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A class of fractional order three-point boundary value system with resonance is investigated in this paper. Using some techniques
of inequalities, a completely new method is incorporated. We transform the problem into an integral equation with a pair of
undetermined parameters. The topological degree theory is applied to determine the particular value of the parameters so that
the system has a solution.

1. Introduction

In this paper, we consider the following fractional differential
system:

𝐷
𝛼

0+
𝑋 (𝑡) + 𝑓 (𝑡, 𝑋 (𝑡)) = 0,

0 < 𝑡 < 1, 𝑋 = (𝑥
1

(𝑡) , 𝑥
2

(𝑡)) ,

𝑋 (0) = 𝑌 (0) = 0, 𝑋 (1) =
1

𝜂𝛼−1
𝑋 (𝜂) , 0 < 𝜂 < 1,

(1)

where 𝐷
𝛼

0+
is standard Riemann-Liouville fractional deriva-

tive of order 1 < 𝛼 ≤ 2, 0 < 𝜂 < 1 and 𝑓 = (𝑓
1
, 𝑓
2
) is a

nonlinear two-dimension continuous vector function.
In the last few decades, many authors have focused on the

dynamics of differential equations [1–7]; most of them have
investigated fractional differential equations which have been
applied in many fields such as physics, mechanics, chemistry,
and engineering; see [8–13]. In particular, the positive solu-
tions of the boundary value problem have attracted many
authors’ attention [14–25].

Recently, the existence of solutions of three-point bound-
ary value problem

𝐷
𝛼

0+
𝑢 (𝑡) + 𝑓 (𝑡, 𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛽𝑢 (𝜂) , 0 < 𝜂 < 1,

(2)

where 𝐷
𝛼

0+
is standard Riemann-Liouville fractional deriva-

tive of order 1 < 𝛼 ≤ 2 has been studied by many authors
under the case that 𝛽𝜂 < 1. They obtained some nice results
by using some fixed point theorems; see [26–28].

In [29], Ahmad andNieto considered the existence results
for following three-point boundary value problem for a
coupled system of nonlinear fractional differential equations
given by

𝐷
𝛼

0+
𝑢 (𝑡) = 𝑓 (𝑡, V (𝑡) , 𝐷

𝑝

0+
V (𝑡)) = 0, 0 < 𝑡 < 1,

𝐷
𝛽

0+
V (𝑡) = 𝑔 (𝑡, 𝑢 (𝑡) , 𝐷

𝑞

0+
𝑢 (𝑡)) = 0, 0 < 𝑡 < 1,

𝑢 (0) = 0, 𝑢 (1) = 𝛾𝑢 (𝜂) ,

V (0) = 0, V (1) = 𝛾V (𝜂) ,

(3)

where 1 < 𝛼, 𝛽 < 2, 𝑝, 𝑞, 𝛾 > 0, 0 < 𝜂 < 1, 𝛼 − 𝑞 ≥ 1, 𝛽 − 𝑝 ≥

1, 𝛾𝜂
𝛼−1

< 1, 𝛾𝜂
𝛽−1

< 1, 𝐷
𝛼

0+
is standard Riemann-Liouville

fractional derivative and 𝑓, 𝑔 : [0, 1] × 𝑅 × 𝑅 → 𝑅 are given
continuous functions. An existence result was proved in their
paper by applying the Schauder fixed point theorem.

However, few authors have investigated fractional differ-
ential boundary value problems with resonance [1, 2, 30–32].

In this paper, we establish some sufficient conditions
for the existence of the boundary value system (1) by using
intermediate value theorems. To present the main results,
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we assume that 𝑓(𝑡, 𝑋) = (𝑓
1
(𝑡, 𝑋), 𝑓

2
(𝑡, 𝑋)) satisfies the

following.
(𝐻) 𝑓(𝑡, 𝑋) ∈ 𝐶([0, 1] × 𝑅 × 𝑅, 𝑅 × 𝑅), 𝑋 = (𝑥

1
, 𝑥
2
) ∈

𝑅 × 𝑅. Suppose that there exist nonnegative functions
𝑎
𝑖
(𝑡), 𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2), with 𝑏

11
(𝑡) > 0, 𝑏

22
(𝑡) > 0,

𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ≤ 𝑏

11
(𝑡), 𝑏
22

(𝑡) for any 𝑡 ∈ [0, 1]

such that
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖
(𝑡) + 𝑏

𝑖1
(𝑡)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

𝑝𝑖
+ 𝑏
𝑖2

(𝑡)
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

𝑞𝑖
, 𝑖 = 1, 2,

(4)

where 0 ≤ 𝑝
𝑖
, 𝑞
𝑖

≤ 1 (𝑖 = 1, 2), 𝑞
1

< 𝑝
1
, and

𝑝
2

< 𝑞
2
. For any real numbers 𝑎 and 𝑏, the functions

𝑓
𝑖
(𝑡, 𝑡
𝛼−1

(𝑢, V)) (𝑖 = 1, 2) satisfy

lim
V→+∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V)) > −∞,

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V)) < +∞,

for any 𝑢 ∈ 𝑅, 𝑡 ∈ (0, 1] ,

(5)

lim
V→+∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V)) > −∞,

lim
V→−∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V)) < +∞,

for any V ∈ 𝑅, 𝑡 ∈ (0, 1] .

(6)

Furthermore, assume that

lim
V→+∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = +∞,

for any 𝑢 (V) ≥ − |V| , 𝑡 ∈ (0, 1] ,

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = −∞,

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] ,

(7)

lim
V→+∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢 (V) , V)) = +∞,

for any 𝑢 (V) ≥ − |V| , 𝑡 ∈ (0, 1] ,

lim
V→−∞

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢 (V) , V)) = −∞,

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] .

(8)

We have the following results.

Theorem 1. Assume that (𝐻) holds. If

max
1≤𝑖≤2

{∫

1

0

𝐺
∗

(𝑠, 𝑠) (𝑏
𝑖1

(𝑠) + 𝑏
𝑖2

(𝑠)) 𝑑𝑠} < 1, (9)

where

𝐺
∗

(𝑠, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

× {
(1 − 𝑠)

𝛼−1

− (𝜂 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝜂,

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1,

(10)

then (1) has at least one solution in [0, 1].

Also, we consider the following special case of (𝐻) as
follows.

(𝐻̃) 𝑓(𝑡, 𝑋) ∈ 𝐶([0, 1] × 𝑅 × 𝑅, 𝑅 × 𝑅), 𝑋 = (𝑥
1
, 𝑥
2
) ∈

𝑅 × 𝑅. Suppose that there exist nonnegative functions
𝑎
𝑖
(𝑡), 𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2), with 𝑏

11
(𝑡) > 0, 𝑏

22
(𝑡) > 0,

𝑏
𝑖𝑗
(𝑡) (𝑖, 𝑗 = 1, 2, 𝑖 ̸= 𝑗) ≤ 𝑏

11
(𝑡), 𝑏
22

(𝑡) for any 𝑡 ∈ [0, 1]

such that
󵄨󵄨󵄨󵄨󵄨
𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋)
󵄨󵄨󵄨󵄨󵄨

≤ 𝑎
𝑖
(𝑡) + 𝑏

𝑖1
(𝑡)

󵄨󵄨󵄨󵄨𝑥1
󵄨󵄨󵄨󵄨

𝑝𝑖
+ 𝑏
𝑖2

(𝑡)
󵄨󵄨󵄨󵄨𝑥2

󵄨󵄨󵄨󵄨

𝑞𝑖
, 𝑖 = 1, 2,

(11)

where 0 ≤ 𝑝
𝑖
, 𝑞
𝑖

≤ 1 (𝑖 = 1, 2), 𝑞
1

< 𝑝
1
, and 𝑝

2
< 𝑞
2
.

