
Research Article
Generalized Contraction and Invariant Approximation Results
on Nonconvex Subsets of Normed Spaces

Mujahid Abbas,1 Basit Ali,2 and Salvador Romaguera3

1 Department of Mathematics and Applied Mathematics, University of Pretoria, Lynnwood Road, Pretoria 0002, South Africa
2Department of Mathematics, Syed Babar Ali School of Science and Engineering, Lahore University of Management Sciences,
Lahore 54792, Pakistan
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Wardowski (2012) introduced a new type of contractive mapping and proved a fixed point result in complete metric spaces as
a generalization of Banach contraction principle. In this paper, we introduce a notion of generalized F-contraction mappings
which is used to prove a fixed point result for generalized nonexpansive mappings on star-shaped subsets of normed linear spaces.
Some theorems on invariant approximations in normed linear spaces are also deduced. Our results extend, unify, and generalize
comparable results in the literature.

1. Introduction and Preliminaries

One of the most basic and important results in metric fixed
point theory is the Banach contraction principle due to
Banach [1]. It states that if (𝑋, 𝑑) is a complete metric space
and 𝑓 : 𝑋 → 𝑋 satisfies

𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑘𝑑 (𝑥, 𝑦) , (1)

for all 𝑥, 𝑦 ∈ 𝑋, with 𝑘 ∈ (0, 1), then 𝑓 has a unique fixed
point. This theorem that has been extended in many direc-
tions (see, e.g., [2–6]) has many applications in mathematics
and other related disciplines as well (see, e.g., [7–9]).

Meinardus [10] and Brosowski [11] employed fixed point
theory to obtain invariant approximation results in normed
linear spaces. A number of authors generalized their results
(see [12–18] and the references therein). On the other hand,
Dotson [19] extended Banach’s contraction principle for
nonexpansive mappings on star-shaped subsets of Banach
spaces and proved Brosowski-Meinardus type theorems on
invariant approximations. L. A. Khan and A. R. Khan [20]
generalized Dotson’s results on star shaped subsets of p-
normed spaces.

Recently, Wardowski [21] introduced a new contractive
mapping called an 𝐹-contraction and proved some fixed
point theorems in complete metric spaces. In this paper we
introduce a notion of generalized F-contraction mappings
which is used to prove a fixed point result for generalized
nonexpansive mappings on star shaped subsets of normed
linear spaces. Some theorems on invariant approximations in
normed linear spaces are deduced. Our results extend, unify,
and generalize comparable results in [10, 11, 19, 20]. Some
illustrative examples are also presented.

Next we give some definitions which will be used in the
sequel. The letters R

+
, R will denote the set of positive real

numbers and the set of real numbers, respectively.
Let ϝ be the collection of all mappings 𝐹 : R

+
→ R

which satisfy the following conditions:

(C1) 𝐹 is strictly increasing, that is, for all 𝛼, 𝛽 ∈ R
+
such

that 𝛼 < 𝛽 ⇒ 𝐹(𝛼) < 𝐹(𝛽);

(C2) for every sequence {𝛼
𝑛
}
𝑛≥1

of positive numbers
lim
𝑛→∞

𝛼
𝑛
= 0 if and only if lim

𝑛→∞
𝐹(𝛼
𝑛
) = −∞;

(C3) there exists a 𝑘 ∈ (0, 1) such that lim
𝛼→0

+𝛼𝑘𝐹(𝛼) = 0.
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Definition 1 (see [21]). Let (𝑋, 𝑑) be ametric space and 𝐹 ∈ ϝ.
A mapping 𝑓 : 𝑋 → 𝑋 is said to be an 𝐹-contraction on 𝑋

if there exists a 𝜏 > 0 such that

𝑑 (𝑓𝑥, 𝑓𝑦) > 0 ⇒ 𝜏 + 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) (2)

for all 𝑥, 𝑦 ∈ 𝑋.

Remark 2 (see [21]). Every 𝐹-contraction mapping is contin-
uous.

Motivated by thework ofWardowski [21] and byTheorem
4 of [22], we give the following definition.

