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We address the problem of a new joint Doppler frequency shift (DFS) and direction of arrival (DOA) estimation for colocated
TDM-MIMO radar that is a novel technology applied to autocruise and safety driving system in recent years. The signal model
of colocated TDM-MIMO radar with few transmitter or receiver channels is depicted and “time varying steering vector” model is
proved. Inspired by sparse representations theory, we present a new processing scheme for joint DFS and DOA estimation based on
the new input signal model of colocated TDM-MIMO radar. An ultracomplete redundancy dictionary for angle-frequency space
is founded in order to complete sparse representations of the input signal.The SVD-SR algorithm which stands for joint estimation
based on sparse representations using SVD decomposition with OMP algorithm and the improved M-FOCUSS algorithm which
combines the classical M-FOCUSS with joint sparse recovery spectrum are applied to the new signal model’s calculation to solve
themultiple measurement vectors (MMV) problem.The improvedM-FOCUSS algorithm can workmore robust than SVD-SR and
JS-SR algorithms in the aspects of coherent signals resolution and estimation accuracy. Finally, simulation experiments have shown
that the proposed algorithms and schemes are feasible and can be further applied to practical application.

1. Introduction

It is a novel technology and worth studying deeply that
multiple-inputmultiple-output (MIMO) radar architecture is
applied to autocruise and safety driving system [1, 2]. Using
this technology we hope distance, velocity, and direction of
arrival (DOA) of multisource signals reflected by other auto-
mobiles near your own car can be measured simultaneously.
According to these estimated parameters the auto can take
measures to deal with all kinds of situations automatically
or warn the driver. MIMO radar architecture with colocated
transmitter (TX) and receiver (RX) antennas has a larger
virtual aperture [3]. The basic idea of virtual aperture is
shown in Figure 1. Here, we consider a uniform linear array
(ULA) with 𝑀 = 4 transmitters, 𝑁 = 4 receiver antennas,
and the receiver array spacing 𝑑. According to MIMO theory
we know that its virtual array consists of 16 virtual antennas in
Figure 1. So it can achieve a more accurate DOA and improve
multisource resolution in the same time. In recent years

sparse representations and compressed sensing algorithm
have been widely studied and some algorithms based on
sparse representations have been applied to DOA estimation
for MIMO radar [3–7]. DOA estimation algorithm based
on sparse representations and reconstruction theory has two
important advantages. One is that it can process coherent
signal; the other is that it can complete DOA estimation in
few snapshots.

Generally speaking, MIMO radars require more complex
hardware [8] when they can be realized by code, frequency.
MIMO system requires that the number of receiver channels
should be equal to the number of receiver antennas. More-
over, a difference in gain and phase between the receiver
channels deteriorates the accuracy significantly [8]. Mean-
while customers also demand an increased performance of
automotive radar sensor at low sensor costs with the devel-
opment of SiGe MMIC technology [2, 9]. The architecture
of the time division modulated (TDM) for MIMO (TDM-
MIMO) radars may be utilized for the purpose of economic
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Figure 1: MIMO radar system with𝑀 = 4 transmitters and𝑁 = 4 receiver antennas and its virtual array consists of 16 antennas.
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Figure 2: Example of a TDM scheme: 4 transmitters transmitting at
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and simple system design for autocruise and safety driving
system. Some receiver or transmitter channels may be cut
only by depending on switching different RX or TX antennas
in time domain.

A MIMO radar has the ability to transmit different,
noncoherent orthogonal signals from different positions
using an array of multiple transmitter antennas [10]. If TX
antennas could transmit signal at different times, only one TX
antenna is permitted to transmit signal during each period.
ThisMIMO radar system can be called as TDM-MIMO radar
system. For example, 4 TX antennas may transmit signal at
the schedule in Figure 2. Note that the signal phase related to
other receiver channels can be varying even if we are facing
one incident signal just because TX antennas transmit signal
at different time instants in one cycle and the target moving
conduces Doppler frequency shift.The steering vector model
of colocated TDM-MIMO radar is “time varying steering
vector” model [8]. Hence, the conventional algorithms such
as Capon and MUSIC [11–13] cannot process this kind of
input signal model directly. It is also very difficult to precisely
estimate DFS in advance in a short time for the practical
application of TDM-MIMO radar.

In recent years a new highly integrated SiGe MIMO
radar sensor has been developed [2, 14–16]. In these systems
the frequency-modulated continuous wave (FMCW) will be
radiated by transmitters. So DFS and high resolution DOA
estimation technology research are very important require-
ments for the application in autocruise and safety driving
system [16, 17].The specification of the automotive long range
radar (LRR) sensor includes a highDOA estimation accuracy
of 𝜃err ≤ 0.4

∘, an angular resolution of Δ𝜃 ≤ 3
∘, and target

ranges 𝑅 up to 200m with relative target velocities V between
−60m/s and 20m/s [18].

