2
+ 𝑉 ≤ 1} is positively invariant of system (2).

Subsequently, we introduce the following lemma, which
is useful for the later proof.

Lemma 1. Consider the following impulsive differential equa-
tion:

𝑆

(𝑡) = 𝜇𝜔 − 𝜇𝑆 + 𝜑𝑉,

𝑉

(𝑡) = 𝜇 (1 − 𝜔) − (𝜇 + 𝜑)𝑉

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑆 (𝑡
+
) = (1 − 𝑝) 𝑆 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝𝑆 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(4)

Then the above system has a unique positive periodic solution
given by

𝑆 (𝑡) =
𝜇𝜔 + 𝜑

𝜇 + 𝜑
− (𝑉
∗
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

�̃� (𝑡) =
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ (𝑉
∗
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

.

(5)

Consider that 𝑛𝑇 < 𝑡 ≤ (𝑛 + 1)𝑇, which is globally
asymptotically stable, where

𝑆
∗
=

(1 − 𝑝) (𝜑 + 𝜇𝜔) (1 − 𝑒
(𝜇+𝜑)𝑇

)

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
,

𝑉
∗
=

𝑝 (𝜇 + 𝜑) + 𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒
−(𝜇+𝜑)𝑇

]

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
.

(6)
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Proof. It is easy to obtain the analytical solution of (4)
between pulses as follows:

𝑆 (𝑡) =
𝜑 + 𝜔𝜇

𝜇 + 𝜑
+ [𝑆 (𝑛𝑇

+
) + 𝑉 (𝑛𝑇

+
) − 1] 𝑒

−𝜇(𝑡−𝑛𝑇)

− (𝑉 (𝑛𝑇
+
) −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

𝑉 (𝑡) =
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ (𝑉 (𝑛𝑇

+
) −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

𝑛𝑇 ≤ 𝑡 ≤ (𝑛 + 1) 𝑇.

(7)

Furthermore, after each successive pulse, we can deduce the
following stroboscopic map:

𝑆 [(𝑛 + 1) 𝑇
+
]

= (1 − 𝑝) {
𝜑 + 𝜔𝜇

𝜇 + 𝜑
+ [𝑆 (𝑛𝑇

+
) + 𝑉 (𝑛𝑇

+
) − 1] 𝑒

−𝜇𝑇
}

− (1 − 𝑝) (𝑉 (𝑛𝑇
+
) −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)𝑇

,

V [(𝑛 + 1) 𝑇+]

=
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ 𝑝𝑆 (𝑛𝑇

+
) 𝑒
−𝜇𝑇

+
𝑝 (𝜑 + 𝜔𝜇)

𝜇 + 𝜑
(1 − 𝑒

−𝜇𝑇
)

+ (𝑉 (𝑛𝑇
+
) −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) [(1 − 𝑝) 𝑒

−(𝜇+𝜑)𝑇
+ 𝑝𝑒
−𝜇𝑇

] .

(8)

Denote 𝑥
𝑛

= 𝑆(𝑛𝑇
+
), 𝑦
𝑛

= 𝑉(𝑛𝑇
+
); then we have the

following equations:

𝑥
(𝑛+1)

= (1 − 𝑝) {
𝜑 + 𝜔𝜇

𝜇 + 𝜑
+ [𝑥
𝑛
+ 𝑦
𝑛
− 1] 𝑒

−𝜇𝑇
}

− (1 − 𝑝) (𝑦
𝑛
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)𝑇

,

𝑦
(𝑛+1)

=
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ 𝑝𝑥
𝑛
𝑒
−𝜇𝑇

+
𝑝 (𝜑 + 𝜔𝜇)

𝜇 + 𝜑
(1 − 𝑒

−𝜇𝑇
)

+ (𝑦
𝑛
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) [(1 − 𝑝) 𝑒

−(𝜇+𝜑)𝑇
+ 𝑝𝑒
−𝜇𝑇

] .

(9)

The unique positive fixed point is (𝑥∗, 𝑦∗), where

𝑥
∗
=

(1 − 𝑝) (𝜑 + 𝜇𝜔) (1 − 𝑒
(𝜇+𝜑)𝑇

)

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
,

𝑦
∗
=

𝑝 (𝜇 + 𝜑) + 𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒
−(𝜇+𝜑)𝑇

]

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
.

(10)

So, (4) has a unique period solution with initial values of
𝑆(0
+
) = 𝑥
∗
, 𝑉(0
+
) = 𝑦
∗.

In the following we prove the global stability of the period
solution, and it suffices to prove the global stability of the fixed
point (𝑥∗, 𝑦∗).The proof is similar to the proof of Lemma 2.1
in [22], so we omit the subsequent proof.