Definition 3. Let (𝑋, 𝑑) be a metric space and 𝐹 ∈ ϝ. A
mapping𝑓 : 𝑋 → 𝑋 is said to be a generalized𝐹-contraction
if there exists a 𝜏 > 0 such that

𝑑 (𝑓𝑥, 𝑓
2

𝑥) > 0 ⇒ 𝜏 + 𝐹 (𝑑 (𝑓𝑥, 𝑓
2

𝑥)) ≤ 𝐹 (𝑑 (𝑥, 𝑓𝑥))

(3)

for all 𝑥 ∈ 𝑋.

Definition 4. Let (𝑋, 𝑑) be a metric space and 𝐹 ∈ ϝ. A
mapping 𝑓 : 𝑋 → 𝑋 is said to be 𝐹-nonexpansive if

𝑑 (𝑓𝑥, 𝑓𝑦) > 0 ⇒ 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) , (4)

for all 𝑥, 𝑦 ∈ 𝑋.

Remark 5. It follows from condition (C1) that if 𝐹 ∈ ϝ

and 𝑓 is an 𝐹-nonexpansive self-mapping of a metric space
(𝑋, 𝑑), then 𝑓 is nonexpansive (recall that 𝑓 is nonexpansive
provided that 𝑑 (𝑓𝑥, 𝑓𝑦) ≤ 𝑑 (𝑥, 𝑦) for all 𝑥, 𝑦 ∈ 𝑋).
Conversely, it is clear, by (C1), that if 𝑓 is a nonexpansive self-
mapping of a metric space (𝑋, 𝑑), then 𝑓 is 𝐹-nonexpansive
for all 𝐹 ∈ ϝ.

By considering different choices of mappings 𝐹 in (2), (3),
and (4), we obtain a variety of contractions. For details we
refer to [21] and the following examples.

Example 6. Let (𝑋, 𝑑) be a metric space, 𝐹 ∈ ϝ, and let 𝐺 :

R
+

→ R be given by 𝐺 (𝛼) = 𝐹 (𝛼) − 𝜏, where 𝜏 > 0. It
is clear that 𝐺 ∈ ϝ. Now, if 𝑓 : 𝑋 → 𝑋 is a generalized
𝐹-contraction, then it is a generalized 𝐺-contraction because
for any 𝑥, 𝑦 ∈ 𝑋 with 𝑑 (𝑓𝑥, 𝑓2𝑥) > 0, we have

𝜏 + 𝐺 (𝑑 (𝑓𝑥, 𝑓
2

𝑥)) = 𝐹 (𝑑 (𝑓𝑥, 𝑓
2

𝑥))

≤ 𝐹 (𝑑 (𝑥, 𝑓𝑥)) − 𝜏 = 𝐺 (𝑑 (𝑥, 𝑓𝑥)) .

(5)

Similarly, if 𝑓 is an 𝐹-contraction, then it is a 𝐺-contraction.
Furthermore, if 𝑓 is 𝐹-nonexpansive then

𝐺 (𝑑 (𝑓𝑥, 𝑓𝑦)) = 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) − 𝜏

≤ 𝐹 (𝑑 (𝑥, 𝑦)) − 2𝜏 ≤ 𝐺 (𝑑 (𝑥, 𝑦)) − 𝜏

≤ 𝐺 (𝑑 (𝑥, 𝑦)) ,

(6)

whenever 𝑑 (𝑓𝑥, 𝑓𝑦) > 0, which shows that 𝑓 is 𝐺-
nonexpansive. Finally, note that taking 𝐺 (𝛼) = ln (𝛼) in (6),
we deduce that 𝑓 is nonexpansive.