Facing the aforementioned applications and problems
of parameters estimation for TDM-MIMO radar, some
researchers proposed some methods to solve these problems.
For time-invariant steering vector model, the conventional
algorithms such as Capon beamformer [8], AM [18], and
MUSIC [16, 18] were applied. For time varying steering
vector model, the Cramer-Rao bound (CRB) of parameter
estimation for a TDM-MIMO radar with colocated antennas
was computed and an optimal TDM scheme was derived
[1, 19]. ISI-SAGE algorithm was tested to estimate DFS and
DOA jointly [20]. A new nonstationary version of Capon
beamforming was developed for the time varying steering
vector model [8].

In this paper, we offer a new insight into the joint DFS
andDOAestimation based on sparse representations for time
varying steering vector model of colocated TDM-MIMO
radar. An ultracomplete redundancy dictionary for angle-
frequency space is founded in order to complete sparse
representations for the input signal. The SVD-SR algorithm
which stands for joint estimation based on sparse represen-
tations using SVD decomposition with OMP algorithm and
the improved M-FOCUSS algorithm which combines the
classical M-FOCUSS algorithm with joint sparse recovery
spectrum are applied to the new model to solve MMV
problem. By using these algorithms, both the coherent signals
and uncorrelated signals can be distinguished successfully
and estimation accuracy can be further improved in the case
of MMV with low SNR.

This paper is concerned with issues of signal model
and signal processing for TDM-MIMO. The remainder of
this paper is organized as follows. We present the sig-
nal model in Section 2 firstly. Then sparse representations’
principle for TDM-MIMO model is discussed and angle-
frequency dictionary is designed in Section 3. How to deal
with jointDFS andDOAestimation basedMMVmodel using
SVD decomposition and improved M-FOCUSS algorithm is
demonstrated in detail in Section 4. In Section 5 simulation
results and some discussions are given. Finally, we conclude
our work in Section 6.

2. Signal Model

We consider a colocated MIMO radar consisting of a linear
receiver and transmitter array with isotropic antennas. The
moving target is modeled as a point source and the trans-
mitted signal is narrowband. The positions of the 𝑁RX RX
antennas and𝑀TX TX antennas are given in 𝑑RX ∈ R𝑁RX and
𝑑
TX

∈ R𝑀TX , respectively, in units of 2𝜋/𝜆, where 𝜆 is the
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Figure 3: Structure of the cycles in data acquisition.

carrier wavelength. The positions of the TX antennas in the
sequence in which they transmit are given in 𝑑

Pulse
∈ R𝑁Pulse .

𝑁Pulse is the number of transmitted pulses in a cycle. The
time instance at which the antennas transmit in a cycle is
given 𝑡 ∈ R𝑁Pulse . This means that the antenna with position
𝑑
Pulse
𝑖

transmits at time 𝑡
𝑖
; see Figure 2 for an example. So the

steering vector of the virtual array is given by

𝑎 (𝑢) = exp (𝑗 ⋅ 𝑑Virt𝑢) = exp (𝑗 ⋅ 𝑑Pulse𝑢) ⊗ exp (𝑗 ⋅ 𝑑RX𝑢) .
(1)

Here 𝑢 = sin(Θ) is the DOA of targets. 𝑦 = exp(𝑥)
is understood as an element-by-element operation 𝑦

𝑖
=

exp(𝑥
𝑖
). ⊗ is the Kronecker tensor product. stands for

column vector.
We assume a number of 𝐿measurement cycles where one

cycle consists of𝑁Pulse pulses. See Figure 3 for an example. 𝑡 =
[𝑡
1
, 𝑡
2
, 𝑡
3
, . . . , 𝑡

𝑁Pulse
]
𝑇. So the complex baseband signal 𝑦(𝑙) ∈

C𝑁Virt of cycle 𝑙 is given as

𝑦 (𝑙) = exp (−𝑗 ⋅ 𝛾𝜔
𝑑
) ⊙ 𝑎 (𝑢)

1

√𝑁Pulse
𝑠 (𝑙) + 𝑁 (𝑙) . (2)

Here ⊙ is the entrywise Hadamard product and 𝑁Virt =

𝑁Pulse ⋅ 𝑁RX is the number of virtual antennas. 𝑠(𝑙) ∈ C

is the target echo signal. 𝑁(𝑙) is additive complex Gaussian
noise with zero mean, spatially and temporally uncorrelated
with 𝐸(𝑁(𝑙)𝑁

𝐻
(𝑚)) = 𝛿

𝑙⋅𝑚
𝜎
2
𝐼 (𝐻 stands for Hermitian

transformation). The factor 1/√𝑁Pulse adjusts the signal
strength of one cycle, consisting of 𝑁Pulse pulses, according
to a constant transmitting energy. 𝜔

𝑑
stands for Doppler

frequency shift. Consider

𝛾 = 𝑡 ⊗ 1
𝑁RX

. (3)

Here 1
𝐾
is a vector of length𝑁RX with all elements equal to 1.