Lemma 2 (see [27]). Assume that the sequence {𝑡
𝑘
} satisfies

0 ≤ 𝑡
0
< 𝑡
1
< 𝑡
2
⋅ ⋅ ⋅ with limk→ tk = ∞. Let𝑓(𝑡, 𝑥) : 𝑅

+
→ 𝑅
𝑛

be quasi-monotone nondecreasing in x for each t, and 𝜓
𝑘
(𝑢) ∈

𝐶[𝑅
𝑛
, 𝑅
𝑛
] is nondecreasing in u for 𝑘 = 1, 2, . . .. Suppose that

𝑢(𝑡), V(𝑡) ∈ 𝑃𝐶([𝑡
0
,∞], 𝑅

𝑛
) satisfy

𝐷
+
𝑢 (𝑡) ≤ 𝑓 (𝑡, 𝑢 (𝑡)) , 𝑡 ≥ 𝑡

0
,

𝑢 (𝑡
+

𝑘
) ≤ 𝜓
𝑘
(𝑢 (𝑡
𝑘
)) , 𝑘 ∈ 𝑁,

𝐷
+V (𝑡) ≥ 𝑓 (𝑡, V (𝑡)) , 𝑡 ≥ 𝑡

0
,

V (𝑡+
𝑘
) ≥ 𝜓
𝑘
(V (𝑡
𝑘
)) , 𝑘 ∈ 𝑁.

(11)

Then 𝑢
0
≤ V
0
implies that 𝑢(𝑡) ≤ V(𝑡) for 𝑡 ≥ 𝑡

0
.

Lemma 3 (see [28]). Consider the following equation: 𝑢(𝑡) =
𝑎
1
𝑢(𝑡 − 𝜏) − 𝑎

2
𝑢(𝑡), where 𝑎

1
> 0, 𝑎

2
> 0, 𝜏 > 0, and 𝑢(𝑡) > 0

for −𝜏 ≤ 𝑡 ≤ 0. We have

lim
𝑡→∞

𝑢 (𝑡) = {
0, if 𝑎

1
< 𝑎
2
,

+∞, if 𝑎
1
> 𝑎
2
.

(12)

3. Stability and Persistence

3.1. Global Stability of the Disease-Free Periodic Solution.
Now we will prove the disease-free periodic solution (𝑆(𝑡),

0, 0, �̃�(𝑡)) is locally stable and globally attractive. We first
demonstrate the existence of the disease-free periodic solu-
tion, in which infectious individuals are entirely absent from
the population permanently; that is, 𝐼

1
(𝑡) ≡ 0 and 𝐼

2
(𝑡) ≡ 0

for all 𝑡 > 0. Under this condition, the growth of susceptible
individuals must satisfy

𝑆

(𝑡) = 𝜇𝜔 − 𝜇𝑆 + 𝜑𝑉,

𝑉

(𝑡) = 𝜇 (1 − 𝜔) − (𝜇 + 𝜑)𝑉,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑆 (𝑡
+
) = (1 − 𝑝) 𝑆 (𝑡) ,

𝑉 (𝑡
+
) = 𝑉 (𝑡) + 𝑝𝑆 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(13)

By Lemma 1, we obtain the periodic solution of system (13):

𝑆 (𝑡) =
𝜇𝜔 + 𝜑

𝜇 + 𝜑
− (𝑉
∗
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

�̃� (𝑡) =
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ (𝑉
∗
−
𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

(14)
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where

𝑆
∗
=

(1 − 𝑝) (𝜑 + 𝜇𝜔) (1 − 𝑒
(𝜇+𝜑)𝑇

)

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
,

𝑉
∗
=

𝑝 (𝜇 + 𝜑) + 𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒
−(𝜇+𝜑)𝑇

]

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]

(15)

is globally asymptotically stable. Hence, the system (2) has a
disease-free periodic solution (𝑆(𝑡), 0, 0, �̃�(𝑡)).

Denote

R
1
=

𝑒
−𝜇𝜏

∫
𝑇

0
𝛽 (𝑆 + 𝜃�̃�) 𝑑𝑡

𝑇 [𝜇 + (1 − 𝑞) 𝛾
1
]

,

R
2
=

𝑒
−𝜇𝜏

∫
𝑇

0
𝜀𝛽 (𝑆 + 𝜃�̃�) 𝑑𝑡

𝑇 [(1 − 𝜔𝜐) 𝜇 + 𝜇
1
+ 𝛾
2
]
.

(16)

Theorem 4. Let (𝑆(𝑡), 𝐼
1
(𝑡), 𝐼
2
(𝑡), 𝑉(𝑡)) be any solution of

(2); then the disease-free periodic solution (𝑆(𝑡), 0, 0, �̃�(𝑡)) is
globally asymptotically stable provided thatR

1
< 1 andR

2
<

1.