Example 7. Let (𝑋, 𝑑) be a metric space, let 𝐹
1
: R
+
→ R be

given by 𝐹
1
(𝛼) = ln (𝛼), and let 𝑓 : 𝑋 → 𝑋 be a generalized

𝐹-contraction. Since 𝐹
1
∈ ϝ, then (3) becomes

𝜏 + ln (𝑑 (𝑓𝑥, 𝑓2𝑥)) ≤ ln (𝑑 (𝑥, 𝑓𝑥)) (7)

whenever 𝑑 (𝑓𝑥, 𝑓2𝑥) > 0, which implies

ln
𝑑 (𝑓𝑥, 𝑓2𝑥)

𝑑 (𝑥, 𝑓𝑥)
≤ −𝜏, that is,

𝑑 (𝑓𝑥, 𝑓2𝑥)

𝑑 (𝑥, 𝑓𝑥)
≤ 𝑒
−𝜏

, (8)

and thus 𝑑 (𝑓𝑥, 𝑓2𝑥) ≤ 𝑒−𝜏𝑑 (𝑥, 𝑓𝑥). Hence our definition is
more general than those given in [18, 20].

If we take 𝐹
2
(𝛼) = ln(𝛼) + 𝛼, it is clear that 𝐹

2
∈ ϝ, and

then (2) becomes

𝜏 + ln (𝑑 (𝑓𝑥, 𝑓2𝑥)) + 𝑑 (𝑓𝑥, 𝑓
2

𝑥) ≤ ln (𝑑 (𝑥, 𝑓𝑥))

+ 𝑑 (𝑥, 𝑓𝑥)

(9)

whenever 𝑑(𝑓𝑥, 𝑓2𝑥) > 0, which implies that

𝑑 (𝑓𝑥, 𝑓2𝑥)

𝑑 (𝑥, 𝑓𝑥)
𝑒
𝑑(𝑓𝑥,𝑓

2
𝑥)−𝑑(𝑥,𝑓𝑥)

≤ 𝑒
−𝜏

, (10)

that is,

𝑑 (𝑓𝑥, 𝑓
2

𝑥) ≤
𝑒−𝜏

𝑒𝑑(𝑓𝑥,𝑓
2
𝑥)−𝑑(𝑥,𝑓𝑥)

𝑑 (𝑥, 𝑓𝑥) . (11)

Definition 8. Let 𝐶 be a closed subset of metric space (𝑋, 𝑑).
Then 𝑓 : 𝐶 → 𝐶 is called compact if for every bounded
subset 𝐴 of 𝐶, 𝑓(𝐴) is compact in 𝐶.

Definition 9. If 𝑓 : 𝑋 → 𝑋 is a mapping with 𝑓(𝐶) ⊆ 𝐶,
then 𝐶 is called an 𝑓-invariant subset of𝑋.

Definition 10. Let 𝐶 be a subset of metric space (𝑋, 𝑑). As
usual, for any 𝑥 ∈ 𝑋, we define

𝑑 (𝑥, 𝐶) = inf {𝑑 (𝑥, 𝑦) : 𝑦 ∈ 𝐶} ,

𝑃
𝐶
(𝑥) = {𝑦 ∈ 𝐶 : 𝑑 (𝑥, 𝑦) = 𝑑 (𝑥, 𝐶)} .

(12)

𝑃
𝐶
(𝑥) is called the set of best approximations of 𝑥 from 𝐶. If

for each 𝑥 ∈ 𝑋, 𝑃
𝐶
(𝑥) is nonempty, then𝐶 is called proximal.

Observe that if 𝐶 is closed, then 𝑃
𝐶
(𝑥) is also closed.

Definition 11. Let 𝐸 be a linear space over R. A subset 𝐶 of 𝐸
is called star-shaped if there exists at least one point 𝑧 ∈ 𝐶

such that 𝑡𝑧 + (1 − 𝑡)𝑥 ∈ 𝐶 for all 𝑥 ∈ 𝐶 and 0 < 𝑡 < 1. In this
case 𝑧 is called a star centre of 𝐶.