With the definition of a new steering vector,

𝑏 (𝑢, 𝜔
𝑑
) := exp (−𝑗 ⋅ 𝛾𝜔

𝑑
) ⊙ 𝑎 (𝑢) . (4)

the signal model can be written as

𝑦 (𝑙) = 𝑏 (𝑢, 𝜔
𝑑
) ⋅

1

√𝑁Pulse
𝑠 (𝑙) + 𝑁 (𝑙) , (5)

From formula (4), we will see that steering vector for input
model of colocated TDM-MIMO radar is “time varying
steering vector” model since there is 𝑡 item existing. In order
to complete the parameters estimationwemake the following
assumptions.

(1) The far field condition is satisfied. So DOA of one
target echo signal is the same for all receiver antennas.

(2) The DOA and the moving velocity of the target will
not change during one complete measurement. So
both DOA and DFS are constants during 𝐿measure-
ment cycles. In other words, the parameters’ changes
have smaller effect on the accuracy of parameters
estimation and these changes can be ignored.

(3) We consider a MIMO radar system with colocated
antennas; that is, the direction of departure (DOD)
and DOA are the same.

(4) Time of switching different TX and RX antennas or
channels is accurate; that is, the estimation error of 𝑡
vector is ignored.

3. Sparse Representations for
TDM-MIMO Receiver Signal

The signal sparse representations mean that a signal may
be represented in an ultracomplete redundancy dictionary.
Then we find the best linear combination of atoms to
represent original signal. Inspired by the literature [7], we
can establish an ultracomplete redundancy dictionary called
angle-frequency space to represent original signal 𝑦(𝑙) of
formula (5). The following is the angle-frequency dictionary
Ψ we designed:

Ψ = [Φ1 Φ
2
⋅ ⋅ ⋅ Φ

𝑝
⋅ ⋅ ⋅ Φ

𝑃] ∈ C
𝑁Virt×𝑃𝑄,

Φ
𝑝
= [𝜙
𝑝1

𝜙
𝑝2

⋅ ⋅ ⋅ 𝜙
𝑝𝑞

⋅ ⋅ ⋅ 𝜙
𝑝𝑄
] ,

𝜙
𝑝𝑞

= exp (−𝑗 ⋅ 𝛾𝜔
𝑞
) ⊙ 𝑎 (𝑢) .

(6)

According to formula (6) we can rewrite the signal model of
formula (5) to group 𝐿 snapshots as

𝑌 = Ψ ⋅ 𝑍 + 𝑁, (7)

where 𝑌 = [𝑦(1), 𝑦(2), . . . , 𝑦(𝐿)] is a matrix of size𝑁Virt × 𝐿,
𝑍 = [𝑧(1), 𝑧(2), . . . , 𝑧(𝐿)] is a matrix of size 𝑃𝑄 × 𝐿, and𝑁 is
a noise matrix of size𝑁Virt × 𝐿. Let 𝜙

1
, 𝜙
2
, . . . , 𝜙

𝑝𝑞
be a set of

joint angle-frequency spaces of DFS and DOA space. Here
𝑃𝑄 is the total number of vectors of joint angle-frequency
space matrix that the algorithm can scan. Assuming that 𝐾
incident signals exist in the noise-free case, we can find 𝐾

nonzero coefficients 𝑧
𝜃
(𝑡) = 𝑠

𝑘
(𝑡) at positions corresponding



4 Journal of Applied Mathematics

to the atom 𝜃 = 𝜃
𝑘
, (𝑘 = 1, 2, . . . , 𝐾, 𝜃

𝑘
= 𝑝𝑞, 𝑝 =

index(DOA(𝑠
𝑘
)), 𝑞 = index(DFS(𝑠

𝑘
))) and zero coefficients

at the remaining 𝑃𝑄 − 𝐾; that is, the sparsity in the angle-
frequency space denotes that only a few atoms from the
dictionary will be required to match the measurements. Here
𝐾 ≪ 𝑃𝑄 is needed to be satisfied.

The number of nonzero rows of 𝑍 matrix is referred
to as the sparsity of the solution. There are many recovery
algorithms to reconstruct original signal. Popular approaches
include greedy sequential search techniques such asmatching
pursuit andmethods based onminimizing diversitymeasures
such as basis pursuit and FOCUSS [21]. Firstly we use orthog-
onal matching pursuit (OMP) algorithm [22] described as
follows.

Input. The observation vector 𝑦 ∈ C𝑛 and a measurement
matrix Ψ = {𝜙

𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ∈ C𝑛×𝑚.

Initialization. Index 𝐼 = 0, residual 𝑟 = 𝑦, and sparse
representation 𝑧̂ = 0 ∈ C𝑚.

Iteration.
While (stopping criterion false)

𝑖 = argmax|⟨𝑟, 𝜙
𝑗
⟩|;

𝐼 = 𝐼 ∪ {𝑖};
𝑟 = 𝑦 − [Ψ(:, 𝐼)][Ψ(:, 𝐼)]

†
𝑦.

End while

𝑧̂(𝐼) = [Ψ(:, 𝐼)]
†
𝑦.

