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Some characterizations of the left-star, right-star, and star partial orderings between matrices of the same size are obtained. Based
on those results, several characterizations of the star partial ordering between EP matrices are given. At last, one characterization
of the sharp partial ordering between group matrices is obtained.

1. Introduction

In this paper we use the following notation. Let C𝑚×𝑛 be the
set of complex𝑚× 𝑛matrices. For any matrix 𝐴 ∈ C𝑚×𝑛, 𝐴∗,
R(𝐴), and 𝑟(𝐴) denote the conjugate transpose, the range,
and the rank of𝐴, respectively.The symbol 𝐼

𝑛
denotes the 𝑛 ×

𝑛 identity matrix, and 0 denotes a zero matrix of appropriate
size. The Moore-Penrose inverse of a matrix 𝐴 ∈ C𝑚×𝑛,
denoted by 𝐴†, is defined to be the unique matrix 𝑋 ∈ C𝑛×𝑚

satisfying the four matrix equations

(1) 𝐴𝑋𝐴 = 𝐴,

(2) 𝑋𝐴𝑋 = 𝑋,

(3) (𝐴𝑋)
∗

= 𝐴𝑋,

(4) (𝑋𝐴)
∗

= 𝑋𝐴,

(1)

and 𝐴− denotes any solution to the matrix equation 𝐴𝑋𝐴 =

𝐴with respect to𝑋;𝐴{1} denotes the set of𝐴−; that is,𝐴{1} =
{𝑋 | 𝐴𝑋𝐴 = 𝐴}. Moreover, 𝐴# denotes the group inverse of
𝐴 with 𝑟(𝐴2) = 𝑟(𝐴), that is, the unique solution to

(1) 𝐴𝑋𝐴 = 𝐴,

(2) 𝑋𝐴𝑋 = 𝑋,

(5) 𝐴𝑋 = 𝑋𝐴.

(2)

It is well known that 𝐴# exists if and only if 𝑟(𝐴2) = 𝑟(𝐴),
where case 𝐴 is also called a group matrix. A matrix 𝐴 is EP

if and only if 𝐴 is a group matrix with 𝐴#
= 𝐴
†. The symbols

C𝑛GP and C
𝑛

EP stand for the subset of C
𝑛×𝑛 consisting of group

matrices and EP matrices, respectively (see, e.g., [1, 2] for
details).

Five matrix partial orderings defined in C𝑚×𝑛 are con-
sidered in this paper. The first of them is the minus partial
ordering defined by Hartwig [3] and Nambooripad [4]
independently in 1980:

𝐴 ≤ 𝐵 ⇐⇒ 𝐴
−

𝐴 = 𝐴
−

𝐵, 𝐴𝐴
=

= 𝐵𝐴
=

, (3)

where 𝐴−, 𝐴= ∈ 𝐴{1}. In [3] it was shown that

𝐴 ≤ 𝐵 ⇐⇒ 𝑟 (𝐵 − 𝐴) = 𝑟 (𝐵) − 𝑟 (𝐴) . (4)

The rank equality indicates why the minus partial ordering
is also called the rank-subtractivity partial ordering. In the
same paper [3] it was also shown that

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟[

𝐴

𝐵
] = 𝑟 [𝐴 𝐵] = 𝑟 (𝐵) , 𝐴𝐵

−

𝐴 = 𝐴, (5)

where 𝐵− ∈ 𝐵{1}.
The second partial ordering of interest is the star partial

ordering introduced by Drazin [5], which is determined by

𝐴

∗

≤ 𝐵 ⇐⇒ 𝐴
†

𝐴 = 𝐴
†

𝐵, 𝐴𝐴
†

= 𝐵𝐴
†

. (6)

It is well known that

𝐴

∗

≤ 𝐵 ⇐⇒ 𝐴
∗

𝐴 = 𝐴
∗

𝐵, 𝐴𝐴
∗

= 𝐵𝐴
∗

. (7)