Proof. Since R
1
< 1 and R

2
< 1, we can choose 𝜀

1
> 0

sufficiently small such that

𝑒
−𝜇𝜏

∫

𝑇

0

[𝛽 (𝑆 + 𝜃�̃�) + 𝛽𝜀
1
(1 + 𝜃)] 𝑑𝑡

< 𝑇 [𝜇 + (1 − 𝑞) 𝛾
1
] ,

(17)

𝑒
−𝜇𝜏

∫

𝑇

0

[𝜀𝛽 (𝑆 + 𝜃�̃�) + 𝜀𝛽𝜀
1
(1 + 𝜃)] 𝑑𝑡

< 𝑇 [(1 − 𝜔𝜐) 𝜇 + 𝜇
1
+ 𝛾
2
] .

(18)

From the equations of system (2), we have 𝑆(𝑡) < 𝜇𝜔−𝜇𝑆+𝜑𝑉
and𝑉(𝑡) < 𝜇(1−𝜔)−(𝜇+𝜑)𝑉; thenwe consider the following
comparison system with pulse:

𝑠

(𝑡) = 𝜇𝜔 − 𝜇𝑠 + 𝜑V,

V (𝑡) = 𝜇 (1 − 𝜔) − (𝜇 + 𝜑) V,

̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑠 (𝑡
+
) = (1 − 𝑝) 𝑠 (𝑡) ,

V (𝑡+) = V (𝑡) + 𝑝𝑠 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(19)

In view of Lemma 1, we obtain

𝑠 (𝑡) =
𝜇𝜔 + 𝜑

𝜇 + 𝜑
− (V∗ −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

V̂ (𝑡) =
𝜇 (1 − 𝜔)

𝜇 + 𝜑
+ (V∗ −

𝜇 (1 − 𝜔)

𝜇 + 𝜑
) 𝑒
−(𝜇+𝜑)(𝑡−𝑛𝑇)

,

(20)

where

𝑠
∗
=

(1 − 𝑝) (𝜑 + 𝜇𝜔) (1 − 𝑒
(𝜇+𝜑)𝑇

)

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
,

V∗ =
𝑝 (𝜇 + 𝜑) + 𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒

−(𝜇+𝜑)𝑇
]

(𝜇 + 𝜑) [1 − (1 − 𝑝) 𝑒−(𝜇+𝜑)𝑇]
.

(21)

By Lemma 2 there exists an integer 𝑘
1
, such that

𝑆 (𝑡) ≤ 𝑠 (𝑡) < 𝑠 (𝑡) + 𝜀
1
= 𝑆
Δ
,

𝑉 (𝑡) ≤ V (𝑡) < V̂ (𝑡) + 𝜀
1
= 𝑉
Δ
,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇, 𝑛 > 𝑘
1
.

(22)

Furthermore, from the second and third equations, we have

𝐼


1
(𝑡) + 𝐼



2
(𝑡)

≤ [𝑒
−𝜇𝜏

𝛽 (𝑆
Δ
+ 𝜃𝑉
Δ
) 𝐼
1
(𝑡 − 𝜏) − (𝜇 + (1 − 𝑞) 𝛾

1
) 𝐼
1
(𝑡)]

+ [𝜀𝛽𝑒
−𝜇𝜏

(𝑆
Δ
+ 𝜃𝑉
Δ
) 𝐼
2
(𝑡 − 𝜏)

− (𝜇 − 𝜇𝜐𝜔 + 𝜇
1
+ 𝛾
2
) 𝐼
2
(𝑡)] ,

(23)

for 𝑡 ̸= 𝑛𝑇, 𝑛 > 𝑘
1
. Then, according to (17) and Lemma 3, we

have 𝐼
1
(𝑡) + 𝐼



2
(𝑡) ≤ 0. So, lim

𝑘→∞
(𝐼
1
(𝑡) + 𝐼

2
(𝑡)) = 0; there

must exist an integer 𝑘
2
> 𝑘
1
, such that 𝐼

1
(𝑡) < 𝜀

2
, 𝐼
2
(𝑡) < 𝜀

3

for all 𝑡 > 𝑘
2
𝑇.

When 𝑡 > 𝑘
2
𝑇, from the first equation of system (2), we

have

𝑆

(𝑡) > 𝜇𝜔 (1 − 𝜐𝜀

3
) + 𝜑𝑉 − (𝜇 + 𝛽𝜀

2
+ 𝜀𝛽𝜀
3
) 𝑆,

𝑉

(𝑡) > 𝜇 (1 − 𝜔) − 𝜃 (𝛽𝜀

2
+ 𝜀𝛽𝜀
3
) 𝑉 − (𝜇 + 𝜑)𝑉.