Output. Sparse representations 𝑧̂ and the original signal 𝑦 =

Ψ𝑧̂.
Here [∙]† is pseudoinverse matrix transformation. Stop-

ping criterion is that iteration times are equal to the known
number 𝐾 of incident sources (i.e., sparsity). In the TDM-
MIMO estimation model, we can calculate the DOA and 𝜔

𝑑

according to 𝐼 vector. From 𝐼 vector we can determine which
atom or atoms will be represented; then 𝑝 and 𝑞 may be
ascertained. From𝑝 valueDOAmaybe estimated and𝜔

𝑑
may

be estimated from 𝑞 value successfully.
When TDM-MIMO estimation model has 𝐿 cycles, that

is, 𝑌 = [𝑦(1), 𝑦(2), . . . , 𝑦(𝐿)], we can solve 𝑍 efficiently
using joint sparse recovery algorithms [23]. The joint sparse
recovery spectrum of the DOA and DFS can be calculated by

𝑃
𝑦
(𝜃) =

1

𝐿

𝐿

∑

𝑙=1

󵄩󵄩󵄩󵄩𝑧̂𝜃 (𝑙)
󵄩󵄩󵄩󵄩

2

, 𝜃 = 𝜃
1
, 𝜃
2
, . . . , 𝜃

𝑃𝑄
. (8)

So if there aremultiple snapshots of the received array signals,
wewill use joint recovery algorithms to estimate the spectrum
as formula (8) [24, 25].

4. Signal Reconstructions Algorithm for
MMV Problem

Only one snapshot (𝐿 = 1) is needed to estimate parameters
in sparse representations theory, but in actual application

more snapshots are sampled in order to improve SNR and
estimation accuracy. In formula (8) computation burden can
become larger and larger with the increase of snapshots and
the estimation results can be influenced more easily by SNR
of input signals. This problem is so called MMV problem. In
order to reduce computational load and improve estimation
precision, there are two classical kinds of methods to solve
MMV problem. One is dependent on SVD algorithm such
as ℓ
1
-SVD [26, 27]; the other is dependent on M-FOCUSS

approach. These two algorithms both take datum correlation
of different snapshots into consideration.

4.1. Signal Reconstruction Based on SVD. We investigate
SVD subspace decomposition method [28, 29] firstly. The
following formula is SVD subspace decomposition for 𝑌

matrix:

𝑌 = 𝑈Λ𝑉
𝐻
= [𝑈𝑠 𝑈𝑁] Λ𝑉

𝐻
. (9)

Size of matrices 𝑈, Λ, and 𝑉 is 𝑈 ∈ C𝑁Virt×𝑁Virt , Λ ∈ C𝑁Virt×𝐿,
and 𝑉 ∈ C𝐿×𝐿.𝑈

𝑠
∈ C𝑁Virt×𝑟 is signal subspace corresponding

to the larger singular values (assuming 𝑟) in Λ matrix. 𝑈
𝑁
∈

C𝑁Virt×(𝑁Virt−𝑟) is noise subspace corresponding to the smaller
singular values (assuming 𝑁Virt − 𝑟) in Λ matrix. So we can
define

𝑌
𝑆
= 𝑌𝑉𝐷

𝑟
. (10)

Here 𝐷
𝑟
= [Λ

𝑟×𝑟
𝑂
𝑟×(𝐿−𝑟)

]
𝐻 is a matrix composed by the

larger singular values. Also we define 𝑍
𝑆
= 𝑍𝑉𝐷

𝑟
, 𝑁
𝑆
=

𝑁𝑉𝐷
𝑟
. So the formula (7) can be espressed as

𝑌
𝑆
= Ψ ⋅ 𝑍

𝑆
+ 𝑁
𝑆
, (11)

Size of matrices 𝑌
𝑆
, 𝑍
𝑆
, and 𝑁

𝑆
is 𝑌
𝑆
∈ C𝑁Virt×𝑟, 𝑍

𝑆
∈ C𝑃𝑄×𝑟,

and 𝑁
𝑆
∈ C𝑁Virt×𝑟. 𝑌

𝑆
and 𝑌 have the same sparsity level. By

using SVD algorithm the dimension of observation matrix
has been reduced from𝑁Virt ×𝐿 to𝑁Virt ×𝑟. In general 𝑟 ≪ 𝐿

and 𝑟 < 𝑁Virt is conditioned. Meanwhile we will achieve
good performance of parameters estimation in lower SNR.
ℓ
1
-SVD algorithm is a successful DOA estimation method

for sparse solution. But convex optimization problem such as
a second-order cone (SOC) programming has to be utilized
in ℓ
1
-SVD algorithm, so its computational complexity will

increase.Here, wewill continue to useOMPgreedy algorithm
after SVD is done. We generalize the scheme of algorithm
based on SVD decomposition with OMP.

Input.The observation matrix 𝑌 and a sparse representations
matrix Ψ = {𝜙

𝑖
, 𝑖 = 1, 2, . . . , 𝑃𝑄} ∈ C𝑁Virt×𝑃𝑄. Consider the

following:
(1) SVD decomposition for matrix 𝑌;
(2) determining the number of the larger singular values

(𝑟);
(3) calculating 𝑌

𝑆
= 𝑌𝑉𝐷

𝑟
;

(4) using OMP algorithm for each column of matrix 𝑌
𝑆
;

(5) searching the index atoms in atomic dictionary.