Let (𝑋, 𝑑) be a metric space, 𝐶 a closed subset of 𝑋, and
𝑓 : 𝐶 → 𝐶 a self-mapping. For each 𝑥 ∈ 𝐶, the set
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𝑂(𝑥) = {𝑥, 𝑓𝑥, . . . , 𝑓𝑛𝑥, . . .} is called the orbit of 𝑥 (compare
[23]). The mapping 𝑓 is called orbitally continuous at 𝑝 if
lim
𝑛→∞

𝑓𝑛𝑥 = 𝑝 implies lim
𝑛→∞

𝑓𝑛+1𝑥 = 𝑓𝑝, and 𝑓 is
orbitally continuous on a set 𝐶 if 𝑓 is orbitally continuous
for all 𝑝 ∈ 𝐶.

2. Main Results

In the following a normed linear space (𝐸, ‖ ⋅ ‖) will be
simply denoted by 𝐸 if no confusion arises. Furthermore,
by a complete subset of a normed linear space 𝐸 we will
mean a subset 𝐴 of 𝐸 such that the restriction to 𝐴 of the
metric induced on𝐸 by its norm is complete. Of course, every
complete subset of a normed linear space is closed, and every
closed subset of a Banach space is complete.

Our main result (Theorem 13 below) will be proved with
the help of the following re-formulation ofTheorem 4 of [22].

Theorem 12 (see [22]). Let (𝑋, 𝑑) be a complete metric space,
𝐹 ∈ ϝ, and 𝑓 : 𝑋 → 𝑋 an orbitally continuous generalized
𝐹-contraction. Then 𝑓 has a fixed point.

Theorem 13. Let 𝐸 be a normed linear space, 𝐶 a complete
and star-shaped subset of 𝐸, and 𝐹 ∈ ϝ. If 𝑓 : 𝐶 → 𝐶 is an
𝐹-nonexpansive mapping and 𝑓(𝐶) is compact, then 𝑓 has a
fixed point.

Proof. We first note that, by Remark 5, 𝑓 is nonexpansive on
𝐶, so it is continuous on 𝐶.

Now let 𝑧 be a star centre of 𝐶. For each 𝑛 ≥ 1, define
𝑓
𝑛
: 𝐶 → 𝐶 by

𝑓
𝑛
𝑥 = (1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥, (13)

for all 𝑥 ∈ 𝐶, where 0 < 𝑘
𝑛
< 1 and lim

𝑛→∞
𝑘
𝑛
= 1. From

the fact that 𝑓 is continuous on 𝐶 it immediately follows that
each 𝑓

𝑛
is continuous on 𝐶.

For any fixed 𝑛 ≥ 1 and any 𝑥 ∈ 𝐶, we have

𝐹 (

𝑓
𝑛
𝑥 − 𝑓
2

𝑛
𝑥

) = 𝐹 (

(1 − 𝑘
𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥

−𝑓
𝑛
((1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥)

)

= 𝐹 (
(1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥 − (1 − 𝑘

𝑛
) 𝑧

−𝑘
𝑛
𝑓 ((1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥)

)

= 𝐹 (
𝑘𝑛 (𝑓𝑥 − 𝑓 ((1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥))

) .

(14)

Since 𝐹 is strictly increasing, with 𝑘
𝑛
< 1 for each 𝑛 ≥ 1,

and 𝑓 is 𝐹-nonexpansive, we have

𝐹 (

𝑓
𝑛
𝑥 − 𝑓
2

𝑛
𝑥

) < 𝐹 (

𝑓𝑥 − 𝑓 ((1 − 𝑘
𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥)

)

< 𝐹 (
𝑥 − ((1 − 𝑘

𝑛
) 𝑧 + 𝑘

𝑛
𝑓𝑥)

)

= 𝐹 (
𝑥 − 𝑓

𝑛
𝑥
) .