The functions 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

(𝑢, V)) (𝑖 = 1, 2) satisfy

lim
V→±∞

󵄨󵄨󵄨󵄨󵄨
𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑢, V))
󵄨󵄨󵄨󵄨󵄨

< ∞ for any 𝑢 ∈ 𝑅, 𝑡 ∈ (0, 1] ,

(12)

lim
𝑢→±∞

󵄨󵄨󵄨󵄨󵄨
𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑢, V))
󵄨󵄨󵄨󵄨󵄨

< ∞ for any V ∈ 𝑅, 𝑡 ∈ (0, 1] .

(13)

Furthermore, assume that (7) and (8) hold.

FromTheorem 1, we have the following corollary.

Corollary 2. Assume that (𝐻̃) and (9) hold; then (1) has at
least one solution in [0, 1].

2. Some Lemmas

In this section, we first introduce some definitions and
preliminary facts and some lemmas which will be used in this
paper.

Definition 3 (see [21]). The fractional integral of order 𝛼 > 0

of a function 𝑦 : (0, ∞) → 𝑅 is given by

𝐼
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝛼)
∫

𝑡

0

(𝑡 − 𝑠)
𝛼−1

𝑦 (𝑠) 𝑑𝑠 (14)

provided that the right integral converges.

Definition 4 (see [21]). The standard Riemann-Liouville frac-
tional derivative of order 𝛼 > 0 of a continuous function
𝑦 : (0, ∞) → 𝑅 is given by

𝐷
𝛼

0+
𝑦 (𝑡) =

1

Γ (𝑛 − 𝛼)

𝑑
𝑛

𝑑𝑡𝑛
∫

𝑡

0

(𝑡 − 𝑠)
𝑛−𝛼−1

𝑦 (𝑠) 𝑑𝑠, (15)

where 𝑛 = [𝛼] + 1, provided that the right integral converges.

Lemma 5 (see [21]). Assume that 𝑢 ∈ 𝐶(0, 1) ∩ 𝐿(0, 1) with
a fractional derivative of order 𝛼 > 0 that belongs to 𝐶(0, 1) ∩

𝐿(0, 1).Then

𝐼
𝛼

0+
𝐷
𝛼

0+
𝑦 (𝑡) = 𝑦 (𝑡) + 𝐶

1
𝑡
𝛼−1

+ 𝐶
2
𝑡
𝛼−2

+ ⋅ ⋅ ⋅ + 𝐶
𝑛
𝑡
𝛼−𝑛

, (16)

for some 𝐶
𝑖

∈ 𝑅, 𝑖 = 1, 2, . . . , 𝑛, where 𝑛 is the smallest integer
greater than or equal to 𝛼.
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The following lemma is a fixed point theorem in a
particular Banach space:

Ω = {(𝑥 (𝑡) , 𝑦 (𝑡)) | 𝑥 (𝑡) , 𝑦 (𝑡) ∈ 𝐶 ([0, 1] , 𝑅)} , (17)

equipped with the norm

󵄩󵄩󵄩󵄩(𝑥 (𝑡) , 𝑦 (𝑡))
󵄩󵄩󵄩󵄩 = max{max

𝑡∈[0,1]

|𝑥 (𝑡)| , max
𝑡∈[0,1]

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨} .

(18)

It is easy to show that if 𝑋(𝑡) ∈ Ω, then 𝑡
𝛼−1

𝑋(𝑡) ∈ Ω.

Lemma 6 (see [33]). Let 𝑋 be a Banach space with 𝐶 ⊂ 𝑋

closed and convex. Assume that 𝑈 is a relatively open subset of
𝐶 with 0 ∈ 𝑈 and 𝑇 : 𝑈 → 𝐶 is completely continuous. Then
either

(i) 𝑇 has a fixed point in 𝑈, or
(ii) there exist an 𝑢 ∈ 𝜕𝑈 and 𝛾 ∈ (0, 1) with 𝑢 = 𝛾𝑇𝑢.

To use this lemma to prove our main result, we need
transfer (1) into an integral operator.

Lemma 7 (see [34]). Problem (1) is equivalent to the following
integral equation:

𝑋 (𝑡) = ∫

1

0

𝐺 (𝑡, 𝑠) 𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑠 + 𝑋 (1) 𝑡
𝛼−1

, (19)

where

𝐺 (𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{{

{

(𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− 𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (𝑡 − 𝑠)
𝛼−1

) × (Γ (𝛼) (1 − 𝜂
𝛼−1

))
−1

,

0 ≤ 𝑠 ≤ min {𝑡, 𝜂} ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− 𝑡
𝛼−1

(𝜂 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (𝑡 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1;

𝑡
𝛼−1

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ max {𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(20)

Lemma 8 (see [34]). For any (𝑡, 𝑠) ∈ [0, 1] × [0, 1], 𝐺(𝑡, 𝑠) is
continuous, and 𝐺(𝑡, 𝑠) > 0 for any (𝑡, 𝑠) ∈ (0, 1) × (0, 1).

Let

𝐺 (𝑡, 𝑠) = 𝑡
𝛼−1

𝐺
∗

(𝑡, 𝑠) , (21)

where
𝐺
∗

(𝑡, 𝑠)

=

{{{{{{{{{{{{{{{{{{{{{{{{

{{{{{{{{{{{{{{{{{{{{{{{{

{

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (1 − 𝑠/𝑡)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝑠 ≤ min {𝑡, 𝜂} ≤ 1;

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ 𝑡 ≤ 𝑠 ≤ 𝜂 ≤ 1;

(1 − 𝑠)
𝛼−1

− (1 − 𝜂
𝛼−1

) (1 − 𝑠/𝑡)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
,

0 ≤ 𝜂 ≤ 𝑠 ≤ 𝑡 ≤ 1;

(1 − 𝑠)
𝛼−1

Γ (𝛼) (1 − 𝜂𝛼−1)
, 0 ≤ max {𝑡, 𝜂} ≤ 𝑠 ≤ 1.

(22)

Then (1) is equivalent to the following integral equation:

𝑋 (𝑡) = ∫

1

0

𝑡
𝛼−1

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑋 (𝑠)) 𝑑𝑠 + 𝑋 (1) 𝑡
𝛼−1

. (23)

The new Green’s function 𝐺
∗

(𝑡, 𝑠) has the following proper-
ties.

Lemma 9 (see [34]). 𝐺
∗

(𝑡, 𝑠) is continuous for (𝑡, 𝑠) ∈ (0, 1) ×

(0, 1) and
lim
𝑡→0
+

𝐺
∗

(𝑡, 𝑠)

:= 𝐺
∗

(0, 𝑠)

=

{{{{{{{

{{{{{{{

{

1

Γ (𝛼) (1 − 𝜂𝛼−1)

× {(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

} , 0 ≤ 𝑠 ≤ 𝜂;

1

Γ (𝛼) (1 − 𝜂𝛼−1)
(1 − 𝑠)

𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1.

(24)

Furthermore, 𝐺
∗

(𝑡, 𝑠) > 0 for (𝑡, 𝑠) ∈ (0, 1) × (0, 1).

Lemma 10 (see [34]). 𝐺
∗

(𝑡, 𝑠) is nonincreasing with respect to
𝑡 ∈ [0, 1] for any 𝑠 ∈ (0, 1). In particular, for any 𝑠 ∈ [0, 1],
𝜕𝐺
∗

(𝑡, 𝑠)/𝜕𝑡 ≤ 0, and 𝜕𝐺
∗

(𝑡, 𝑠)/𝜕𝑡 = 0 for 𝑡 ∈ [0, 𝑠]. That is,
𝐺
∗

(1, 𝑠) ≤ 𝐺
∗

(𝑡, 𝑠) ≤ 𝐺
∗

(𝑠, 𝑠), where

𝐺
∗

(1, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

×

{

{

{

𝜂
𝛼−1

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝜂;

𝜂
𝛼−1

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1,

𝐺
∗

(𝑠, 𝑠) =
1

Γ (𝛼) (1 − 𝜂𝛼−1)

×

{

{

{

(1 − 𝑠)
𝛼−1

− (𝜂 − 𝑠)
𝛼−1

, 0 ≤ 𝑠 ≤ 𝜂;

(1 − 𝑠)
𝛼−1

, 𝜂 ≤ 𝑠 ≤ 1.