Output. DOA and DFS.
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4.2. Signal ReconstructionBased onM-FOCUSS. M-FOCUSS
algorithm is developed based on the focal underdetermined
system solver (FOCUSS) algorithm [30] developed for the
single measurement case and it has an ability to utilize
multiple measurement vectors to accurately identify the
sparsity structure [21]. According to formula (7), we can
summarize the scheme as follows so as to compute 𝑍 sparse
solution.

Input. The observation matrix 𝑌 and a measurement matrix
Ψ = {𝜙

𝑖
, 𝑖 = 1, 2, . . . , 𝑚} ∈ C𝑛×𝑚

Initialization.𝑋
1
= 1
𝑚×𝐿, 𝜀, 𝑝, iternum = 0.

Iteration.

While (‖𝑋
𝑘+1

− 𝑋
𝑘
‖
2
/‖𝑋
𝑘
‖
2

> 𝜀, iternum <

max iteration)

𝑊
𝑘+1

= diag(𝑐
𝑘
[𝑖]
1−𝑝/2

), with respect to 𝑐
𝑘
[𝑖] =

‖𝑋
𝑘
[𝑖]‖
2
;

𝐵
𝑘+1

= [𝐴
𝑘+1

]
†
𝑌, where 𝐴

𝑘+1
= Ψ𝑊

𝑘+1
;

𝑋
𝑘+1

= 𝑊
𝑘+1

𝐵
𝑘+1

;
iternum = iternum + 1.

End while.

Output. Sparse representations matrix 𝑍 = 𝑋
𝑘+1

.
Here, ‖𝑥‖

2
= (∑ |𝑥

𝑖
|
2
)
1/2 is Frobenius norm and 𝜀 is

threshold to stop the whole algorithm. The parameter 𝑝 lies
in [0, 2]. According to experiences, the best selection for 𝑝
lies in [0.8, 1] so that convergence rate is good and optimum
solution can be achieved easily. The optimal solution is
conditioned by the minimum Frobenius normwith weighted
values, so matrix𝑊

𝑘
is the 𝑘th iterative weighted matrix.

By using M-FOCUSS algorithm we can achieve sparse
representations matrix 𝑍 and deal with MMV problem
successfully. Furthermore, we can use formula (8) 𝑃

𝑦
(𝜃) =

(1/𝐿)∑
𝐿

𝑙=1
‖𝑧̂
𝜃
(𝑙)‖
2, where 𝑧̂

𝜃
(𝑙) is the row vector of matrix 𝑍

to calculate the joint sparse recovery spectrum function.Then
the positions of peaks of spectrum function are the DFS and
DOA estimation values and number of peaks is the number
of input signals with different DFSs and DOAs.

5. Simulation Experiments

We present some simulations to verify the theoretical results
below.We consider a TDM-MIMO radar with 4 RX and 2TX
antennas, uniformly spaced with an antenna distance of 𝜆/2;
that is, 𝑑RX = [1 2 3 4]

𝑇 and 𝑑
TX

= [0 5]
𝑇. The antennas

are laid as shown in Figure 4.TheTXantennas transmit signal
in TDM schedule and transmit schedule is shown in Figure 5.

We choose 1 cycle with 𝑁Pulse = 4 pulses and set the
transmitting time instants to 𝑡 = [0, 1, 2, 3] in units of
ms. So 𝑑

Pulse
= [𝑑

TX
1
, 𝑑

TX
2
, 𝑑

TX
2
, 𝑑

TX
1
] will be achieved. The

basic simulation parameters are set as follows. The carrier

TX1 RX1 RX2 RX3 RX4 TX2

𝜆/2

Figure 4: Array construction of antennas.
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Figure 5: TDM scheme: 2 transmitters transmitting at times.

frequency is equal to 77GHz. DOA search range lies in
[−60
∘
, 60
∘
] with step size 0.1∘ and velocity search range lies

in [0m/s, 100m/s] with step size 1m/s. Snapshots are equal
to 𝐿 = 200. We do two experiments: one is for measurement
of the root mean square errors (RMSE) of velocity and DOA
estimation in different SNRs; the other is for multisource
resolution of the coherent and uncorrelated signals.

5.1. Simulation Experiments of Joint DFS and DOA Estima-
tion RMSE. 500 independent Monte Carlo simulations are
carried out for each SNR varying from 0 dB to 30 dB with
5 dB step. The true DOA of incident signal and velocity of
target moving are selected randomly in each trial. But DOA
and velocity parameters set in one trial are constant. Velocity
estimation is shown in Figure 6 andDOAestimation is shown
in Figure 7. As we know, the formula 𝜔

𝑑
= 2V/𝜆, where

V is moving velocity of the target. So velocity simulation
results are given directly instead of DFS due to the considera-
tion of more concerned velocity parameter in the practical
application. JS-RS stands for algorithm of the joint sparse
recovery spectrum of DFS and DOA according to formula
(8). SVD-RS stands for algorithm of joint estimation based
on sparse representations using SVD with OMP algorithm
to reconstruction; see formula (11) and scheme. MFOCUSS-
SR stands for improved M-FOCUSS algorithm with joint
sparse recovery spectrum. Root mean square error (RMSE)
is defined by