Hindawi Publishing Corporation
Journal of Applied Mathematics
Volume 2014, Article ID 408457, 6 pages
http://dx.doi.org/10.1155/2014/408457

http://dx.doi.org/10.1155/2014/408457


2 Journal of Applied Mathematics

In 1991, Baksalary and Mitra [6] defined the left-star and
right-star partial orderings characterized as

𝐴
∗

≤𝐵 ⇐⇒ 𝐴
∗

𝐴 = 𝐴
∗

𝐵, R (𝐴) ⊆ R (𝐵) ,

𝐴 ≤
∗

𝐵 ⇐⇒ 𝐴𝐴
∗

= 𝐵𝐴
∗

, R (𝐴
∗

) ⊆ R (𝐵
∗

) .

(8)

The last partial ordering we will deal with in this paper
is the sharp partial ordering, introduced by Mitra [7] in 1987,
and is defined in the set C𝑛GP by

𝐴≤
#
𝐵 ⇐⇒ 𝐴

#
𝐴 = 𝐴

#
𝐵, 𝐴𝐴

#
= 𝐵𝐴

#
. (9)

A detailed discussion of partial orderings and their applica-
tions can be found in [1, 8–10].

It is well known that rank of matrix is an important tool
in matrix theory and its applications, and many problems
are closely related with the ranks of some matrix expressions
under some restrictions (see [11–15] for details). Our aim in
this paper is to characterize the left-star, right-star, star, and
sharp partial orderings by applying rank equalities. In the
following, when 𝐴 is considered below 𝐵 with respect to one
partial ordering, then the partial ordering should entail the
assumption 𝑟(𝐴) > 𝑟(𝐵) ≥ 1.

2. The Star Partial Ordering

Let 𝐴 and 𝐵 be 𝑚 × 𝑛 complex matrices with ranks 𝑎 and
𝑏, respectively. Let 𝐴

∗

≤ 𝐵. Then there exist unitary matrices
𝑈 ∈ C𝑚×𝑚 and 𝑉 ∈ C𝑛×𝑛 such that

𝑈
∗

𝐴𝑉 = (

𝐷
𝑎
0

0 0
) , 𝑈

∗

𝐵𝑉 = (

𝐷
𝑎
0 0

0 𝐷 0

0 0 0

) , (10)

where both the 𝑎×𝑎matrix𝐷
𝑎
and the (𝑏−𝑎)×(𝑏−𝑎)matrix

𝐷 are real, diagonal, and positive definite (see [16, Theorem
2]). In [1, Theorem 5.2.8], it was also shown that

𝐴

∗

≤ 𝐵 ⇐⇒ 𝐴
†

𝐴 = 𝐵
†

𝐴, 𝐴𝐴
†

= 𝐴𝐵
†

. (11)

In [17], Wang obtained the following characterizations of the
left-star and right-star partial orderings for matrices:

𝐴
∗

≤𝐵 ⇐⇒ 𝑟[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴
] = 𝑟 (𝐵) , (12)

𝐴≤
∗

𝐵 ⇐⇒ 𝑟[

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) , (13)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴
] = 𝑟 (𝐵) ,

𝑟 [

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) .

(14)

Theorem 1. Let 𝐴, 𝐵 ∈ C𝑚×𝑛. Then

(i)

𝐴
∗

≤𝐵 ⇐⇒ 𝑟[
𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) ; (15)

(ii)

𝐴≤
∗

𝐵 ⇐⇒ 𝑟[
𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

] = 𝑟 (𝐵) ; (16)

(iii)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

= 𝑟 (𝐵) ; (17)

(iv)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗

]

]

= 𝑟 (𝐵) . (18)

Proof. From

𝑟 [
𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] ≥ 𝑟 ([

𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] [

𝐵 0

0 𝐴
])

= 𝑟 [

𝐵 𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴
]

≥ 𝑟([

𝐵 𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴
][

𝐵
†

0

0 𝐴
†
])