(25)
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Let

𝑋 (𝑡) = 𝑡
𝛼−1

𝑌 (𝑡) . (26)

Then 𝑋(1) = 𝑌(1), and (23) gives

𝑌 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

𝑌 (𝑠)) 𝑑𝑠 + 𝑌 (1) . (27)

Let

𝑊 (𝑡) = 𝑌 (𝑡) − 𝑌 (1) . (28)

Then 𝑌(𝑡) = 𝑊(𝑡) + 𝑌(1), and 𝑊(1) = 𝑌(1) − 𝑌(1) = 0. From
(27), (28) can be rewritten as

𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝑌 (1))) 𝑑𝑠 (29)

with 𝑊(1) = 0. Now the integral equation (27) is equivalent to
(29). It can be seen from (29) that the solution 𝑊(𝑡) of (29) is
dependent on the value 𝑌(1). Now, instead of (29), we replace
𝑌(1) with a real vector 𝜅 = (𝜇, ]) and consider

𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠. (30)

For any 𝜅 = (𝜇, ]), let

𝐾 = {𝑊 (𝑡) = (𝑤
1

(𝑡) , 𝑤
2

(𝑡)) ∈ Ω} , (31)

equipped with the norm ‖𝑊(𝑡)‖ = max{max
𝑡∈[0,1]

𝑤
1
(𝑡),

max
𝑡∈[0,1]

𝑤
2
(𝑡)}. Define an operator 𝑇 in 𝐾 as follows:

𝑇𝑊 (𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠. (32)

Using a similar method of Lemmas 3.5 and 3.6 in [34], we
obtain that 𝑇 is completely continuous in 𝐾, and (30) has at
least a solution 𝑊(𝑡) for any given real constant vector 𝜅; the
solution 𝑊(𝑡) is dependent on the given vector 𝜅. We note the
solution 𝑊(𝑡) := 𝑊

𝜅
(𝑡).

3. The Proof of Theorem 1

From Lemma 10, for any real vector 𝜅, the integral equation
(30) has at least a solution 𝑊(𝑡). Therefore, to show that
problem (1) has a solution, it remains to show that there exists
a 𝜅 = (𝜇, ]), such that 𝑊(1) = 0, or 𝑌(1) = 𝜅 = (𝜇, ]).

In what follows, we will use the method of topological
degree to prove our main result.

Let𝐷 be an open subset of the plane𝑅
2 with the boundary

𝜕𝐷 being a simple closed curve; 𝑇̃ is a continuous mapping
from𝐷 = 𝐷∪𝜕𝐷 to𝑅

2. Let (𝑐, 𝑑) ∈ 𝑅
2. Denote by𝐴 a variable

point on the boundary 𝜕𝐷. As 𝐴 traverses the boundary,
assume that its image 𝑇̃(𝐴) traces out a closed curve that does
not pass through the point (𝑐, 𝑑). As in complex analysis, we
can define the winding number of this curve with respect
to (𝑐, 𝑑), by measuring the total change of the argument of
the vector joining (𝑐, 𝑑) and the variable point 𝑇̃(𝐴). For
two-dimensional space, this number is equivalent to the
topological degree of the mapping 𝑇̃ at (𝑐, 𝑑).

We introduce a proposition from [8] as follows.

Proposition 11. If the degree of a continuous mapping 𝑇̃ with
respect to a point (𝑐, 𝑑) is nonzero, then the equation 𝑇̃(𝜇, ]) =

(𝑐, 𝑑) has a solution (𝜇, ]) ∈ 𝐷.

From Section 2, for any parameters 𝜇, ], 𝜅 = (𝜇, ]), there
exists a solution 𝑊

𝜅
(𝑡) of (30). At the point 𝑡 = 1, we denote

𝑤
1
(1) := 𝜃, 𝑤

2
(1) := 𝜗. It is obvious that the parameters 𝜃,

𝜗 depend on the parameters 𝜇, ], so we define a map 𝑇̃ as
follows:

𝑇̃ (𝜇, ]) = (𝜃, 𝜗) . (33)

Therefore, if we can find a domain 𝐷 with its boundary
as a closed curve 𝐿, so that its image 𝑇̃(𝐿) contains the point
(0, 0) in it, then it is implied by Proposition 11 that there exists
a point 𝜅

0
= (𝜇
0
, ]
0
) in 𝐷 such that 𝑇̃(𝜇

0
, ]
0
) = (0, 0). Thus,

the function 𝑌(𝑡) = 𝑊
𝜅0

(𝑡) + 𝜅
0

= 𝑊(𝑡) + 𝑌(1) is a solution of
(29), where

𝑊
𝜅0

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊
𝜅0

(𝑠) + 𝜅
0
)) 𝑑𝑠. (34)

We now proceed to find such 𝐿. For convenience, we take
a curve 𝐿 = 𝑃𝑄𝑅𝑆, where 𝑃 = (−𝜇

∗

, −]∗), 𝑄 = (−𝜇
∗

, ]∗),
𝑅 = (𝜇

∗

, ]∗), 𝑆 = (𝜇
∗

, −]∗), and 𝑃𝑄, 𝑄𝑅, 𝑅𝑆, and 𝑆𝑃 are a
part of line. The image 𝑇̃(𝑃𝑄𝑅𝑆) = 𝑃

󸀠

𝑄
󸀠

𝑅
󸀠

𝑆
󸀠. We want to

show that the point (𝜃, 𝜗) = (0, 0) is inside the closed curve
𝑃
󸀠

𝑄
󸀠

𝑅
󸀠

𝑆
󸀠 as the parameters 𝜇

∗, 𝜇
∗, and ]∗ are large enough.

In fact, we will prove that the line 𝑃
󸀠

𝑄
󸀠(𝑅󸀠𝑆󸀠) lies in the left

(right) side of the 𝜗-axis, and the line 𝑄
󸀠

𝑅
󸀠(𝑆󸀠𝑃󸀠) lies above

(under) the 𝜃-axis as 𝜇
∗, 𝜇
∗, and ]∗ are large enough.

Let

𝑎
1

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠, 𝑏
11

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠,

𝑏
12

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠,

𝑎
2

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠, 𝑏
21

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠,

𝑏
22

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠.

(35)

From (9) and (𝐻), 𝑎
1
, 𝑎
2

≥ 0 and 0 < 𝑏
11

, 𝑏
12

, 𝑏
21

, 𝑏
22

< 1,
and 𝑏
12

< 𝑏
11
, 𝑏
21

< 𝑏
22
, we may take 𝜇

∗, 𝜇
∗, and ]∗ large

enough satisfying

𝜇
∗

=
𝑏
12

𝑏
11

]∗, (36)

𝜇
∗

=
𝑏
22

𝑏
21

]∗. (37)
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Then, the points 𝑃, 𝑄, 𝑅, and 𝑆 can be expressed as follows:

𝑃 = (−
𝑏
12

𝑏
11

]∗, −]∗) ,

𝑄 = (−
𝑏
12

𝑏
11

]∗, ]∗) ,

𝑅 = (
𝑏
22

𝑏
21

]∗, ]∗) ,

𝑆 = (
𝑏
22

𝑏
21

]∗, −]∗) .

(38)

Now the proof of Theorem 1 is reduced as the following
lemmas.