(15)

Hence

𝐹 (
𝑥 − 𝑓

𝑛
𝑥
) − 𝐹 (


𝑓
𝑛
𝑥 − 𝑓
2

𝑛
𝑥

) > 0. (16)

This implies that there exists 𝜏
𝑛
> 0, such that

0 < 𝜏
𝑛
≤ 𝐹 (

𝑥 − 𝑓
𝑛
𝑥
) − 𝐹 (


𝑓
𝑛
𝑥 − 𝑓
2

𝑛
𝑥

) . (17)

Therefore,

𝜏
𝑛
+ 𝐹 (


𝑓
𝑛
𝑥 − 𝑓
2

𝑛
𝑥

) ≤ 𝐹 (

𝑥 − 𝑓
𝑛
𝑥
) . (18)

Hence, 𝑓
𝑛
is a generalized 𝐹-contraction for each 𝑛 ≥ 1. By

Theorem 12, for each 𝑛 ≥ 1 there exists 𝑥
𝑛
∈ 𝐶 such that

𝑓
𝑛
𝑥
𝑛
= 𝑥
𝑛
. Since 𝑓(𝐶) is compact, there exist a subsequence

{𝑓𝑥
𝑛
𝑖

}
𝑖≥1

of the sequence {𝑓𝑥
𝑛
}
𝑛≥1

, and an 𝑥 ∈ 𝑓(𝐶) such that

𝑥 = lim
𝑖→∞

𝑓𝑥
𝑛
𝑖

. (19)

In fact 𝑥 ∈ 𝐶 because 𝑓(𝐶) ⊆ 𝐶 and 𝐶 is closed.
Since lim

𝑖→∞
𝑘
𝑛
𝑖

= 1 and 𝑥
𝑛
𝑖

= 𝑓
𝑛
𝑖

𝑥
𝑛
𝑖

for all 𝑖 ≥ 1, we
deduce that

𝑥 = lim
𝑖→∞

𝑓𝑥
𝑛
𝑖

= lim
𝑖→∞

((1 − 𝑘
𝑛
𝑖

) 𝑧 + 𝑘
𝑛
𝑖

𝑓𝑥
𝑛
𝑖

)

= lim
𝑖→∞

𝑓
𝑛
𝑖

𝑥
𝑛
𝑖

= lim
𝑖→∞

𝑥
𝑛
𝑖

.
(20)

Therefore,

𝑓𝑥 = lim
𝑖→∞

𝑓𝑥
𝑛
𝑖

. (21)

We conclude that 𝑥 = 𝑓𝑥.

Remark 14. Note that, by Remark 5, we can restate the
preceding theorem as follows. Let 𝐸 be a normed linear space
(Banach space, resp.) and 𝐶 a complete (closed, resp.) and
star-shaped subset of 𝐸. If 𝑓 : 𝐶 → 𝐶 is a nonexpansive
mapping and 𝑓(𝐶) is compact, then 𝑓 has a fixed point.

The following is an example where we can apply Theo-
rem 13 to every 𝐹 ∈ ϝ.

Example 15. Let ℓ
1
be the linear space of all summable

sequences of real numbers. Then, the pair (ℓ
1
, ‖ ⋅ ‖
1
) is a

(classical) Banach space, where ‖ ⋅ ‖
1
is the norm on ℓ

1
such

that, for each x := {𝑥
𝑛
}
𝑛≥1

∈ ℓ
1
,

‖x‖
1
=

∞

∑
𝑛=1

𝑥𝑛
 . (22)

In the following any element x := {𝑥
𝑛
}
𝑛≥1

of ℓ
1
will be also

denoted as (𝑥
1
, 𝑥
2
, 𝑥
3
, . . . , 𝑥

𝑛
, . . .).

Let 𝐶 be the closed unit ball of (ℓ
1
, ‖ ⋅ ‖
1
); that is,

𝐶 = {x ∈ ℓ
1
: ‖x‖
1
≤ 1} . (23)

It is well known that 𝐶 is a (noncompact) closed subset of
(ℓ
1
, ‖ ⋅ ‖
1
). Moreover 𝐶 is star-shaped with z = 0 a star center

of 𝐶.
Now let 𝑘 ∈ (0, 1] be constant, and define 𝑓 : 𝐶 → 𝐶 as

𝑓x = (𝑥
1
, 𝑘𝑥
2
, 0, . . . , 0, . . .) , (24)
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for all x := (𝑥
𝑛
)
𝑛≥1