= 𝑟 [
𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] ,

(19)

we have

𝑟 [

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴
] = 𝑟 [

𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] . (20)

Applying (12) gives (i).
In the same way, applying

𝑟 [
𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

] = 𝑟 [

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗ ] (21)

and (13) gives (ii).
If

𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

= 𝑟 (𝐵) , (22)

then

𝑟 [

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) , 𝑟 [

𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) . (23)
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Applying (i), (ii), and (14), we obtain 𝐴
∗

≤ 𝐵. Conversely, if
𝐴

∗

≤ 𝐵, by using (11) and (14), we have 𝐴†𝐴 − 𝐵†𝐴 = 0, and

𝑟 [

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴
] = 𝑟

[

[

0 𝐴
†

𝐴 − 𝐵
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

= 𝑟(
[

[

𝐼
𝑛
0 𝐵
†

0 𝐼
𝑛
0

0 0 𝐼
𝑚

]

]

[

[

0 𝐴
†

𝐴 − 𝐵
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

)

= 𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

,

𝑟 (𝐵) = 𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

]

]

.

(24)

Hence, we have (iii).
Similarly, applying 𝐴

∗

≤ 𝐵, (11), and (14), we obtain𝐴𝐴† −
𝐴𝐵
†

= 0, 𝐴𝐵† = (𝐴𝐵†)∗ = (𝐵∗)†𝐴∗, and

𝑟 [

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗ ] = 𝑟

[

[

0 𝐴𝐴
†

− 𝐴𝐵
†

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗

]

]

= 𝑟(
[

[

𝐼
𝑚
0 (𝐵
∗

)
†

0 𝐼
𝑛

0

0 0 𝐼
𝑛

]

]

[

[

0 𝐴𝐴
†

− 𝐴𝐵
†

𝐵𝐵
∗

𝐴𝐴
∗

𝐵
∗

𝐴
∗

]

]

)

= 𝑟 (𝐵) .

(25)

Then, we obtain (iv).

In [9, Theorem 2.1], Benı́tez et al. deduce the character-
izations of the left-star, right-star, and star partial orderings
for matrices, when at least one of the two involved matrices
is EP. When both 𝐴 ∈ C𝑛×𝑛 and 𝐵 ∈ C𝑛×𝑛 are EP matrices, [1,
Theorems 5.4.15 and 5.4.2] give the following results:

𝐴

∗

≤ 𝐵 ⇐⇒ 𝐴 ≤ 𝐵, 𝐴𝐵
∗ and 𝐵∗𝐴 are Hermitian.

𝐴

∗

≤ 𝐵 ⇐⇒ (𝐴𝐵)
†

= 𝐵
†

𝐴
†

= 𝐴
†

𝐵
†

= 𝐴
†
2

.

(26)

In addition, it was also shown that 𝐴
∗

≤ 𝐵 if and only if 𝐴 and
𝐵 have the form

𝐴 = 𝑈
[

[

𝑇 0 0

0 0 0

0 0 0

]

]

𝑈
∗

, 𝐵 = 𝑈
[

[

𝑇 0 0

0 𝐾 0

0 0 0

]

]

𝑈
∗

, (27)

where𝑇 ∈ C𝑟(𝐴)×𝑟(𝐴) is nonsingular,𝐾 ∈ C(𝑟(𝐵)−𝑟(𝐴))×(𝑟(𝐵)−𝑟(𝐴))

is nonsingular, and 𝑈 ∈ C𝑛×𝑛 is unitary (see [1, Theorem
5.4.1]).

Based on these results, we consider the characterizations
of the star partial ordering for matrices in the set of C𝑛EP.