Lemma 12. Suppose that (𝐻) and (9) hold. Then, for ]∗ large
enough, 𝑃

󸀠 lies in the third quadrant.

Proof. From (30), we have

𝑊
𝜅

(1) := 𝑊 (1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓 (𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠.

(39)

By the definition of 𝜃, 𝜗 in (33), wemay rewrite (39) as follows:

𝜃
𝜅

= 𝑤
1

(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠,

𝜗
𝜅

= 𝑤
2

(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅)) 𝑑𝑠.

(40)

Let 𝜅
∗

= (−𝜇
∗

, −]∗) = (−(𝑏
12

/𝑏
11

)]∗, −]∗). From (40), we
have

𝜃
𝜅
∗ = 𝑤

1
(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅
∗

)) 𝑑𝑠,

𝜗
𝜅
∗ = 𝑤

2
(1) = ∫

1

0

𝐺
∗

(1, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊 (𝑠) + 𝜅
∗

)) 𝑑𝑠.

(41)

Nowwe will show that 𝜃
𝜅
∗ , 𝜗
𝜅
∗ → −∞ as ]∗ → ∞. We only

show that lim]∗→∞𝜃
𝜅
∗ = −∞ and the proof of lim]∗→∞𝜗

𝜅
∗ =

−∞ is similar. Assume on the contrary that lim]∗→∞𝜃
𝜅
∗ =

𝑙 > −∞. Thus, there exists a sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)}, 𝜇
𝑛

=

(𝑏
12

/𝑏
11

)]
𝑛

< 0 such that lim]𝑛→−∞𝜃
𝑛

= 𝑙 > −∞.
Recall that

𝑤
1𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠,

𝑤
2𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠.

(42)

Now we claim that it is impossible to have

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 0, ∀𝑡 ∈ [0, 1] (43)

as −]
𝑛
is sufficiently large. Indeed, assume that (43) is true.

Then, by the first equation of (42), we have

𝑤
1𝜅𝑛

(𝑡) ≤ 0 (44)

for all 𝑡 ∈ [0, 1]. Therefore, we obtain

lim
𝜇𝑛→−∞

(𝑤
1𝜅𝑛

(𝑡) + 𝜇
𝑛
) = lim

]𝑛→−∞
(𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛
) = −∞

(45)

for 𝑡 ∈ [0, 1]. We define some sets as follows:

𝐴
𝑛

= {𝑡 ∈ [0, 1] :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≥ 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
} ,

𝐵
𝑛

= {𝑡 ∈ [0, 1] :

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

< 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
} ,

𝐶
𝑛

= {𝑡 ∈ [0, 1] : 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 0} .

(46)

We have assumed in (7) that

lim
V→−∞

𝑓
1

(𝑡, 𝑡
𝛼−1

(V, 𝑢 (V))) = −∞

for any 𝑢 (V) ≤ |V| , 𝑡 ∈ (0, 1] .

(47)

It is easy to show from (42), (𝐻), and our assumption that the
set 𝐵
𝑛
is not empty, and 𝐵

𝑛
⊂ 𝐶
𝑛
. We have the following:

lim
]𝑛→−∞

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐵𝑛

= lim
]𝑛→−∞

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

= lim
]𝑛→−∞

max
𝑡∈𝐵𝑛

𝑤
2𝜅𝑛

(𝑡) = +∞.

(48)

Using conditions (6) and (8), we have from (45) that there
exists a constant 𝑙 such that

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛
, 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛
)) < 𝑙 (49)
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for 𝑡 ∈ [0, 1] \ 𝐶
𝑛
and any 𝑛 large enough. From the second

formula of (42), (45)–(49), one gets

𝑤
2𝜅𝑛

(𝑡) ≤ (∫
[0,1]\𝐶𝑛

+ ∫
𝐶𝑛∩𝐴𝑛

+ ∫
𝐶𝑛∩𝐵𝑛

) 𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
, 𝑤
2𝜅𝑛

(𝑠) + ]
𝑛
)) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠

+ ∫
𝐶𝑛∩𝐵𝑛

𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
,

𝑤
2𝜅𝑛

(𝑠) (+]
𝑛
) )) 𝑑𝑠

= 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠

+ ∫
𝐵𝑛

𝐺
∗

(𝑠, 𝑠)

× 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛
,

𝑤
2𝜅𝑛

(𝑠) + ]
𝑛
)) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑤
1𝜅𝑛

(𝑡) +
𝑏
21

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑝2

𝐵𝑛

∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

+
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

󵄩󵄩󵄩󵄩󵄩

𝑞2

𝐵𝑛

∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠

≤ 𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑎
2

+ (𝑏
21

+ 𝑏
22

)
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

,

𝑡 ∈ 𝐶
𝑛
,

(50)
which implies that

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐶𝑛

≤

𝑙 ∫
[0,1]\𝐶𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑎
2

1 − 𝑏
21

− 𝑏
22

< ∞. (51)

It contradicts (48).
Thus, for any −]

𝑛
large enough, there exists some 𝑡 ∈

(0, 1], such that
𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0. (52)

Now we define
𝐼
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} ,

𝐼
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} .

(53)

Then, 𝐼
𝑛
is not empty.

We can further divide the set 𝐼
𝑛
into two sets 𝐼

𝑛
and 𝐼
𝑛
,

and divide the set 𝐼
󸀠

𝑛
into two sets 𝐼󸀠

𝑛
and 𝐼󸀠
𝑛
as follows:

𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

≤ 0} ,

𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

> 0} ,

𝐼󸀠
𝑛

= {𝑡 ∈ 𝐼
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 0} ,

𝐼󸀠
𝑛

= {𝑡 ∈ 𝐼
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

> 0} .

(54)

It is easy to know that 𝐼
𝑛

∩ 𝐼
𝑛

= 𝜙, 𝐼󸀠
𝑛

∩ 𝐼󸀠
𝑛

= 𝜙 and 𝐼
𝑛

= 𝐼
𝑛

∪ 𝐼
𝑛
,

𝐼
󸀠

𝑛
= 𝐼󸀠
𝑛

∪ 𝐼󸀠
𝑛
.

We claim that the set 𝐼
𝑛
is not empty for −]

𝑛
large enough.

Otherwise, the function 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is bounded

from above. In fact, assume that 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is

unbounded from above for −]
𝑛
large enough; then we have

from (𝐻) that there exist a sequence {𝑡
𝑖
} and a subsequence

{]
𝑛𝑖

} of {]
𝑛
} such that

lim
]𝑛𝑖 →−∞

𝑤
2𝜅𝑛𝑖

(𝑡
𝑖
) = ∞,

lim
]𝑛𝑖 →−∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛𝑖

(𝑡
𝑖
) +

𝑏
12

𝑏
11

]
𝑛𝑖

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

≤ lim
]𝑛𝑖 →−∞

(𝑤
2𝜅𝑛𝑖

(𝑡
𝑖
) + ]
𝑛𝑖

)

= + ∞.

(55)

Using a similarmethod of (51), we can derive a contradiction.
Therefore, 𝑓

1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) is bounded from above.