(24)

Consider the following comparison impulsive differential
equation for all 𝑡 > 𝑘

2
𝑇:

𝑠


1
(𝑡) = 𝜇𝜔 (1 − 𝜐𝜀

3
) + 𝜑V

1
− (𝜇 + 𝛽𝜀

2
+ 𝜀𝛽𝜀
3
) 𝑠
1
,

V
1
(𝑡) = 𝜇 (1 − 𝜔) − 𝜃 (𝛽𝜀

2
+ 𝜀𝛽𝜀
3
) V
1
− (𝜇 + 𝜑) V

1
,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑠
1
(𝑡
+
) = (1 − 𝑝) 𝑠

1
(𝑡) ,

V
1
(𝑡
+
) = V
1
(𝑡) + 𝑝𝑠

1
(𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(25)
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By Lemma 1, we have the unique periodic solution of system
(25) given by

𝑠
1
=

𝜇𝜔 (1 − 𝜐𝜀
3
) + 𝜑

𝜑 + 𝜇 + 𝛽𝜀
2
+ 𝜀𝛽𝜀
3

− (V∗
1
−

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝜀
2
+ 𝜀𝛽𝜀
3
)
)

× 𝑒
−[𝜃(𝛽𝜀

2
+𝜀𝛽𝜀
3
)+𝜇+𝜑](𝑡−𝑛𝑇)

,

Ṽ
1
=

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝜀
2
+ 𝜀𝛽𝜀
3
)

+ (V∗
1
−

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝜀
2
+ 𝜀𝛽𝜀
3
)
)

× 𝑒
−[𝜃(𝛽𝜀

2
+𝜀𝛽𝜀
3
)+𝜇+𝜑](𝑡−𝑛𝑇)

,

(26)

where

𝑠
∗

1
=

(1 − 𝑝) (𝜇𝜔 (1 − 𝜐𝜀
3
) + 𝜑) (1 − 𝑒

(𝜃(𝛽𝜀
2
+𝜀𝛽𝜀
3
)+𝜇+𝜑)𝑇

)

(𝜑 + 𝜇 + 𝛽𝜀
2
+ 𝜀𝛽𝜀
3
) [1 − (1 − 𝑝) 𝑒−(𝜃(𝛽𝜀2+𝜀𝛽𝜀3)+𝜇+𝜑)𝑇]

,

V∗
1
= (𝑝 (𝜑 + 𝜇 + 𝛽𝜀

2
+ 𝜀𝛽𝜀
3
)

+𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒
−(𝜃(𝛽𝜀

2
+𝜀𝛽𝜀
3
)+𝜇+𝜑)𝑇

])

× ((𝜑 + 𝜇 + 𝛽𝜀
2
+ 𝜀𝛽𝜀
3
)

× [1 − (1 − 𝑝) 𝑒
−(𝜃(𝛽𝜀

2
+𝜀𝛽𝜀
3
)+𝜇+𝜑)𝑇

])
−1

.

(27)

By comparison theorem, there exists an integer 𝑘
3
> 𝑘
2
such

that

𝑆 (𝑡) > 𝑠
1
(𝑡) > 𝑠

1
− 𝜀
4
,

𝑉 (𝑡) > V
1
(𝑡) > Ṽ

1
− 𝜀
4
,

𝑛𝑇 < 𝑡 ≤ (𝑛 + 1) 𝑇.

(28)

Because 𝜀
1
, 𝜀
2
, 𝜀
3
, and 𝜀

4
are sufficiently small, it follows from

(22) and (28) that lim
𝑡→∞

𝑆(𝑡) = 𝑆
∗
(𝑡), lim

𝑡→∞
𝑉(𝑡) = 𝑉

∗
(𝑡).

Therefore, the disease-free solution (𝑆(𝑡), 0, 0, �̃�(𝑡)) of system
(2) is globally attractive. The proof is completed.

Theorem 4 determines the global attractiveness of (2) in
Ω for the cases R

1
< 1 and R

2
< 1. Its epidemiological

implication is that the infectious population vanishes in time
so the disease dies out.

3.2. Persistence. In this section we say the disease is endemic
if the infectious population persists above a certain positive
level for sufficiently large time. The endemicity of the disease
can be well captured and studied through the notion of
uniform persistence.

Definition 5. System (2) is said to be uniformly persistent if
there exist positive constants 𝑀

𝑖
≥ 𝑚
𝑖
, 𝑖 = 1, 2, 3 (both are

independent of the initial values), such that every solution
(𝑆(𝑡), 𝐼

1
(𝑡), 𝐼
2
(𝑡), 𝑉(𝑡)) with positive initial conditions of sys-

tem (2) satisfies

𝑚
1
≤ 𝑆 (𝑡) ≤ 𝑀

1
,

𝑚
2
≤ 𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≤ 𝑀

2
,

𝑚
3
≤ 𝑉 (𝑡) ≤ 𝑀

3
.

(29)

Theorem 6. If R
1
> 1 and R

2
> 1, then there is a positive

constant 𝑚
𝐼
such that each positive solution (𝐼

1
(𝑡), 𝐼
2
(𝑡)) of

system (2) satisfies 𝐼
1
(𝑡) + 𝐼

2
≥ 𝑚
𝐼
for all 𝑡 sufficiently large.