Theorem 2. Let 𝐴, 𝐵 ∈ C𝑛EP, 𝑟(𝐵) ≥ 𝑟(𝐴). Then

(v)

𝐴≤
∗

𝐵 ⇐⇒ 𝑟[

𝐵 𝐴

𝐵
2

𝐴
2] = 𝑟 (𝐵) ; (28)

(vi)

𝐴
∗

≤𝐵 ⇐⇒ 𝑟[

𝐵 𝐵
2

𝐴 𝐴
2
] = 𝑟 (𝐵) . (29)

Proof. By 𝐴, 𝐵 ∈ C𝑛EP, it is obvious that 𝐴𝐴
†

= 𝐴
†

𝐴 and
𝐵𝐵
†

= 𝐵
†

𝐵. Then

𝑟 [

𝐵 𝐴

𝐵
2

𝐴
2] = 𝑟 (𝐵) ⇐⇒ 𝑟[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

] = 𝑟 (𝐵) . (30)

Hence, we have (v).
The proof of (vi) is similar to that of (v).

Theorem 3. Let 𝐴, 𝐵 ∈ C𝑛EP. Then

(vii)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

= 𝑟 (𝐵) ; (31)

(viii)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

= 𝑟 (𝐵) ; (32)

(ix)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵 𝐵𝐴

𝐵 𝐴𝐵

𝐴 𝐴𝐵

]

]

= 𝑟 (𝐵) ; (33)

(x)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵 𝐵𝐴
†

𝐵 𝐴
†

𝐵

𝐴 𝐴
†

𝐵

]

]

= 𝑟 (𝐵) ; (34)

(xi)

𝐴

∗

≤ 𝐵 ⇐⇒ 𝑟
[

[

𝐵 𝐵𝐴
∗

𝐵 𝐴
∗

𝐵

𝐴 𝐴
∗

𝐵

]

]

= 𝑟 (𝐵) . (35)

Proof. By 𝐴, 𝐵 ∈ C𝑛EP, it is obvious that 𝐴𝐴
†

= 𝐴
†

𝐴 and
𝐵𝐵
†

= 𝐵
†

𝐵. Applying (i), (ii), and the rank equality in (vii)
we obtain

𝑟 [
𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

] = 𝑟 (𝐵) , 𝑟 [
𝐵𝐵
†

𝐴𝐴
†

𝐵
∗

𝐴
∗ ] = 𝑟 (𝐵) ; (36)
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that is, 𝐴
∗

≤ 𝐵. Conversely, suppose that 𝐴
∗

≤ 𝐵. Applying
𝐴 − 𝐴𝐴

†

𝐵 = 0 and 𝐵∗𝐵𝐵† = 𝐵∗, we obtain

𝑟 (𝐵) = 𝑟 [
𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

] = 𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

0 𝐴
∗

− 𝐵
∗

𝐴𝐴
†

]

]

= 𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

.

(37)

Applying (11), we obtain 𝐵∗𝐵𝐵†𝐵 = 𝐵∗𝐵 and 𝐵∗𝐵𝐴†𝐴 =

𝐴
∗

𝐴 and also (𝐵∗𝐵)†𝐵∗𝐵 = 𝐵
†

𝐵 and (𝐵∗𝐵)†𝐴∗𝐴 = 𝐴
†

𝐴.
Then

𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

= 𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

≥ 𝑟(
[

[

𝐵
∗

𝐵 0 0

0 𝐼
𝑛
0

0 0 𝐼
𝑛

]

]

[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

)

= 𝑟
[

[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

≥ 𝑟(
[

[

(𝐵
∗

𝐵)
†

0 0

0 𝐼
𝑛
0

0 0 𝐼
𝑛

]

]

[

[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

)

= 𝑟
[

[

𝐵
†

𝐵 𝐴
†

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

;

(38)

that is,

𝑟
[

[

𝐵𝐵
†

𝐴𝐴
†

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

= 𝑟
[

[

𝐵
∗

𝐵 𝐴
∗

𝐴

𝐵 𝐴

𝐵
∗

𝐴
∗

]

]

. (39)

