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We study the asymptotic behaviour of quasi-stationary solutions of a free boundary problem which had been discussed by Bueno
(2005). Using a simplermethodwe prove that the quasi-steady solutions of the problem converge uniformly to the unique nontrivial
steady solution.

1. Introduction

Tumor progression is a complex process. Understanding
its dynamics is one of the great challenges of modern
medical science. To describe the growth of solid tumors,
an increasing number of mathematical models in forms of
free boundary problems of partial differential equations have
been proposed and studied during the past several decades
(see e.g., [1–6] and the references cited therein). Analysis
of such mathematical models has drawn great interest, and
many results have been established, compared with [7–17]
and references therein. Analysis of such models can help us
to examine and distinguish different functions of different
mechanisms involved in tumor-growth process and may also
assist us in assessing effects of various drug treatments and
chemotherapy.

In this workwe give a remark to the asymptotic behaviour
of quasi-stationary solutions of a free boundary value prob-
lem that models the growth of a single nonnecrotic tumour,
which is supposed to be spherical. The model was initially
proposed by Byrne and Chaplain [3] and recently was studied
by Bueno et al. [7]. In [7] the authors established the exis-
tence of a nontrivial steady solution and conditions for the
existence and uniqueness of a quasi-steady solution for each
initial configuration. The authors also proved that all these
quasi-steady solutions converge uniformly to a nontrivial
steady solution. In this paper, we use a different method to

prove that all these quasi-steady solutions converge uniformly
to a nontrivial steady solution.

The general model is as follows:
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(1)

Equation (2) is a (dimensionless) reaction-diffusion equation
in 𝜎, where 𝜎 is the nutrient concentration and 𝑓(𝜎) is the
absorption rate. Moreover, with 𝜎 we denoted the external
concentration of nutrients. We assume that 𝑓(𝜎) ≥ 0 and
𝑓(𝜎) = 0 only occurs for a single value denoted by 𝜎. Let
𝜀 := 𝑇

1
/𝑇
2
be the ratio between the time necessary for the

diffusion of nutrients, 𝑇
1
, and the time interval, 𝑇

2
, elapsed

until the tumour doubles its size. Typical values for 𝑇
1
and

𝑇
2
are, respectively, of the order of minutes and days. Thus,
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𝜀 ≪ 1. Note that the condition (𝜕𝜎/𝜕𝑟)(0, 𝑡) = 0 follows
from the symmetry of the problem; it is necessary to produce
smooth solutions at the origin. 𝑆(𝜎) is the proliferation rate
function—the balance between the mitosis and death rates
generated by deficiency of nutrients (hypoxic apoptosis and
necrosis) of the cells. For details, please see [7]. In [7], the
authors only considered the case 𝜀 = 0, and the case 0 <
𝜀 ≪ 1 was studied by Cui and Friedman [9]. As that in [7],
to simplify the notation, we assume that 𝜎 = 0, 𝜎 = 1. Then
actually the model studied in [7] is as follows:
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Under the following assumptions

(H1) 𝑓 ∈ 𝐶1([0, 1]; 𝑅); 𝑓(𝜎) ≥ 0 for 0 ≤ 𝜎 ≤ 1; 𝑓(𝜎) =
0 ⇔ 𝜎 = 0;

(H2) 𝑆 ∈ 𝐶1([0, 1]; 𝑅); 𝑆(𝜎) > 0 for 0 ≤ 𝜎 ≤ 1; 𝑆(�̃�) =
0, 0 < �̃� < 1;

(H3) 𝑆(�̃�) = 0 for some value �̃� ∈ (0, 1);
the authors established the existence of a nontrivial steady
solution and conditions for the existence and uniqueness of a
quasi-steady solution for each initial configuration. Also, the
authors proved that all these quasi-steady solutions converge
uniformly to a nontrivial steady solution. In this paper
we use a different method to prove all these quasi-steady
solutions converge uniformly to a nontrivial steady solution.
The method used in this paper is simpler than that used in
[7].

2. Asymptotic Behavior of the
Solutions to (2)–(6)

From [7, 9], we know that if the assumptions (H1), (H2), and
(H3) hold, then the system (2)–(4) has a unique stationary
solution (𝜎

𝑠
(𝑟), 𝑅𝑠) = (𝑢(𝑟/𝑅

𝑠
, 𝑅
2

𝑠
), 𝑅
𝑠
).

Our main result is the followingTheorem.