Proof. Let (𝑆(𝑡), 𝐼
1
(𝑡), 𝐼
2
(𝑡), 𝑉(𝑡)) be any solution with initial

values of system (2); then it is obvious that 𝑆(𝑡) ≤ 1, 𝐼
1
(𝑡) ≤ 1,

𝐼
2
(𝑡) ≤ 1, and 𝑉(𝑡) ≤ 1 for all 𝑡 > 0. We are left to prove

that there exist positive constants 𝑚
𝑆
, 𝑚
𝐼
, 𝑚
𝑉
, and 𝑡

0
(𝑡
0
is

sufficiently large) such that 𝑆(𝑡) ≥ 𝑚
𝑆
, 𝐼
1
(𝑡) + 𝐼

2
≥ 𝑚
𝐼
, and

𝑉(𝑡) ≥ 𝑚
𝑉
for all 𝑡 > 𝑡

0
.

Firstly, from the first equation of system (2), we have

𝑆

(𝑡) > 𝜇𝜔 (1 − 𝜐) − (𝜇 + 𝛽 + 𝜀𝛽) 𝑆 + 𝜑𝑉,

𝑉

(𝑡) > 𝜇 (1 − 𝜔) − (𝜇 + 𝜑 + 𝜃 (𝛽 + 𝜀𝛽))𝑉.

(30)

Consider the following comparison equations:

𝑢


1
(𝑡) = 𝜇𝜔 (1 − 𝜐) − (𝜇 + 𝛽 + 𝜀𝛽) 𝑆 + 𝜑𝑉,

𝑢


2
(𝑡) = 𝜇 (1 − 𝜔) − (𝜇 + 𝜑 + 𝜃 (𝛽 + 𝜀𝛽))𝑉,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+

𝑢
1
(𝑡
+
) = (1 − 𝑝) 𝑠 (𝑡) ,

𝑢
2
(𝑡
+
) = V (𝑡) + 𝑝𝑠 (𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(31)

By Lemma 1 and the comparison theorem there exist 𝑢∗
1
, 𝑢∗
2
;

we know that for any sufficiently small 𝜀
0
> 0, there exists a

𝑡
0
(𝑡
0
is sufficiently large) such that

𝑆 (𝑡) ≥ 𝑢
1
(𝑡) > 𝑢

∗

1
(𝑡) − 𝜀

0
= 𝑚
𝑆
> 0,

𝑉 (𝑡) ≥ 𝑢
2
(𝑡) > 𝑢

∗

2
(𝑡) − 𝜀

0
= 𝑚
𝑉
> 0.

(32)

Next, we will prove that there exist 𝑚
𝐼
> 0 and a sufficiently

large 𝑡
0
such that 𝐼

1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

𝐼
for all 𝑡 > 𝑡

0
.

Since R
1
> 1 and R

2
> 1, there exist 𝑚∗

𝐼
> 0 and 𝜀 > 0

sufficiently small such that

𝑒
−𝜇𝜏

∫

𝑇

0

[𝛽 (𝜂
1
+ 𝜃𝜂
2
)] − 𝑇 (𝜇 + (1 − 𝑞) 𝛾

1
) > 0,

𝑒
−𝜇𝜏

∫

𝑇

0

[𝜀𝛽 (𝜂
1
+ 𝜃𝜂
2
)] + 𝑇 [𝜇𝜐𝜔 − (𝜇 + 𝜇

1
+ 𝛾
2
)] > 0,

(33)

where 𝜂
1
and 𝜂
2
are as in (38).

We claim that for any 𝑡
0
> 0, it is impossible that 𝐼

1
(𝑡) +

𝐼
2
(𝑡) < 𝑚

∗

𝐼
for all 𝑡 ≥ 𝑡

0
. Suppose that the claim is not valid.
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There exists a 𝑡
0
> 0 such that 𝐼

1
(𝑡)+𝐼
2
(𝑡) < 𝑚

∗

𝐼
for all 𝑡 ≥ 𝑡

0
. It

follows from the first and fourth equations of system (2) that
for 𝑡 ≥ 𝑡

0
,

𝑆

(𝑡) > 𝜇𝜔 (1 − 𝜐𝑚

∗

𝐼
) − (𝜇 + 𝛽𝑚

∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
) 𝑆 + 𝜑𝑉,

𝑉

(𝑡) > 𝜇 (1 − 𝜔) − [𝜇 + 𝜑 + 𝜃 (𝛽𝑚

∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)] 𝑉.