Hence, we have (viii).
Suppose that 𝐴

∗

≤ 𝐵. Since 𝐴, 𝐵 ∈ C𝑛EP, applying (27), it is
easy to check the rank equality in (ix). Conversely, under the
rank equality in (ix), we have

𝑟 [

𝐵 𝐵𝐴

𝐵 𝐴𝐵
] = 𝑟 [

𝐵 𝐵𝐴

0 𝐴𝐵 − 𝐵𝐴
] = 𝑟 (𝐵) ⇒ 𝐴𝐵 = 𝐵𝐴,

𝑟 [

𝐵 𝐵𝐴

𝐴 𝐴𝐵
] = 𝑟 [

𝐵 0

𝐴 𝐴𝐵 − 𝐴𝐴
2] = 𝑟 (𝐵) ⇒ 𝐴𝐵 = 𝐴

2

.

(40)

Since 𝐴 is EP, there exists a unitary matrix 𝑈
1
∈ C𝑛×𝑛 and a

nonsingular matrix 𝑇 ∈ C𝑟(𝐴)×𝑟(𝐴) such that

𝐴 = 𝑈
1
[

𝑇 0

0 0
]𝑈
∗

1
. (41)

Correspondingly denote 𝑃−1𝐵𝑃 by

𝐵 = 𝑈
1
[

𝐵
1
𝐵
2

𝐵
3
𝐵
4

]𝑈
∗

1
, (42)

where 𝐵
1
∈ C𝑟(𝐴)×𝑟(𝐴). It follows that

[

𝑇𝐵
1
𝑇𝐵
2

0 0
] = [

𝐵
1
𝑇 0

𝐵
3
𝑇 0

] , [

𝑇𝐵
1
𝑇𝐵
2

0 0
] = [

𝑇
2

0

0 0

] .

(43)

Since 𝑇 is a unitary matrix,

𝐵
1
= 𝑇, 𝐵

2
= 0, 𝐵

3
= 0. (44)

Thus

𝐵 = 𝑈[

𝑇 0

0 𝐵
4

]𝑈
∗

. (45)

Since 𝐵 is EP, 𝐵
4
is EP, and there exists a unitary matrix

𝑈
2
∈ C(𝑛−𝑟(𝐴))×(𝑛−𝑟(𝐴)) and a nonsingular matrix 𝐾 ∈

C(𝑟(𝐵)−𝑟(𝐴))×(𝑟(𝐵)−𝑟(𝐴)) such that

𝐵
4
= 𝑈
2
[

𝐾 0

0 0
]𝑈
∗

2
. (46)

Write

𝑈 = 𝑈
1
[

0 0

0 𝑈
2

] . (47)

Then 𝐴 and 𝐵 have the form

𝐴 = 𝑈
[

[

𝑇 0 0

0 0 0

0 0 0

]

]

𝑈
∗

, 𝐵 = 𝑈
[

[

𝑇 0 0

0 𝐾 0

0 0 0

]

]

𝑈
∗

. (48)

Applying (27), we have 𝐴
∗

≤ 𝐵.
The proofs of (x) and (xi) are similar to that of (ix).

3. The Sharp Partial Ordering

Let 𝐴, 𝐵 ∈ C𝑛GP with ranks 𝑎 and 𝑏, respectively. It is well
known that

𝐴≤
#
𝐵 ⇐⇒ 𝐴

2

= 𝐴𝐵 = 𝐵𝐴. (49)

In addition, 𝐴≤#𝐵 if and only if 𝐴 and 𝐵 can be written as

𝐴 = 𝑃
[

[

𝐸 0 0

0 0 0

0 0 0

]

]

𝑃
−1

, 𝐵 = 𝑃
[

[

𝐸 0 0

0 𝐸


0

0 0 0

]

]

𝑃
−1

, (50)

where 𝐸 ∈ C𝑎×𝑎 is nonsingular, 𝐸 ∈ C(𝑏−𝑎)×(𝑏−𝑎) is
nonsingular, and 𝑃 ∈ C𝑛×𝑛 is nonsingular (see [18]).