From (42),𝑤
1𝜅𝑛

(𝑡) is bounded from above, which implies that
𝑤
1𝜅𝑛

(𝑡) + (𝑏
12

/𝑏
11

)]
𝑛

→ −∞ as ]
𝑛

→ −∞. If 𝐵
𝑛

= 𝜙

(where𝐵
𝑛
is defined in (46)), then lim]𝑛→−∞𝜃

𝑛
= −∞, which

contradicts our assumption. Thus, 𝐵
𝑛

̸= 𝜙. Using a similar
method of getting (51) also gives a contradiction. Therefore,
𝐼
𝑛
is not empty.
Similarly as getting (51) again, we conclude that the

function 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋) is bounded above by a constant for 𝑡 ∈

[0, 1] and 𝑥
𝑖

∈ (−∞, 0] (𝑖 = 1, 2). From the condition (𝐻), if
𝑤
1𝜅𝑛

(𝑡) + ]
𝑛

> 0 (or 𝑤
2𝜅𝑛

(𝑡) + 𝜇
𝑛

> 0) and 𝑓
2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) +

𝜅
𝑛
)) < 0 (or 𝑓

1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0), then 𝑤

2𝜅𝑛
(𝑡) + ]

𝑛

(or 𝑤
1𝜅𝑛

(𝑡)+𝜇
𝑛
) is also bounded from above by a constant for

𝑡 ∈ [0, 1]. Therefore, from the definition of 𝐼
𝑛
, 𝐼󸀠
𝑛
, there exists

a constant 𝑀 > 1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀, for 𝑡 ∈ 𝐼

𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀, for 𝑡 ∈ 𝐼󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 𝑀

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈ 𝐼

𝑛
,
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𝑤
1𝜅𝑛

(𝑡) +
𝑏
12

𝑏
11

]
𝑛

≤ 𝑀,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈ 𝐼󸀠

𝑛
.

(56)

Let

𝑀
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) . (57)

From the definitions of 𝐼
𝑛
and 𝐼
𝑛
, we have

𝑀
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) =
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛

. (58)

Since 𝐼
𝑛
is not empty, it follows that 𝑀

1
(𝜅
𝑛
) → ∞ as

]
𝑛

→ −∞. Recall from (9) and (35) that 𝑏
𝑖𝑗

< 1 (𝑖, 𝑗 = 1, 2).
Therefore, we can choose ]

𝑛1
> 0 large enough so that

𝑀
1

(𝜅
𝑛
) > max {1, 𝑃

1
, 𝑃
2
} (59)

for ]
𝑛

< −]
𝑛1
, where

𝑃
1

=

𝑀 (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

,
(60)

𝑃
2

= (𝑀 ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
22

+ 𝑏
12

)

+ 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

) + (𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

) )

× ((1 − 𝑏
11

)(1 − 𝑏
22

) − 𝑏
12

𝑏
21

)
−1

.

(61)

Now, for later use, for any integral in a domain 𝐴

∫
𝐴

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠, for 𝑔 (𝑠) > 0, 𝑖, 𝑗 = 1, 2, (62)

we define a subset (𝐴)
1
as

(𝐴)
1

= {𝑡 ∈ 𝐴 | 𝑔 (𝑡) ≥ 1} . (63)

Thus, the integral in (62) can be rewritten as

∫
𝐴

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠 = ∫
(𝐴)1

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠

+ ∫
𝐴\(𝐴)1

𝐺
∗

(𝑠, 𝑠) 𝑏
𝑖𝑗

(𝑠) 𝑔 (𝑠) 𝑑𝑠.

(64)

From (𝐻), (42), and the definitions of 𝐼
𝑛
, 𝐼
𝑛
and 𝐼󸀠
𝑛
, 𝐼󸀠
𝑛
, for

]
𝑛

< −]
𝑛1
, we have

𝑤
1𝜅𝑛

(𝑡) = ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) (𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

+ 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1

) 𝑑𝑠

≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
𝐼𝑛\(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠

+ ∫
(𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((𝐼𝑛∩𝐼

󸀠

𝑛
)\(𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠,

(65)

which yields from (56) and the definition in (63) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠 + ∫
𝐼𝑛\(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠

+ ∫
(𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) +
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑑𝑠

+ ∫
(𝐼𝑛∩𝐼
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨
𝑑𝑠

+ 𝑀 ∫
(𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((𝐼𝑛∩𝐼

󸀠

𝑛
)\(𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠.

(66)
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Further, one gets from (56) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 + 𝑀 ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑀
1

(𝜅
𝑛
) −

𝑏
12

𝑏
11

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠 (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

,

(67)

which gives

𝑀
1

(𝜅
𝑛
) < 𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

.

(68)

That is,

𝑀
1

(𝜅
𝑛
)

<

𝑀 (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(69)

If 𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, then we have from (69) that

𝑀
1

(𝜅
𝑛
) <

𝑀 (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

,
(70)

which contradicts (59).
If 𝐼
𝑛

∩ 𝐼
󸀠

𝑛
̸= 𝜙, using a similar method of (69), we can

estimate 𝑤
2𝜅𝑛

(𝑡) as

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛∩𝐼

󸀠

𝑛

≤
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼󸀠
𝑛

<

𝑀 (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) + 𝑎
2

+ 𝑏
22

+ 𝑏
21

𝑀 (𝜅
𝑛
)

1 − 𝑏
22

.

(71)

Substituting this into (69), we obtain

𝑀 (𝜅
𝑛
)

< (𝑀 (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
22

+ 𝑏
12

) + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

))

+ (𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

))

× ((1 − 𝑏
11

)(1 − 𝑏
22

) − 𝑏
12

𝑏
21

)
−1

,

(72)

which finally contradicts (59).Therefore, our result is proved.
Similarly, we can show that lim]∗→∞𝜗

𝜅
∗ = −∞. Thus,

the point 𝑇̃(−𝜇
∗

, −]∗) lies in the third quadrant. The proof is
completed.

Lemma 13. Suppose that (𝐻) and (9) hold. Then, for ]∗ > 0

large enough, 𝑄
󸀠 lies in the second quadrant.

Proof. It suffices to show that lim]∗→∞𝜗
∗

= ∞ and
lim]∗→∞𝜃

∗

= −∞.
First, we claim that lim]∗→∞𝜗

∗

= ∞. On the contrary,
we assume that there exists a sequence {𝜅

𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} =

{(−(𝑏
12

/𝑏
11

)]
𝑛
, ]
𝑛
)} such that lim]𝑛→∞𝜗

𝑛
= 𝑙 < ∞. By a

similarmethod in Lemma 12, we know it is impossible to have

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 0, ∀𝑡 ∈ [0, 1] (73)

as ]
𝑛
is sufficiently large.

Now, for large ]
𝑛
, we define

𝐽
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0} ,

𝐽
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0} .

(74)

Then, 𝐽󸀠
𝑛
is not empty.

As in Lemma 12, we can further divide the set 𝐽
𝑛
into two

sets 𝐽
𝑛
and 𝐽
𝑛
and divide the set 𝐽

󸀠

𝑛
into two sets 𝐽󸀠

𝑛
and 𝐽󸀠
𝑛
as

follows:

𝐽
𝑛

= {𝑡 ∈ 𝐽
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≥ 0} ,

𝐽
𝑛

= {𝑡 ∈ 𝐽
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

< 0} ,

𝐽󸀠
𝑛

= {𝑡 ∈ 𝐽
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 0} ,

𝐽󸀠
𝑛

= {𝑡 ∈ 𝐽
󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

< 0} .

(75)

Then 𝐽
𝑛

∩ 𝐽
𝑛

= 𝜙, 𝐽󸀠
𝑛

∩ 𝐽󸀠
𝑛

= 𝜙 and 𝐽
𝑛

= 𝐽
𝑛

∪ 𝐽
𝑛
, 𝐽
󸀠

𝑛
= 𝐽󸀠
𝑛

∪ 𝐽󸀠
𝑛
.