RMSE = (
1

𝐽

𝐽

∑

𝑗=1

(𝜃
𝑗
− 𝜃
𝑗
)
2

)

1/2

, (12)

where 𝐽 is the times of independent Monte Carlo trials, 𝜃
𝑗

stands for parameter estimation, and 𝜃
𝑗
is the true DOA or

velocity for the 𝑗th trial.
Following [1], we compute CRLB J−1 for the unknown

parameterΘ = [DOA,DFS]𝑇.TheCRLB is a lower bound for
the covariance matrix of any unbiased estimator Θ̂. We use
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Figure 6: Velocity estimation for TDM-MIMO radar.

CRLB formula for DOA estimation (CRBDOA) according to
paper [1].The following formulas are theCramer-Rao bounds
of Θ̂:

J−1

=
1

2𝐿𝑁RX

𝜎
2

𝜎2
𝑠

⋅ 1 × ((Var𝑆 (𝑑RX) + Var𝑆 (𝑑Pulse))Var𝑆 (𝑡)

− (Cov𝑆 (𝑑Pulse, 𝑡))
2

)

−1

⋅ [
Var𝑆 (𝑡) −Cov𝑆 (𝑑Pulse, 𝑡)

−Cov𝑆 (𝑑Pulse, 𝑡) VarS (𝑑RX) + Var𝑆 (𝑑Pulse)
] ,

(13)

CRBDOA

= 𝐽
−1

11

=
1

2𝐿𝑁RX

𝜎
2

𝜎2
𝑠

⋅ Var𝑆 (𝑡)

× ((Var𝑆 (𝑑RX) + Var𝑆 (𝑑Pulse))Var𝑆 (𝑡)

− (Cov𝑆 (𝑑Pulse, 𝑡))
2

)

−1

.

(14)

HereVar𝑆(∙) stands for sample variance andCov𝑆(∙, ∗) stands
for sample covariance. 𝜎2

𝑠
/𝜎
2 denotes the overall SNR. If

an optimal TDM scheme is designed [1], CRBDOA will be
minimized and |Cov𝑆(𝑑Pulse, 𝑡)| will also be minimized to
zero.

From the simulation results, we know that the error
of angle measurements can reach below 0.2

∘ when SNR >

5 dB is satisfied for all three algorithms. But the error of
velocity is not ideal for the JS-SR method under the same
conditions. Only when SNR > 20 dB is satisfied, the error
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Figure 7: DOA estimation for TDM-MIMO radar.
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Figure 8: Uncorrelated signal resolution simulation based JS-SR.

of velocity will reach V = 2m/s below. But the SVD-
RS and MFOCUSS-RS algorithms can achieve significant
performance improvement. DOA estimation results of these
two algorithms are closer to the corresponding Cramer-Rao
lower bound (CRLB) compared to JS-RS algorithm. So both
MFOCUSS-RS and SVD-SR are superior to JS-SR algorithm.

5.2. Simulation Experiments of Multisignals Resolution. Here,
we have utilized these three algorithms to test coherent
and uncorrelated signals resolution. Experiments have the
same input conditions that are SNR = 20 dB and the true
DOAof three simultaneous incident signals is [−25∘ 0∘ 25∘].
Correlated coefficient is defined by

𝜌
𝑖𝑘
=

𝐸 [𝑠
𝑖
(𝑡) 𝑠
𝐻

𝑘
(𝑡)]

√𝐸 [
󵄨󵄨󵄨󵄨𝑠𝑖 (𝑡)

󵄨󵄨󵄨󵄨

2

] 𝐸 [
󵄨󵄨󵄨󵄨𝑠𝑘 (𝑡)

󵄨󵄨󵄨󵄨

2

]

. (15)

Here 𝐸[∙] denotes statistical expectation operator. 𝑖, 𝑘 denote
two input signals. If 𝜌

𝑖𝑘
which lies in [0, 1] is equal to 1, two

input signals will be called as coherent signals.
The signal resolution simulation results are presented in

Figure 8 to Figure 13. In Figures 8, 9, 10, 11, 12, and 13, E DOA
stands for estimationDOA and R DOA stands for true DOA.
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Figure 9: Coherent signal resolution simulation based JS-SR.
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Figure 10: Uncorrelated signal resolution simulation based SVD-
SR.

All three algorithms can process uncorrelated signals. But
there are some spurious peaks for resolution results of JS-SR
approach and the magnitude of spurious peaks may be larger
than the magnitude of true input signal in some cases like
Figure 8. So it is very complex to seek the different peak values
of trueDOAs.The improvedM-FOCUSS algorithm canwork
well. The magnitude of spurious peaks is smaller than the
magnitude of true DOAs like in Figure 12. With the increase
of SNR, the magnitude of spurious peaks can also become
smaller and smaller. In the situation of coherent signals
impinging, all three algorithms have an ability to complete
multisource resolution. But the problem of spurious peaks
still exists for JS-SR algorithm. Accuracy of DOA estimation
for SVD-SR algorithm has deteriorated since the rank of
matrix Λ is reduced and then we have to select one vector
corresponding to the largest singular value to calculate the
sparse solution.