∈ ℓ
1
. Clearly 𝑓 is nonexpansive on 𝐶, and

hence it is 𝐹-nonexpansive for any 𝐹 ∈ ϝ, by Remark 5.
Furthermore, 𝑓(𝐶) is homeomorphic to the compact

subset of R2,

{(𝑢, V) ∈ R
2

: |𝑢| +


V
𝑘


≤ 1} , (25)

so that 𝑓(𝐶) is compact. Hence 𝑓(𝐶) = 𝑓(𝐶) and thus 𝑓(𝐶)
is compact. We have shown that all conditions ofTheorem 13
(compare Remark 14) are satisfied. Thus 𝑓 has a fixed point.
In fact, the fixed points of 𝑓 are the elements x = {𝑥

𝑛
}
𝑛≥1

of
𝐶 such that 𝑥

𝑛
= 0 whenever 𝑛 ≥ 2.

Now we give an example of a discontinuous self-mapping
𝑓 on a compact metric space which is a generalized 𝐹-
contraction but not an 𝐹-contraction. So the class of gen-
eralized 𝐹-contraction mappings is bigger than the class of
𝐹-contraction.

Example 16. Let 𝑋 = R, and let 𝐶 = [0, 1] be endowed with
usual metric. Define a mapping 𝑓 : 𝐶 → 𝐶 as 𝑓(𝑥) = 1 if
𝑥 ∈ {0, 1}, and 𝑓(𝑥) = 𝑥/2 if 𝑥 ∈ (0, 1).

Let 𝐹 : R
+

→ R be defined by 𝐹𝑥 = ln𝑥 for 𝑥 ∈ (0, 1).
Note that

ln 2 + 𝐹 (𝑑 (𝑓𝑥, 𝑓
2

𝑥)) ≤ 𝐹 (𝑑 (𝑥, 𝑓𝑥)) (26)

is satisfied for all 𝑥 ∈ 𝐶 whenever 𝑑 (𝑓𝑥, 𝑓2𝑥) > 0. Hence,
𝑓 is a generalized 𝐹-contraction. Clearly 𝑓 is not continuous
at 𝑥 = 1 and at 𝑥 = 0. Hence, 𝑓 is not an 𝐹-contraction (see
Remark 2.1 in [21] ) or let 𝑥 = 0 and 𝑦 = 1/2; then

𝐹(𝑑(𝑓0, 𝑓
1

2
)) = 𝐹(𝑑(1,

1

4
))

= 𝐹(
3

4
) = ln(3

4
) = ln 3 − 2 ln 2,

(27)

while

𝐹(𝑑(0,
1

2
)) = 𝐹(

1

2
) = ln(1

2
) = − ln 2, (28)

and thus

𝐹(𝑑(0,
1

2
)) − 𝐹(𝑑(𝑓0, 𝑓

1

2
)) = ln 2 − ln 3 < 0. (29)

Hence, there does not exist any 𝜏 > 0, such that, for 𝑥 = 0 and
𝑦 = 1/2,

𝜏 + 𝐹 (𝑑 (𝑓𝑥, 𝑓𝑦)) ≤ 𝐹 (𝑑 (𝑥, 𝑦)) (30)

is satisfied. Now let 𝑥
0
= 0; then 𝑓(0) = 1, and 𝑓

2
(0) = 1.

Hence, the orbit of 𝑥
0
is the set 𝑂 (0) = {0, 1, 1, . . .} = 𝑂 (0)

which is compact and

lim
𝑛→∞

𝑓
𝑛

(0) = 1, lim
𝑛→∞

𝑓
𝑛+1

(0) = 𝑓1 = 1, (31)

that is 𝑓 is orbitally continuous at 1. Hence, byTheorem 12, 𝑓
has a fixed point (in fact 𝑥 = 1 is the only fixed point of 𝑓).

In the last part of the paper we discuss nonemptiness and
existence of fixed points for the set of best approximations
of closed subsets of metric spaces and of normed spaces,
respectively.