Using a similar method as in the proof of Lemma 12,
we can show that the set 𝐽󸀠

𝑛
is not empty. Furthermore, the

function 𝑓
𝑖
(𝑡, 𝑡
𝛼−1

𝑋) is bounded below by a constant for 𝑡 ∈

[0, 1] and 𝑥
𝑖

∈ [0, ∞) (𝑖 = 1, 2). If 𝑤
2𝜅𝑛

(𝑡) + 𝜇
𝑛

< 0

(or 𝑤
1𝜅𝑛

(𝑡) + ]
𝑛

< 0) and 𝑓
1
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0 (or

𝑓
2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡)+𝜅
𝑛
)) > 0), then𝑤

1𝜅𝑛
(𝑡)+]

𝑛
(or𝑤
2𝜅𝑛

(𝑡)+𝜇
𝑛
)
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is also bounded below by a constant for 𝑡 ∈ [0, 1]. From
the definition of 𝐽

𝑛
, 𝐽󸀠
𝑛
and the condition (𝐻), there exists a

constant 𝑀̃ < −1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 𝑀̃, for 𝑡 ∈ 𝐽

𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≥ 𝑀̃, for 𝑡 ∈ 𝐽󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≥ 𝑀̃

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0, 𝑡 ∈ 𝐽

𝑛
,

𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≥ 𝑀̃,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0, 𝑡 ∈ 𝐽󸀠

𝑛
.

(76)

Let

𝑚
2

(𝜅
𝑛
) = min
𝑡∈𝐽
󸀠

𝑛

𝑤
2𝜅𝑛

(𝑡) . (77)

From the definitions of 𝐽󸀠
𝑛
and 𝐽󸀠
𝑛
, we have

𝑚
2

(𝜅
𝑛
) = min
𝑡∈
̂
𝐽
󸀠

𝑛

𝑤
2𝜅𝑛

(𝑡) = −
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐽󸀠
𝑛

, (78)

and it follows that 𝑚
2
(𝜅
𝑛
) → −∞ as ]

𝑛
→ ∞. Therefore,

we can choose ]
𝑛1
large enough so that

𝑚
2

(𝜅
𝑛
) < min {−1, 𝑄

1
, 𝑄
2
} (79)

for ]
𝑛

> ]
𝑛1
, where

𝑄
1

=

𝑀̃ ∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 + 𝑏
21

) − 𝑎
2

− 𝑏
22

1 − 𝑏
22

,

𝑄
2

=

∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
11

− 𝑏
21

) + 𝑏
21

(1 − 𝑏
11

− 𝑏
21

)

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

𝑀̃

−
(𝑎
2

+ 𝑏
22

) (1 − 𝑏
11

) + (𝑎
1

+ 𝑏
11

) 𝑏
21

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

.

(80)

Notice that 𝑏
12

< 𝑏
11
, 𝑏
21

< 𝑏
22
. From (𝐻), (42), and the

definitions of 𝐽
𝑛
, 𝐽
𝑛
and 𝐽󸀠
𝑛
, 𝐽󸀠
𝑛
, for ]

𝑛
> ]
𝑛1
, we have

𝑤
2𝜅𝑛

(𝑡) ≥ ∫
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) (𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

+ 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2

) 𝑑𝑠

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
∩𝐽𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
∩([0,1]\𝐽𝑛)

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2

𝑑𝑠.

(81)

Thus,

𝑤
2𝜅𝑛

(𝑡)

≥ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
2

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩([0,1]\𝐽𝑛))∪((

̂
𝐽
󸀠

𝑛
∩𝐽𝑛)\(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠)

×

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝2

𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2

𝑑𝑠

− ∫
̂
𝐽
󸀠

𝑛
\(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞2

𝑑𝑠,

(82)
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which follows from (76) and the definition of (63) that

𝑤
2𝜅𝑛

(𝑡) ≥ 𝑀̃ ∫
̃
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 − ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

+ 𝑀̃ ∫
̂
𝐽
󸀠

𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

− ∫
(
̂
𝐽
󸀠

𝑛
∩𝐽𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

×

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩(̂𝐽󸀠
𝑛
∩𝐽𝑛)1

− ∫
(
̂
𝐽
󸀠

𝑛
)1

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛

− ∫
̂
𝐽
󸀠

𝑛
\(
̂
𝐽
󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠

≥ 𝑀̃ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 − ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
2

(𝑠) 𝑑𝑠

+ 𝑀̃ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
21

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠 (−𝑚
2

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩)

− ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
22

(𝑠) 𝑑𝑠

= 𝑀̃ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

+

󵄩󵄩󵄩󵄩]𝑛
󵄩󵄩󵄩󵄩 (𝑏
11

𝑏
22

− 𝑏
12

𝑏
21

)

𝑏
11

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+ 𝑏
22

𝑚
2

(𝜅
𝑛
) .

(83)

Thus,

𝑚
2

(𝜅
𝑛
) > 𝑀̃ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

+ 𝑏
22

𝑚
2

(𝜅
𝑛
) ,

(84)

which implies that

𝑚
2

(𝜅
𝑛
)

>

𝑀̃ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

− 𝑏
21

󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

1 − 𝑏
22

.

(85)

If 𝐽󸀠
𝑛

∩ 𝐽
𝑛

= 𝜙, from (85), we have

𝑚
2

(𝜅
𝑛
) >

𝑀̃ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
21

) − 𝑎
2

− 𝑏
22

1 − 𝑏
22

,
(86)

which contradicts (79).
If 𝐽󸀠
𝑛

∩ 𝐽
𝑛

̸= 𝜙. Using a similar method of (85), we have

−
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐽󸀠
𝑛
∩𝐽𝑛

≥ −
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐽𝑛

>

𝑀̃ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) − 𝑎
1

− 𝑏
11

− 𝑏
12

𝑚
2

(𝜅
𝑛
)

1 − 𝑏
11

.

(87)

Substituting it into (85), we obtain

𝑚
2

(𝜅
𝑛
)

>

∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 (1 − 𝑏
11

− 𝑏
21

) + 𝑏
21

(1 − 𝑏
11

− 𝑏
21

)

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

𝑀̃

−
(𝑎
2

+ 𝑏
22

) (1 − 𝑏
11

) + (𝑎
1

+ 𝑏
11

) 𝑏
21

(1 − 𝑏
22

) (1 − 𝑏
11

) − 𝑏
21

𝑏
12

,

(88)

which also contradicts (79). Therefore, lim]∗→∞𝜗 = ∞.
Now, we show that lim]∗→∞𝜃 = −∞.
On the contrary, assume that there exists a vector

sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} such that 𝜇

𝑛
= −(𝑏
12

/𝑏
11

)]
𝑛
and

lim
]𝑛→∞

𝜃
𝑛

= 𝑙 > −∞. (89)

Similarly as before, it is impossible to have

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 0, ∀𝑡 ∈ [0, 1] (90)

as ]
𝑛
is sufficiently large.

Now for large ]
𝑛
, we define

𝐼
𝑛

= {𝑡 ∈ [0, 1] : 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} ,

𝐼
󸀠

𝑛
= {𝑡 ∈ [0, 1] : 𝑓

2
(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) > 0} .

(91)

Then, 𝐼
𝑛
is not empty.
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We can further divide the set 𝐼
𝑛
into two sets ̃

𝐼
𝑛
and ̂

𝐼
𝑛

and divide the set 𝐼
󸀠

𝑛
into two sets ̃

𝐼

󸀠

𝑛
and ̂

𝐼

󸀠

𝑛
as follows:

̃
𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≤ 0} ,

̂
𝐼
𝑛

= {𝑡 ∈ 𝐼
𝑛

| 𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

> 0} ,

̃
𝐼

󸀠

𝑛
= {𝑡 ∈ 𝐼

󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 0} ,

̂
𝐼

󸀠

𝑛
= {𝑡 ∈ 𝐼

󸀠

𝑛
| 𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

> 0} .

(92)

It is easy to know that ̃
𝐼
𝑛

∩
̂
𝐼
𝑛

= 𝜙, ̃𝐼
󸀠

𝑛
∩

̂
𝐼

󸀠

𝑛
= 𝜙 and 𝐼

𝑛
=

̃
𝐼
𝑛

∪
̂
𝐼
𝑛
,

𝐼
󸀠

𝑛
=

̃
𝐼

󸀠

𝑛
∪

̂
𝐼

󸀠

𝑛
.