Theorem 1. Assume that the assumptions (H1), (H2), and
(H3) are satisfied and let (𝜎(𝑟, 𝑡), 𝑅(𝑡)) be the solution of the
problem (2)–(6). Then for any 𝑅

0
> 0 one has

lim
𝑡→∞

𝑅 (𝑡) = 𝑅
𝑠
, lim

𝑡→∞

𝜎 (𝑟, 𝑡) = 𝜎
𝑠
(𝑟) . (7)

First we consider the following boundary value problem:

Δ
𝜌
𝑢 = 𝜆𝑓 (𝑢) , 0 < 𝜌 < 1,

𝜕𝑢

𝜕𝜌

(0, 𝜆) = 0, 𝑢 (1, 𝜆) = 1,

(8)

where 𝜆 is nonnegative parameter and Δ
𝜌
𝑢 =

(1/𝜌
2
)(𝜕/𝜕𝜌)(𝜌

2
(𝜕𝑢/𝜕𝜌)). Existence of a solution 𝑢 of

(8) follows readily from the upper and lower solution
method (see [18]) because it is clear that 𝑢 = 1 and 𝑢 = 0
are a pair of upper and lower solutions. Uniqueness of
the solution follows from the fact that the function 𝑓 is
monotone increasing. Denote the solution of (8) by 𝑢(𝜌, 𝜆).
Since (2) is autonomous, setting 𝜌 = 𝑟/𝑅, one can easily
check that 𝑢(𝑟/𝑅, 𝑅2) is a unique solution of (2)-(3) by the
fact that 𝜎(𝑟, 𝑡) = 𝑢(𝑟/𝑅, 𝑅2).

Lemma 2 (see [9, Lemma 3.1]). Assume that the assumption
(H1) is satisfied. Then the following assertions hold.

(i) For any 𝜆 ≥ 0, the problem (8) has the unique positive
solution 𝑢(𝜌, 𝜆), and

0 < 𝑢 (𝜌, 𝜆) ≤ 1 𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 1, 𝜆 ≥ 0,
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1

3
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(9)

(ii) 𝑢(𝜌, 𝜆) is continuously differentiable in𝜆 for all 0 ≤ 𝜌 ≤
1, 𝜆 ≥ 0, and

−
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6

≤

𝜕𝑢
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< 0 𝑓𝑜𝑟 0 ≤ 𝜌 ≤ 1, 𝜆 ≥ 0. (10)

Lemma 3. Consider the following problem

𝑥

(𝑡) = 𝑥 (𝑡) 𝑓 (𝑥 (𝑡)) , 𝑡 > 0,

𝑥 (0) = 𝑥
0
> 0.

(11)

Assume that 𝑓 is defined and continuously differentiable on
(0,∞) and 𝑓(𝑥) < 0 for all 𝑥 > 0. If there exists a unique
positive constant 𝑥

𝑠
such that 𝑓(𝑥

𝑠
) = 0, then there holds

lim
𝑡→∞

𝑥 (𝑡) = 𝑥
𝑠
. (12)

Proof. It is obvious there exists a unique solution to the
problem (11). In the following we prove the asymptotic
behavior of this solution. First we claim that if 𝑥

0
< 𝑥
𝑠
, then

𝑥(𝑡) < 𝑥
𝑠
for all 𝑡 > 0. If not, there exists a point 𝑡

0
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𝑥 (𝑡
0
) = 𝑥
𝑠
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(𝑡
0
) > 0, 𝑥 (𝑡) < 𝑥

𝑠
for 𝑡 < 𝑡

0
. (13)

On the other hand, noticing the conditions (H2) and (H3),
we obtain

𝑥

(𝑡
0
) = 𝑥 (𝑡

0
) 𝑓 (𝑥 (𝑡

0
)) = 𝑥

𝑠
𝑓 (𝑥
𝑠
) = 0, (14)

which is in contradiction with (13). Thus the claim is true.
Then 𝑥(𝑡) is monotone increasing and has a upper bound, so
𝑥(𝑡) has a limit as 𝑡 → ∞. This limit must be equal to 𝑥

𝑠
.

If 𝑥
0
> 𝑥
𝑠
, the proof is similar.