In Theorem 4, we give one characterization of the sharp
partial ordering by using one rank equality.

Theorem 4. Let 𝐴, 𝐵 ∈ C𝑛GP. Then

𝐴≤
#
𝐵 ⇐⇒ 𝑟[

𝐴 𝐵𝐴

𝐴𝐵 𝐴𝐵𝐴
] = 𝑟 (𝐴𝐵𝐴) . (51)
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Proof. Let 𝐴 have the core-nilpotent decomposition (see [19,
Exercise 5.10.12])

𝐴 = 𝑃[

Σ 0

0 0
]𝑃
−1

, (52)

with nonsingular matrices Σ ∈ C𝑟(𝐴)×𝑟(𝐴) and 𝑃 ∈ C𝑛×𝑛.
Correspondingly denote 𝑃−1𝐵𝑃 by

𝑃
−1

𝐵𝑃 = [

𝐵
1
𝐵
2

𝐵
3
𝐵
4

] , (53)

where 𝐵
1
∈ C𝑟(𝐴)×𝑟(𝐴). It follows that

𝑟 (𝐴𝐵𝐴) = 𝑟 (Σ𝐵
1
Σ) ,

𝑟 [

𝐴 𝐵𝐴

𝐴𝐵 𝐴𝐵𝐴
] = 𝑟

[

[

Σ 0 𝐵
1
Σ

0 0 𝐵
3
Σ

Σ𝐵
1
Σ𝐵
2
Σ𝐵
1
Σ

]

]

= 𝑟
[

[

Σ 0 0

0 0 𝐵
3
Σ

0 Σ𝐵
2
Σ𝐵
1
Σ − Σ𝐵

1
Σ
−1

𝐵
1
Σ

]

]

= 𝑟 (Σ) + 𝑟 [

0 𝐵
3
Σ

Σ𝐵
2
Σ𝐵
1
Σ − Σ𝐵

1
Σ
−1

𝐵
1
Σ

] .

(54)

Applying (54) to the rank equality in (51), we obtain

𝑟 [

0 𝐵
3
Σ

Σ𝐵
2
Σ𝐵
1
Σ − Σ𝐵

1
Σ
−1

𝐵
1
Σ

] + 𝑟 (Σ) = 𝑟 (Σ𝐵
1
Σ) . (55)

Hence 𝑟(Σ𝐵
1
Σ) = 𝑟(Σ), Σ𝐵

2
= 0, 𝐵

3
Σ = 0, and Σ𝐵

1
Σ =

Σ𝐵
1
Σ
−1

𝐵
1
Σ. Since Σ ∈ C𝑟(𝐴)×𝑟(𝐴) is invertible and 𝐵

1
∈

C𝑟(𝐴)×𝑟(𝐴), it follows immediately that

𝑟 (𝐵
1
) = 𝑟 (Σ) , 𝐵

3
= 0, 𝐵

2
= 0, 𝐵

1
= Σ. (56)

Therefore

𝐵 = 𝑃[

Σ 0

0 𝐵
4

]𝑃
−1

. (57)

Applying

𝐴
2

= 𝑃[
Σ
2

0

0 0

]𝑃
−1

= 𝑃[

Σ 0

0 0
]𝑃
−1

𝑃[

Σ 0

0 𝐵
4

]𝑃
−1

= 𝐴𝐵

= 𝑃[

Σ 0

0 𝐵
4

]𝑃
−1

𝑃[

Σ 0

0 0
]𝑃
−1

= 𝐵𝐴,

(58)

and (49), we obtain that 𝐴≤#𝐵.
Conversely, it is a simple matter.

Conflict of Interests

The authors declare that there is no conflict of interests
regarding the publication of this paper.