(34)

Consider the comparison impulsive system for 𝑡 ≥ 𝑡
0
:

𝑢


3
(𝑡) = 𝜇𝜔 (1 − 𝜐𝑚

∗

𝐼
) − (𝜇 + 𝛽𝑚

∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
) 𝑆 + 𝜑𝑉,

𝑢


4
(𝑡) = 𝜇 (1 − 𝜔) − (𝜇 + 𝜑 + 𝜃 (𝛽𝑚

∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)) 𝑉,

𝑡 ̸= 𝑛𝑇, 𝑛 ∈ 𝑍
+
,

𝑢
3
(𝑡
+
) = (1 − 𝑝) 𝑠

1
(𝑡) ,

𝑢
4
(𝑡
+
) = V
1
(𝑡) + 𝑝𝑠

1
(𝑡) ,

𝑡 = 𝑛𝑇, 𝑛 ∈ 𝑍
+
.

(35)

According to Lemma 1, (35) have unique periodic solution

�̃�
3
=

𝜇𝜔 (1 − 𝜐𝑚
∗

𝐼
) + 𝜑

𝜑 + 𝜇 + 𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼

− (𝑢
∗

4
−

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)
)

× 𝑒
−[𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑](𝑡−𝑛𝑇)

,

�̃�
4
=

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)

+ (𝑢
∗

4
−

𝜇 (1 − 𝜔)

(𝜇 + 𝜑) 𝜃 (𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)
)

× 𝑒
−[𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑](𝑡−𝑛𝑇)

,

(36)

where

𝑢
∗

3
= ((1 − 𝑝) (𝜇𝜔 (1 − 𝜐𝑚

∗

𝐼
) + 𝜑)

× (1 − 𝑒
(𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑)𝑇

))

× ((𝜑 + 𝜇 + 𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)

× [1 − (1 − 𝑝) 𝑒
−(𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑)𝑇

])

−1

,

𝑢
∗

4
= (𝑝 (𝜑 + 𝜇 + 𝛽𝑚

∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)

+𝜇 (1 − 𝑝) (1 − 𝜔) [1 − 𝑒
−(𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑)𝑇

])

× ((𝜑 + 𝜇 + 𝛽𝑚
∗

𝐼
+ 𝜀𝛽𝑚

∗

𝐼
)

× [1 − (1 − 𝑝) 𝑒
−(𝜃(𝛽𝑚

∗

𝐼
+𝜀𝛽𝑚

∗

𝐼
)+𝜇+𝜑)𝑇

])

−1

.

(37)

So there exists 𝑇
1
> 𝑡
0
such that

𝑆 (𝑡) > �̃�
3
(𝑡) − 𝜀 = 𝜂

1
,

𝑉 (𝑡) > �̃�
4
(𝑡) − 𝜀 = 𝜂

2
,

(38)

for all 𝑡 > 𝑇
1
.

We denote
Π (𝑡) = 𝐼

1
(𝑡) + 𝐼

2
(𝑡)

+ 𝛽𝑒
−𝜇𝜏

∫

𝑡

𝑡−𝜏

𝐼
1
(𝜉) [𝑆 (𝜉) + 𝜃𝑉 (𝜉)] 𝑑𝜉

+ 𝛽𝜀𝑒
−𝜇𝜏

∫

𝑡

𝑡−𝜏

𝐼
2
(𝜉) [𝑆 (𝜉) + 𝜃𝑉 (𝜉)] 𝑑𝜉.

(39)

From (2), we have

Π

(𝑡) = [𝛽𝑒

−𝜇𝜏
(𝑆 + 𝜃𝑉) − (𝜇 + (1 − 𝑞) 𝛾

1
)] 𝐼
1
(𝑡)

+ [𝜀𝛽𝑒
−𝜇𝜏

(𝑆 + 𝜃𝑉) + 𝜇𝜐𝜔 − (𝜇 + 𝜇
1
+ 𝛾
2
)] 𝐼
2
(𝑡)

≥ [𝛽𝑒
−𝜇𝜏

(𝜂
1
+ 𝜃𝜂
2
) − (𝜇 + (1 − 𝑞) 𝛾

1
)] 𝐼
1
(𝑡)

+ [𝜀𝛽𝑒
−𝜇𝜏

(𝜂
1
+ 𝜃𝜂
2
) + 𝜇𝜐𝜔 − (𝜇 + 𝜇

1
+ 𝛾
2
)] 𝐼
2
(𝑡)

(40)

for 𝑡 > 𝑇
1
.

From (33), we obtain Π(𝑡) > 0, for 𝑡 > 𝑇
1
, which implies

that Π(𝑡) → ∞, 𝑡 → ∞. This is contrary to the fact that
Π(𝑡) is bounded. Hence, there exists a 𝑡

1
> 0 such that 𝐼

1
(𝑡
1
)+

𝐼
2
(𝑡
1
) ≥ 𝑚

∗

𝐼
.