Proof of Theorem 1. Substituting 𝜎(𝑟, 𝑡) = 𝑢(𝑟/𝑅, 𝑅2) in (4),
one can get
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(15)
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where 𝜌 = 𝑟/𝑅, 𝜆 = 𝑅2. Direct computation yields
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(16)

where we have used the facts that 𝜕𝑢/𝜕𝜌 > 0 and 𝜕𝑢/𝜕𝜆 < 0
(see Lemma 2) and 𝑆(𝑢) > 0. By the fact that 𝐹(𝑥) = 0 has a
unique positive constant solution 𝑅

𝑠
under the assumptions

(H1), (H2), and (H3), by Lemma 3 one can get

lim
𝑡→∞

𝑅 (𝑡) = 𝑅
𝑠
, (17)

for any initial value 𝑅
0
> 0. By the fact that 𝜎(𝑟, 𝑡) =
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) and using Lemma 2 (ii), we have
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(18)

where 𝜉 = 𝜃
1
(𝑟/𝑅) + (1 − 𝜃

1
)(𝑟/𝑅
𝑠
), 𝜂 = 𝜃

2
𝑅
2
+ (1 − 𝜃

2
)𝑅
2

𝑠
,

𝜃
1
, 𝜃
2
∈ (0, 1). Thus lim

𝑡→∞
𝜎(𝑟, 𝑡) = 𝜎

𝑠
(𝑟) uniformly in

[0, 𝑅(𝑡)]. This completes the proof of Theorem 1.

In our work, like in [7], due to normalization, we have
considered 𝜎 = 0 and 𝜎 = 1. We recall that 𝜎 denotes the
only zero of the absorption rate 𝑓(𝜎), 𝜎 is the concentration
of nutrients at the border of the tumour, and �̃� is the zero of
the proliferation rate 𝑆(𝜎). We now state our conclusions for
regimes of growth in terms of generical values of 𝜎 and 𝜎 and
prove them.

We summarize the results as follows (see also in [7]).

(a) If 𝜎 < �̃� < 𝜎, then the nontrivial stationary solution is
globally asymptotically stable (and the trivial solution
unstable); that is, 𝑅(𝑡) → 𝑅

𝑠
for any value of 𝑅

0
=

𝑅(0) > 0. This case corresponds to 𝑆(0) < 0 < 𝑆(1)
and was proven inTheorem 1.

(b) If 𝜎 < 𝜎 < �̃�, then the trivial solution (which is
stationary) is globally asymptotically stable; that is,
𝑅(𝑡) → 0 for any value of 𝑅

0
= 𝑅(0) > 0. This case

corresponds to 𝑆(0) < 𝑆(1) < 0.
(c) If �̃� < 𝜎 < 𝜎, then 𝑅(𝑡) → ∞ for any value of 𝑅

0
=

𝑅(0) > 0. This case corresponds to 0 < 𝑆(0) < 𝑆(1).

Proof of (b). By (4), (15), and Lemma 2 (i), we have

𝑆 (0)

3

𝑅 (𝑡) = 𝑅∫

1

0

𝑆 (0) 𝜌
2
𝑑𝜌 ≤ 𝑅


(𝑡)

≤ 𝑅∫

1

0

𝑆 (1) 𝜌
2
𝑑𝜌 =

𝑆 (1)

3

𝑅 (𝑡) .

(19)

By (H2) and 𝜎 < 𝜎 < �̃�, we have 𝑆(0) < 𝑆(1) < 𝑆(�̃�) = 0; then
from (19) we have

𝑅
0
exp(𝑆 (0) 𝑡

3

) ≤ 𝑅 (𝑡) ≤ 𝑅
0
exp(𝑆 (1) 𝑡

3

) → 0,

𝑡 → ∞.

(20)

This verifies 𝑅(𝑡) → 0 for any value of 𝑅
0
= 𝑅(0) > 0 as

𝑡 → ∞.

Proof of (c). By (4), (15), and Lemma 2 (i), we have

𝑆 (0)

3

𝑅 (𝑡) = 𝑅∫

1

0

𝑆 (0) 𝜌
2
𝑑𝜌 ≤ 𝑅


(𝑡)

≤ 𝑅∫

1

0

𝑆 (1) 𝜌
2
𝑑𝜌 =

𝑆 (1)

3

𝑅 (𝑡) .

(21)

By (H2) and �̃� ≤ 𝜎 < 𝜎, we have 0 = 𝑆(�̃�) < 𝑆(0) < 𝑆(1); then
from (19) we have

𝑅
0
exp(𝑆 (0) 𝑡

3

) < 𝑅 (𝑡) ≤ 𝑅
0
exp(𝑆 (1) 𝑡

3

) . (22)

This verifies 𝑅(𝑡) → ∞ for any value of 𝑅
0
= 𝑅(0) > 0 as

𝑡 → ∞ since 𝑆(0) > 0.
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