Using a similar method of the proof of Lemma 12, we
obtain that the set ̂

𝐼
𝑛
is not empty. Furthermore, there exists

a constant 𝑀̂ > 1, independent of 𝑡 and ]
𝑛
such that

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀̂, for 𝑡 ∈

̃
𝐼
𝑛
,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) ≤ 𝑀̂, for 𝑡 ∈

̃
𝐼

󸀠

𝑛
,

𝑤
2𝜅𝑛

(𝑡) + ]
𝑛

≤ 𝑀̂,

for 𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈

̂
𝐼
𝑛
,

𝑤
1𝜅𝑛

(𝑡) −
𝑏
12

𝑏
11

]
𝑛

≤ 𝑀̂,

for 𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑊
𝜅𝑛

(𝑡) + 𝜅
𝑛
)) < 0, 𝑡 ∈

̂
𝐼

󸀠

𝑛
.

(93)

Let
𝑀̂
1

(𝜅
𝑛
) = max
𝑡∈𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) . (94)

From the definitions of ̃
𝐼
𝑛
and ̂

𝐼
𝑛
, we have

𝑀̂
1

(𝜅
𝑛
) = max
𝑡∈
̂
𝐼𝑛

𝑤
1𝜅𝑛

(𝑡) =
󵄩󵄩󵄩󵄩󵄩
𝑤
1𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩𝐼𝑛

. (95)

Since ̂
𝐼
𝑛
is not empty, it follows that 𝑀̂

1
(𝜅
𝑛
) → ∞ as ]

𝑛
→

∞. Therefore, we can choose ]
𝑛1
large enough so that

𝑀̂
1

(𝜅
𝑛
) > max {1, 𝑃̂

1
, 𝑃̂
2
} , (96)

for ]
𝑛

> ]
𝑛1
, where

𝑃̂
1

=

𝑀̂ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

,

𝑃̂
2

=

∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

.

(97)

From (𝐻) and (42), we have

𝑤
1𝜅𝑛

(𝑡)

= ∫

1

0

𝐺
∗

(𝑡, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

≤ ∫
̃
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)\(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ]
𝑛

󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠,

(98)

which follows from (93) and the definition in (63) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑚̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩) .

(99)

Thus,

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑚̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠
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+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂(𝐼𝑛∩𝐼

󸀠

𝑛
)
1

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
) + 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

,

(100)

which implies that

𝑀̂
1

(𝜅
𝑛
) < 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
)

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

.

(101)

Therefore, we have

𝑀̂
1

(𝜅
𝑛
)

<

𝑀̂ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(102)

If ̂
𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, then we have from (76) that

𝑀̂
1

(𝜅
𝑛
) <

𝑀̂ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

,
(103)

which contradicts (102).
If ̂

𝐼
𝑛
∩𝐼
󸀠

𝑛
̸= 𝜙. Using a similar method to that in Lemma 12,

we have

𝑀̂
1

(𝜅
𝑛
)

<

∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

+ 𝑏
21

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

,

(104)

which also contradicts (96). Thus, the point 𝑇̃(−𝜇
∗

, ]∗) =

(−(𝑏
12

/𝑏
11

)]∗, ]∗) lies in the second quadrant. The proof is
completed.

Lemma 14. Suppose that (𝐻) and (9) hold. Then, for ]∗ large
enough, the line 𝑃

󸀠

𝑄
󸀠 lies in the left of 𝜗-axis.

Proof. For any point 𝐴(𝜃, 𝜗) in 𝑃
󸀠

𝑄
󸀠, it suffices to show that

𝜃 → −∞ as ]∗ → ∞ for any ] ∈ [−]∗, ]∗].
On the contrary, we assume that there exists a vector

sequence {𝜅
𝑛
} = {(𝜇

𝑛
, ]
𝑛
)} satisfying 𝜇

𝑛
= −(𝑏

12
/𝑏
11

)]
𝑛
and

a point ](]
𝑛
) ∈ [−]

𝑛
, ]
𝑛
] such that 𝜃(−(𝑏

12
/𝑏
11

)]
𝑛
, ](]
𝑛
)) →

𝑙 > −∞ as ]
𝑛

→ ∞. We define some sets 𝐼
𝑛
, ̃
𝐼
𝑛
, ̂
𝐼
𝑛
and 𝐼
󸀠

𝑛
,

̃
𝐼

󸀠

𝑛
, ̂𝐼
󸀠

𝑛
, and some numbers 𝑀̂, 𝑀̂

1
(𝜅
𝑛
) as in Lemma 13. Using

a similar method of the proof of Lemma 13, we have

𝑤
1𝜅𝑛

(𝑡)

≤ ∫
̃
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑓
1

(𝑠, 𝑠
𝛼−1

(𝑊
𝜅𝑛

(𝑠) + 𝜅
𝑛
)) 𝑑𝑠

+ ∫
̂
𝐼𝑛

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ ∫
(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
̂
𝐼𝑛\(
̂
𝐼𝑛)1

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑤
1𝜅𝑛

(𝑠) −
𝑏
12

𝑏
11

]
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

𝑝1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ] (]
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠

+ ∫
(
̂
𝐼𝑛∩([0,1]\𝐼

󸀠

𝑛
))∪((
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)\(
̂
𝐼𝑛∩𝐼

󸀠

𝑛
)
1
)

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠)

×
󵄨󵄨󵄨󵄨󵄨
𝑤
2𝜅𝑛

(𝑠) + ] (]
𝑛
)
󵄨󵄨󵄨󵄨󵄨

𝑞1

𝑑𝑠.

(105)

It follows from (93)–(96) that

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑎
1

(𝑠) 𝑑𝑠

+ 𝑀̂ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠 (𝑀̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
11

(𝑠) 𝑑𝑠

+ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑏
12

(𝑠) 𝑑𝑠

× (
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩] (]
𝑛
)
󵄩󵄩󵄩󵄩) .

(106)

Notice that −]
𝑛

≤ ](]
𝑛
) ≤ ]
𝑛
; from (35), one gets

𝑤
1𝜅𝑛

(𝑡) ≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑀̂ 𝑑𝑠 + 𝑎
1

+ 𝑀̂𝑏
12

+ 𝑏
11

+ 𝑏
11

(𝑀̂
1

(𝜅
𝑛
) −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑏
12

𝑏
11

]
𝑛

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

+ 𝑏
12

(
󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

+
󵄩󵄩󵄩󵄩]𝑛

󵄩󵄩󵄩󵄩)

= 𝑀̂ (∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
11

𝑀̂
1

(𝜅
𝑛
) + 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

,

(107)
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which implies that

𝑀̂
1

(𝜅
𝑛
)

<

𝑀̂ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

+ 𝑏
12

󵄩󵄩󵄩󵄩󵄩
𝑤
2𝜅𝑛

(𝑡)
󵄩󵄩󵄩󵄩󵄩̂𝐼𝑛∩𝐼

󸀠

𝑛

1 − 𝑏
11

.

(108)

It is easy to show that

𝑀̂
1

(𝜅
𝑛
) <

𝑀̂ (∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 + 𝑏
12

) + 𝑎
1

+ 𝑏
11

1 − 𝑏
11

(109)

for ̂
𝐼
𝑛

∩ 𝐼
󸀠

𝑛
= 𝜙, which contradicts (102), and

𝑀̂
1

(𝜅
𝑛
)

<

∫
1

0

𝐺
∗

(𝑠, 𝑠) 𝑑𝑠 [(1 − 𝑏
22

) + 𝑏
12

] + 𝑏
12

(1 − 𝑏
22

) + 𝑏
12

𝑏
21

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

𝑀̂

+
(𝑎
2

+ 𝑏
22

) 𝑏
12

+ (𝑎
1

+ 𝑏
11

) (1 − 𝑏
22

)

(1 − 𝑏
11

) (1 − 𝑏
22

) − 𝑏
12

𝑏
21

(110)

for ̂
𝐼
𝑛
∩𝐼
󸀠

𝑛
̸= 𝜙, which contradicts (96) also.Thus, the line𝑃

󸀠

𝑄
󸀠

lies in the left of 𝜗-axis. The proof is completed.