Above all, the improved M-FOCUSS algorithm can work
more robust than SVD-SR and JS-SR algorithms.Multisource
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Figure 11: Coherent signal resolution simulation based SVD-SR.
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Figure 12: Uncorrelated signal resolution simulation based
MFOCUSS-SR.

resolution is successful and DFS and DOA estimation values
are very precise regardless of correlated or uncorrelated input
signals when the improved M-FOCUSS algorithm is utilized
to deal with TDM-MIMOmodel.

6. Conclusions

In this paper, we propose joint DFS and DOA estimation
algorithm for colocated TDM-MIMO radar based signal
sparse representations. Facing the problem of time varying
steering vector, we establish input signal mode and depict the
algorithms of sparse representations and signal reconstruc-
tion in detail. Three algorithms including joint sparse recov-
ery spectrum, SVD decomposition withOMP algorithm, and
M-FOCUSS are discussed to deal with MMV problem. The
joint sparse recovery spectrum andM-FOCUSS methods are
combined to improveM-FOCUSS performance in the case of
MMV problem. Finally, the simulation results of multisource
resolution and accuracy of estimations and some discussions
are demonstrated. Using sparse representations based on the
proposed angle-frequency space, the coherent signals can
be distinguished and the Doppler frequency shift and DOA
can be estimated jointly. Particularly, the joint estimation
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Figure 13: Coherent signal resolution simulation basedMFOCUSS-
SR.

algorithm based on sparse representations using improved
M-FOCUSS reconstruction can deal withMMVproblem and
achieve significant performance improvement of DOA and
DFS estimation accuracy. So the proposed algorithm and
model are effective and can be further applied for practical
application.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

This research paper is sponsored by China Scholarship Fund
(CSC), in part supported by the Fundamental Research
Funds for the Central Universities (HEUCF1408) and by
the National Science Foundation of China under Grant no.
61201410.

References

[1] K. Rambach and B. Yang, “Colocated MIMO radar: cramer-
Rao bound and optimal time division multiplexing for DOA
estimation of moving targets,” in Proceedings of the 38th IEEE
International Conference on Acoustics, Speech, and Signal Pro-
cessing (ICASSP ’13), pp. 4006–4010, Vancouver, Canada, May
2013.

[2] S. Lutz and T. Walter, “Lens based 77 GHz TDM MIMO radar
sensor for angular estimation in multitarget environments,” in
Proceedings of the 10th European Radar Conference (EuRAD ’13),
pp. 212–215, October 2013.

[3] M. Rossi, A. M. Haimovich, and Y. C. Eldar, “Spatial com-
pressive sensing for MIMO radar,” IEEE Transactions on Signal
Processing, vol. 62, no. 2, pp. 419–430, 2014.

[4] Y. Yu, A. P. Petropulu, and H. V. Poor, “MIMO radar using
compressive sampling,” IEEE Journal on Selected Topics in Signal
Processing, vol. 4, no. 1, pp. 146–163, 2010.

[5] J. Liu, C. Han, and Y. Hu, “A novel coherent column replace-
ment method in compressed sensing for DOA estimation,” in

Proceedings of the 32nd Chinese Control Conference (CCC ’13),
pp. 4832–4837, IEEE, July 2013.

[6] J. Yin and T. Chen, “Direction-of-arrival estimation using
a sparse representation of array covariance vectors,” IEEE
Transactions on Signal Processing, vol. 59, no. 9, pp. 4489–4493,
2011.

[7] J.-F. Gu, W.-P. Zhu, and M. N. S. Swamy, “Compressed sensing
for DOA estimation with fewer receivers than sensors,” in
Proceedings of the IEEE International Symposium of Circuits and
Systems (ISCAS ’11), pp. 1752–1755, IEEE, May 2011.

[8] M.-S. Lee, V. Katkovnik, and Y.-H. Kim, “System modeling
and signal processing for a switch antenna array radar,” IEEE
Transactions on Signal Processing, vol. 52, no. 6, pp. 1513–1523,
2004.

[9] S. Yin, G. Wang, and X. Yang, “Robust PLS approach for KPI-
related prediction and diagnosis against outliers and missing
data,” International Journal of Systems Science, vol. 45, no. 7, pp.
1375–1382, 2014.

[10] A. Zwanetski and H. Rohling, “Continuous wave MIMO radar
based on time division multiplexing,” in Proceedings of the 13th
International Radar Symposium (IRS ’12), pp. 119–121, IEEE,May
2012.

[11] L. Liu, Y. Jiang, L. Wan, and Z. Tian, “Beamforming of joint
polarization-space matched filtering for conformal array,” The
Scientific World Journal, vol. 2013, Article ID 589675, 10 pages,
2013.