Next we prove that there exists a𝑚
𝐼
such that any positive

solution of (2) satisfies lim
𝑡→∞

inf 𝐼
1
(𝑡) + 𝐼

2
(𝑡) > 𝑚

𝐼
.

Define

𝑚
𝐼
= min{

𝑚
∗

𝐼

2
, 𝑞
1
} , 𝑞

1
= 𝑚
∗

𝐼
𝑒
−Λ𝜏

, (41)

where Λ = max{𝜇 + (1 − 𝑞)𝛾
1
, (1 − 𝜔𝜐)𝜇 + 𝜇

1
+ 𝛾
2
}.

First, if 𝐼
1
(𝑡) + 𝐼

2
(𝑡) > 𝑚

∗

𝐼
for all 𝑡 > 𝑡

1
, then our aim is

obtained.
Second 𝐼

1
(𝑡) + 𝐼

2
(𝑡) oscillates about 𝑚∗

𝐼
for all large 𝑡;

setting 𝑡∗ = inf
𝑡>𝑡
1

𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≤ 𝑚

∗

𝐼
, there are two possible

cases for 𝑡∗.
We hope to show that 𝐼

1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

𝐼
for all large 𝑡. The

conclusion is evident in the first case. For the second case, let
𝑡
∗
> 0 and 𝜌 > 0 satisfy 𝐼

1
(𝑡
∗
)+𝐼
2
(𝑡
∗
) = 𝐼
1
(𝑡
∗
+𝜌)+𝐼

2
(𝑡
∗
+𝜌) =

𝑚
∗

𝐼
, and 𝐼

1
(𝑡) + 𝐼

2
(𝑡) < 𝑚

∗

𝐼
, 𝑆(𝑡) > 𝜂 for 𝑡∗ < 𝑡 < 𝑡

∗
+ 𝜌.

Therefore, it is certain that there exists a 𝑔 ( 0 < 𝑔 < 𝜏) such
that

𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≥

𝑚
∗

𝐼

2
for 𝑡∗ < 𝑡 < 𝑡∗ + 𝑔. (42)

In this case, we will discuss three possible cases in terms of
the sizes of 𝑔, 𝜌, and 𝜏.

Case I. If 𝜌 ≤ 𝑔 < 𝜏, then 𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

∗

𝐼
/2 for 𝑡∗ < 𝑡 <

𝑡
∗
+ 𝜌.

Case II. If 𝑔 ≤ 𝜌 ≤ 𝜏, then from equations of system (2), we
can deduce 𝐼

1
(𝑡) + 𝐼



2
(𝑡) > −Λ𝐼(𝑡), where Λ = max{𝜇 + (1 − 𝑞)
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Figure 2: The effect of vaccine efficacy on the number of (a) susceptible individuals, (b) latently infected, (c) acute infectors, and (d) chronic
sufferers. The parameters are 𝜇 = 0.1; 𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 3; 𝜀 = 0.016; 𝛾

2
= 0.025; 𝜇

1
= 0.28; 𝜏 = 10; 𝜔 = 0.2; 𝑞 = 0.4; 𝛾

1
= 0.4; 𝜃 = 0.3;

𝑝 = 0.6; the initial values are 𝑆(0) = 0.1; 𝐿(0) = 0.05; 𝐼
1
(0) = 0.05; 𝐼

2
(0) = 0.05; 𝑉(0) = 0.1; 𝑅(0) = 0.1.

𝛿
1
, (1 −𝜔𝜐)𝜇+𝜇

1
+𝛾
2
} for 𝑡 ∈ [𝑡∗, 𝑡∗ +𝜏] and 𝐼

1
(𝑡
∗
) + 𝐼
2
(𝑡
∗
) =

𝑚
∗

𝐼
; it is obvious that 𝐼

1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑞

1
for 𝑡∗ < 𝑡 < 𝑡∗ + 𝑔.

Case III. If 𝑔 ≤ 𝑇 ≤ 𝜌, we will consider the following two
cases, respectively.

Case IIIa. For 𝑡∗ < 𝑡 < 𝑡∗ +𝜏, it is easy to obtain 𝐼
1
(𝑡)+ 𝐼

2
(𝑡) >

𝑞
1
.

Case IIIb. For 𝑡∗ + 𝜏 < 𝑡 < 𝑡
∗
+ 𝜌, it is easy to obtain

𝐼
1
(𝑡) + 𝐼

2
(𝑡) > 𝑞

1
. Then, proceeding exactly as the proof for

the above claim, we see that 𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

𝐼
for 𝑡∗ + 𝜏 < 𝑡 <

𝑡
∗
+ 𝜌. Since this kind of interval [𝑡∗, 𝑡∗ + 𝜌] is chosen in an

arbitrary way (we only need 𝑡∗ to be large), we conclude that
𝐼
1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

𝐼
for all large 𝑡 in the second case. In view

of our above discussions, the choices of 𝑚
𝐼
are independent

of the positive solution, and we have proved that any positive
solution of (2) satisfies 𝐼

1
(𝑡) + 𝐼

2
(𝑡) ≥ 𝑚

𝐼
for all large 𝑡. The

proof is completed.