Similar to the proof of Lemma 12, we can show that the
image point 𝑅

󸀠 of the point 𝑅 lies in the first quadrant. From
(37), we have 𝜇

∗

= (𝑏
22

/𝑏
21

)]∗. Using a similar method of
Lemma 13, we can show that the image point 𝑆

󸀠 of the point 𝑆

lies in the fourth quadrant.
Using the conditions (36) and (37), similar to Lemma 14,

we can show that the image line𝑄
󸀠

𝑅
󸀠 of the line𝑄𝑅 lies above

the 𝜃-axis, 𝑅
󸀠

𝑆
󸀠 lies in the right of the 𝜗-axis, and 𝑆

󸀠

𝑃
󸀠 lies

under the 𝜃-axis. Therefore, we have the following lemmas.

Lemma 15. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑄

󸀠

𝑅
󸀠 lies above the 𝜃-axis, 𝑄

󸀠 lies in the second
quadrant, and 𝑅

󸀠 lies in the first quadrant.

Lemma 16. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑅

󸀠

𝑆
󸀠 lies in the right of the 𝜗-axis and 𝑆

󸀠 lies in the
fourth quadrant.

Lemma 17. Suppose that (𝐻) and (9) hold. For ]∗ large
enough, 𝑆

󸀠

𝑃
󸀠 lies below the 𝜃-axis.

Proof of Theorem 1. From Lemmas 12–17, when 𝜇
∗, ]∗, and

𝜇
∗ are large enough and satisfy (36) and (37), then the

image 𝑃
󸀠

𝑄
󸀠

𝑅
󸀠

𝑆
󸀠 of the curve 𝑃𝑄𝑅𝑆 will contain the zero in

it. From Proposition 11, it follows that there exists a vector
𝜅
0

= (𝜇
0
, ]
0
) such that the solution 𝑊

𝜅0
(𝑡) of (30) satisfies

𝑊
𝜅0

(1) = 0, which implies that the integral equation (27) has
a solution 𝑌(𝑡). From (26), it follows that (19) has a solution.
Therefore, the problem (1) has at least one solution.The proof
is completed.

4. Examples

Example 1. Consider the following boundary value system:

𝐷
3/2

0+
𝑥 (𝑡) +

𝑡
1/3

2
𝑥
1/3

(𝑡) +
𝑡
1/3

4

𝑦
1/3

(𝑡)

1 +
󵄨󵄨󵄨󵄨𝑦
1/3

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝑡 = 0,

𝑡 ∈ (0, 1) ,

𝐷
3/2

0+
𝑦 (𝑡) +

𝑡
1/3

3

𝑥
1/3

(𝑡)

1 +
󵄨󵄨󵄨󵄨𝑥
1/3

(𝑡)
󵄨󵄨󵄨󵄨

+
𝑡
1/3

2
𝑦
1/3

(𝑡) +
𝑡

4
= 0,

𝑡 ∈ (0, 1) ,

𝑥 (0) = 𝑦 (0) = 0, 𝑥 (1) = 2
1/2

𝑥 (
1

2
) ,

𝑦 (1) = 2
1/2

𝑦 (
1

2
) ,

(111)

where

𝑓
1

(𝑡, 𝑡
𝛼−1

(𝑥, 𝑦)) = 𝑓
1

(𝑡, 𝑡
1/2

(𝑥, 𝑦))

=
𝑡
1/2

2
𝑥
1/3

(𝑡) +
𝑡
1/2

4

𝑦
1/3

(𝑡)

1 + 𝑡1/6
󵄨󵄨󵄨󵄨𝑦
1/3

(𝑡)
󵄨󵄨󵄨󵄨

+ 𝑡,

𝑓
2

(𝑡, 𝑡
𝛼−1

(𝑥, 𝑦)) = 𝑓
2

(𝑡, 𝑡
1/2

(𝑥, 𝑦))

=
𝑡
1/2

3

𝑥
1/3

(𝑡)

1 + 𝑡1/6
󵄨󵄨󵄨󵄨𝑥
1/3

(𝑡)
󵄨󵄨󵄨󵄨

+
𝑡
1/2

2
𝑦
1/3

(𝑡) +
𝑡

4
.

(112)

It is obvious that

󵄨󵄨󵄨󵄨󵄨
𝑓
1

(𝑡, 𝑡
1/2

(𝑥, 𝑦))
󵄨󵄨󵄨󵄨󵄨

≤
𝑡
1/2

2
|𝑥 (𝑡)|

1/3

+
𝑡
1/2

4

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

1/3

+ 𝑡,

󵄨󵄨󵄨󵄨󵄨
𝑓
2

(𝑡, 𝑡
1/2

(𝑥, 𝑦))
󵄨󵄨󵄨󵄨󵄨

≤
𝑡
1/2

3
|𝑥 (𝑡)|

1/3

+
𝑡
1/2

2

󵄨󵄨󵄨󵄨𝑦 (𝑡)
󵄨󵄨󵄨󵄨

1/3

+
𝑡

4
,

(113)

where

𝑏
11

(𝑡) =
𝑡
1/2

2
, 𝑏

12
(𝑡) =

𝑡
1/2

4
4, 𝑏

21
(𝑡) =

𝑡
1/2

3
,

𝑏
22

(𝑡) =
𝑡
1/2

2
,

𝑎
1

(𝑡) = 𝑡, 𝑎
2

(𝑡) =
𝑡

4
, 𝜂 =

1

2
,

𝑝
1

= 𝑝
2

= 𝑞
1

= 𝑞
2

=
1

3
.

(114)



14 Abstract and Applied Analysis

It is easy to check that the function𝑓 satisfies (8)–(12). Notice
that

𝐺
∗

(𝑠, 𝑠) =
1

Γ (1/2) (1 − (1/2)
1/2

)

×

{{

{{

{

(1 − 𝑠)
1/2

− (
1

2
− 𝑠)

1/2

, 0 ≤ 𝑠 ≤
1

2
,

(1 − 𝑠)
1/2

,
1

2
≤ 𝑠 ≤ 1,

𝑏
21

(𝑡) , 𝑏
12

(𝑡) < 𝑏
11

(𝑡) , 𝑏
22

(𝑡) = max
𝑖,𝑗=1,2

{𝑏
𝑖𝑗

(𝑡)} =
𝑡
1/2

2
.

(115)

Consider

max
1≤𝑖≤2

∫

1

0

𝐺
∗

(𝑠, 𝑠) (𝑏
𝑖1

(𝑠) + 𝑏
𝑖2

(𝑠)) 𝑑𝑠

≤ ∫

1

0

𝐺
∗

(𝑠, 𝑠) (
𝑠
1/2

2
+

𝑠
1/2

2
) 𝑑𝑠

= ∫

1

0

𝐺
∗

(𝑠, 𝑠) 𝑠
1/2

𝑑𝑠

=
1

Γ (1/2) (1 − (1/2)
1/2

)

× (∫

1

0

[(1 − 𝑠) 𝑠]
1/2

𝑑𝑠 − ∫

1/2

0

[(
1

2
− 𝑠) 𝑠]

1/2

𝑑𝑠)

=
1

√𝜋 (1 − √2/2)

(
𝜋

8
−

𝜋

32
) ≈

0.2945

1.2533
< 1

(116)

which satisfies (9).Therefore, all conditions ofTheorem 1hold
and thus the problem (111) has at least a solution.
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