[12] L.-T. Wan, L.-T. Liu, W.-J. Si, and Z.-X. Tian, “Joint estimation
of 2D-DOA and frequency based on space-time matrix and
conformal array,”The Scientific World Journal, vol. 2013, Article
ID 463828, 10 pages, 2013.

[13] H. Feng, L. Liu, and B. Wen, “2D-DOA estimation for cylin-
drical array with mutual coupling,” Mathematical Problems in
Engineering, vol. 2014, Article ID 716978, 8 pages, 2014.

[14] S. Yin, G. Wang, and H. R. Karimi, “Data-driven design of
robust fault detection system for wind turbines,” Mechatronics,
vol. 24, no. 4, pp. 298–306, 2014.

[15] M. Jahn, R. Feger, C. Wagner, Z. Tong, and A. Stelzer, “A
four-channel 94-GHz sige-based digital beamforming FMCW
radar,” IEEE Transactions on MicrowaveTheory and Techniques,
vol. 60, no. 3, pp. 861–869, 2012.

[16] P. Schmalenberg, J. S. Lee, and K. Shiozaki, “A SiGe-based 16-
channel phased array radar system at W-Band for automotive
applications,” in Proceedings of the 10th European Radar Confer-
ence (EuRAD ’13), pp. 299–302, October 2013.

[17] S. Yin, X. Yang, and H. R. Karimi, “Data-driven adaptive
observer for fault diagnosis,” Mathematical Problems in Engi-
neering, vol. 2012, Article ID 832836, 21 pages, 2012.

[18] P. Wenig, M. Schoor, O. Gunther, B. Yang, and R. Weigel,
“System design of a 77GHz automotive radar sensor with
superresolution DOA estimation,” in Proceedings of the IEEE
International Symposium on Signals, Systems and Electronics
(ISSSE ’07), pp. 537–540, August 2007.

[19] K. Rambach and B. Yang, “Direction of Arrival estimation of
two moving targets using a time division multiplexed colocated
MIMO radar,” in Proceedings of the IEEE Radar Conference, pp.
1118–1123, Cincinnati, Ohio, USA, May 2014.

[20] T. Pedersen, C. Pedersen, X. Yin et al., “Joint estimation of
doppler frequency and directions in channel sounding using
switched Tx and Rx arrays,” in Proceedings of the IEEE Global
Telecommunications Conference (GLOBECOM ’04), vol. 4, pp.
2354–2360, December 2004.



Journal of Applied Mathematics 9

[21] B. D. Rao, K. Engan, and S. Cotter, “Diversity measure min-
imization based method for computing sparse solutions to
linear inverse problems with multiple measurement vectors,” in
Proceedings of the IEEE International Conference on Acoustics,
Speech, and Signal Processing (ICASSP ’04), vol. 2, pp. II369–
II372, IEEE, May 2004.

[22] Y. Wang, T. Fu, M. Gao, and S. Ding, “DOA estimation by
exploiting spatial and Doppler sparsity,” in Proceedings of the
IET International Radar Conference, pp. 1–4, Xi’an, China, April
2013.

[23] B. Li, Y. Zou, and Y. Zhu, “Direction estimation under compres-
sive sensing framework: a review and experimental results,” in
Proceedings of the International Conference on Information and
Automation (ICIA ’11), pp. 63–68, June 2011.

[24] Y. He, K. Hueske, E. Coersmeier, and J. Gdtze, “Efficient compu-
tation of joint direction-of-arrival and frequency estimation,” in
Proceedings of the 8th IEEE International Symposium on Signal
Processing and Information Technology (ISSPIT ’08), pp. 144–
149, IEEE, December 2008.

[25] Y.Wang, G. Leus, and A. Pandharipande, “Direction estimation
using compressive sampling array processing,” in Proceedings of
the IEEE/SP 15th Workshop on Statistical Signal Processing (SSP
’09), pp. 626–629, September 2009.

[26] A. Gretsistas and D. M. Plumbley, “An alternating descent
algorithm for the off-grid DOA estimation problem with
sparsity constraints,” in Proceedings of the 20th European Signal
Processing Conference (EUSIPCO ’12), pp. 874–878, August 2012.

[27] D. Malioutov, M. Cetin, and A. S. Willsky, “A sparse signal
reconstruction perspective for source localization with sensor
arrays,” IEEE Transactions on Signal Processing, vol. 53, no. 8,
pp. 3010–3022, 2005.

[28] S. Yin, X. Li, H. Gao, and O. Kaynak, “Data-based techniques
focused on modern industry: an overview,” IEEE Transactions
on Industrial Electronics, 2014.

[29] S. Yin, S. X. Ding, X. Xie, and H. Luo, “A review on basic data-
driven approaches for industrial process monitoring,” IEEE
Transactions on Industrial Electronics, vol. 61, no. 11, pp. 6418–
6428, 2014.

[30] I. F. Gorodnitsky and B. D. Rao, “Sparse signal reconstruction
from limited data using FOCUSS: a re-weighted minimum
norm algorithm,” IEEE Transactions on Signal Processing, vol.
45, no. 3, pp. 600–616, 1997.