4. Numerical Simulations

In this section, we present some numerical simulations to
demonstrate the transmission dynamic of HBV. According to
the natural history of HBV transmission and prior research
[10, 12], we set some parameter values of the model: 𝜇 = 0.1;
𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 3; 𝜀 = 0.016; 𝛾

2
= 0.025; 𝜇

1
= 0.28;

𝜏 = 10; 𝜔 = 0.2; 𝑞 = 0.4; 𝛾
1
= 0.4; 𝜃 = 0.3; 𝑝 = 0.6.

And we choose 𝜃 = 0.1, 0.3, respectively; the number of
susceptible individuals, latently infected, acute infectors and
chronic sufferers are seen in Figure 2. It is easy to see that the
lower of 𝜃 (the higher of vaccine efficacy) the fewer of the
number of infected individuals. So, knowing the efficacy of
HBV vaccine is necessary for the extinct of disease.

In order to find better control strategies for HBV infec-
tion, we would like to see what parameters can affect the
change of the acute infectors number. From Figure 3(a) we
can see that the increase of 𝑝 and decrease of 𝜃 will make the
number of acute infectors lower. If 𝜃 is higher, that is to say,
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Figure 3: The graphs of the number of acute infectors with some parameters: (a) 𝜇 = 0.1; 𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 12; 𝜀 = 0.16; 𝛾
2
= 0.025;

𝜇
1
= 0.028; 𝜏 = 5; 𝛾

1
= 0.4; 𝑞 = 0.4; 𝜔 = 0.2, surf 𝑝 ∈ [0, 1], 𝜃 ∈ [0, 0.3]. (b) 𝜇 = 0.1; 𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 12; 𝜀 = 0.16; 𝛾

2
= 0.025; 𝜇

1
= 0.028;

𝜏 = 5; 𝜔 = 0.2; 𝑞 = 0.4; 𝑝 = 0.6, surf 𝜃 ∈ [0, 0.3], 𝛾
1
∈ [0, 0.4]. (c) 𝜇 = 0.1; 𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 12; 𝜀 = 0.16; 𝛾

2
= 0.025; 𝜇

1
= 0.028; 𝜏 = 5;

𝜔 = 0.2; 𝜃 = 0.2; 𝑝 = 0.8, surf 𝛾
1
∈ [0, 0.4], 𝑞 ∈ [0, 0.4]. (d) 𝜇 = 0.1; 𝜐 = 0.1; 𝜑 = 0.1; 𝛽 = 12; 𝜀 = 0.16; 𝛾

2
= 0.025; 𝜇

1
= 0.028; 𝜏 = 5; 𝛾

1
= 0.4;

𝑞 = 0.4; 𝑝 = 0.6, surf 𝜃 ∈ [0, 0.3], 𝜔 ∈ [0, 0.2].

the efficacy of vaccination is lower, higher vaccination cannot
keep the disease extinct. So, to control the disease spread,
knowing the vaccine efficacy is important.

In Figure 3(b) we plot the number of acute infectors
which change with parameters 𝜃 and 𝛾

1
. We can see that with

the increase of 𝛾
1
the number of acute infectors decreases

even if the efficacy of vaccination is lower. That is to say, take
measures to cure the acute infectors in time is a necessary
method to decrease the number of acute infectors. So, doing
check regularly and treatment at early time are necessary. In
Figure 3(c) we find not only the increase of 𝛾

1
but also the

parameter 𝑞 has effect on the number of acute infections;
the higher the acute individuals treatment rate, the lower the
number of acute infections.

In Figure 3(d), we detect that the decrease of 𝜃 and
𝜔 will make the number of infected individuals lower. So
successful immunization of both newborns and susceptible
individuals is an efficient intervention strategy. The optimal
control strategy will be a combination of improving the
vaccine efficacy, increasing the immunization of newborns

and susceptible individuals, and increasing the treatment to
the acute infected individuals.

5. Conclusion

Hepatitis B virus is highly prevalent in many countries of
the world; we promote a new epidemic model based on the
spread characters of the HBV, and consider the fact that the
HepB vaccine is incomplete immunization in the vaccination
process. Our model is more approach to the realistic prob-
lem and different from [13, 14]. Moreover, the methods in
disposing the model are different from the existing results
because more factors are considered. We find when R

1
< 1

and R
2
< 1; the disease-free periodic solution is globally

attractive; if R
1
> 1 and R

2
> 1, the disease is permanent

by using the comparison theorem of impulsive differential
equation. By some simulation experiments, Figures 2 and
3 show some effects of parameters on the number of acute
individuals and provides an optimal control strategy for the
HBV transmission.
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