Acknowledgments

The authors would like to thank the referees for their helpful
comments and suggestions. The work of the first author was
supported in part by the Foundation of Anhui Educational
Committee (Grant no. KJ2012B175) and the National Natural
Science Foundation of China (Grant no. 11301529). The work
of the second author was supported in part by the Foundation
of Anhui Educational Committee (Grant no. KJ2013B256).

References

[1] S. K. Mitra, P. Bhimasankaram, and S. B. Malik, Matrix Partial
Orders, Shorted Operators and Applications, World Scientific,
Singapore, 2010.

[2] G. Wang, Y. Wei, and S. Qiao, Generalized Inverses: Theory and
Computations, Science Press, Beijing, China, 2004.

[3] R. E. Hartwig, “How to partially order regular elements,”
Mathematica Japonica, vol. 25, no. 1, pp. 1–13, 1980.

[4] K. S. S. Nambooripad, “The natural partial order on a regular
semigroup,” Proceedings of the Edinburgh Mathematical Society,
vol. 23, no. 3, pp. 249–260, 1980.

[5] M. P. Drazin, “Natural structures on semigroups with involu-
tion,” Bulletin of the AmericanMathematical Society, vol. 84, no.
1, pp. 139–141, 1978.

[6] J. K. Baksalary and S. K. Mitra, “Left-star and right-star partial
orderings,” Linear Algebra and Its Applications, vol. 149, pp. 73–
89, 1991.

[7] S. K. Mitra, “On group inverses and the sharp order,” Linear
Algebra and Its Applications, vol. 92, pp. 17–37, 1987.

[8] J. K. Baksalary, O. M. Baksalary, and X. Liu, “Further properties
of the star, left-star, right-star, and minus partial orderings,”
Linear Algebra and Its Applications, vol. 375, pp. 83–94, 2003.

[9] J. Benı́tez, X. Liu, and J. Zhong, “Some results on matrix partial
orderings and reverse order law,” Electronic Journal of Linear
Algebra, vol. 20, pp. 254–273, 2010.

[10] J. Groß, “Remarks on the sharp partial order and the ordering
of squares of matrices,” Linear Algebra and Its Applications, vol.
417, no. 1, pp. 87–93, 2006.

[11] Z.-J. Bai and Z.-Z. Bai, “On nonsingularity of block two-by-two
matrices,” Linear Algebra and Its Applications, vol. 439, no. 8, pp.
2388–2404, 2013.

[12] D. Chu, Y. S. Hung, and H. J. Woerdeman, “Inertia and rank
characterizations of somematrix expressions,” SIAM Journal on
Matrix Analysis and Applications, vol. 31, no. 3, pp. 1187–1226,
2009.

[13] Y. Liu and Y. Tian, “A simultaneous decomposition of a
matrix triplet with applications,”Numerical Linear Algebra with
Applications, vol. 18, no. 1, pp. 69–85, 2011.

[14] H. Wang, “The minimal rank of 𝐴 − 𝐵𝑋 with respect to
Hermitian matrix,” Applied Mathematics and Computation, vol.
233, pp. 55–61, 2014.

[15] Q.-W. Wang and Z.-H. He, “Solvability conditions and general
solution for mixed Sylvester equations,”Automatica, vol. 49, no.
9, pp. 2713–2719, 2013.



6 Journal of Applied Mathematics

[16] R. E. Hartwig and G. P. H. Styan, “On some characterizations of
the “star” partial ordering for matrices and rank subtractivity,”
Linear Algebra and Its Applications, vol. 82, pp. 145–161, 1986.

[17] H. X. Wang, “Rank characterizations of some matrix partial
orderings,” Journal of East China Normal University, no. 5, pp.
5–11, 2011.

[18] Z. J.Wang andX. J. Liu, “On three partial orderings ofmatrices,”
Journal of Mathematical Study, vol. 36, no. 1, pp. 75–81, 2003.

[19] C. D. Meyer, Matrix Analysis and Applied Linear Algebra,
Society for Industrial and Applied Mathematics, Philadelphia,
Pa, USA, 2000.