Theorem 17. Let (𝑋, 𝑑) be a metric space. Let 𝐹 ∈ ϝ be a
continuous mapping and let 𝑓 : 𝑋 → 𝑋 be 𝐹-nonexpansive
with a fixed point 𝑢 ∈ 𝑋. If 𝐶 is a closed 𝑓-invariant subset
of 𝑋 such that 𝑓 is compact on 𝐶, then the set 𝑃

𝐶
(𝑢) of best

approximations is nonempty.

Proof. Let 𝑟 = 𝑑 (𝑢, 𝐶). Then, there is a sequence {𝑦
𝑛
}
𝑛≥1

in 𝐶 such that lim
𝑛→∞

𝑑 (𝑢, 𝑦
𝑛
) = 𝑟. Since {𝑦

𝑛
: 𝑛 ≥ 1}

is a bounded subset of 𝐶 and 𝑓 is compact on 𝐶, the set
{𝑓𝑦
𝑛
: 𝑛 ≥ 1} is a compact subset of 𝐶, and so there exist a

subsequence {𝑓𝑦
𝑛
𝑖

}
𝑖≥1

of {𝑓𝑦
𝑛
}
𝑛≥1

and an 𝑥 ∈ 𝐶 such that
lim
𝑖→∞

𝑓𝑦
𝑛
𝑖

= 𝑥. Now,

𝐹 (𝑟) ≤ 𝐹 (𝑑 (𝑢, 𝑥)) = 𝐹 ( lim
𝑖→∞

𝑑 (𝑓𝑢, 𝑓𝑦
𝑛
𝑖

))

= lim
𝑖→∞

𝐹 (𝑑 (𝑓𝑢, 𝑓𝑦
𝑛
𝑖

))

≤ lim
𝑖→∞

𝐹 (𝑑 (𝑢, 𝑦
𝑛
𝑖

))

= 𝐹( lim
𝑖→∞

𝑑 (𝑢, 𝑦
𝑛
𝑖

)) = 𝐹 (𝑟) .

(32)

This implies

𝐹 (𝑟) = 𝐹 (𝑑 (𝑢, 𝑥)) . (33)

Since𝐹 is strictly increasing, we get 𝑟 = 𝑑 (𝑢, 𝑥). Hence𝑃
𝐶
(𝑢)

is nonempty.

As an application of Theorems 13 and 17, we deduce the
following.

Theorem 18. Let 𝐸 be a normed linear space. Let 𝐹 ∈ ϝ be a
continuous mapping and let 𝑓 : 𝐸 → 𝐸 be 𝐹-nonexpansive
with a fixed point 𝑢 ∈ 𝐸. If 𝐶 is a complete 𝑓-invariant subset
of 𝐸 such that 𝑓 is compact on 𝐶, and 𝑃

𝐶
(𝑢) is a star-shaped

set, then 𝑓 has a fixed point in 𝑃
𝐶
(𝑢).

Proof. By Theorem 17, 𝑃
𝐶
(𝑢) is nonempty. We show that

𝑃
𝐶
(𝑢) is 𝑓-invariant. To this end, let 𝑦 ∈ 𝑃

𝐶
(𝑢) and set

𝑟 = 𝑑 (𝑢, 𝐶); then

𝐹 (𝑟) ≤ 𝐹 (𝑑 (𝑢, 𝑓𝑦)) = 𝐹 (𝑑 (𝑓𝑢, 𝑓𝑦))

≤ 𝐹 (𝑑 (𝑢, 𝑦)) = 𝐹 (𝑟) .
(34)

This implies

𝐹 (𝑟) = 𝐹 (𝑑 (𝑢, 𝑓𝑦)) . (35)

Since 𝐹 is strictly increasing, we get 𝑟 = 𝑑 (𝑢, 𝑓𝑦). So 𝑓𝑦 ∈

𝑃
𝐶
(𝑢). This proves that 𝑃

𝐶
(𝑢) is 𝑓-invariant, so 𝑓 : 𝑃

𝐶
(𝑢) →

𝑃
𝐶
(𝑢) is 𝐹-nonexpansive. Now observe that if 𝐶 is complete,

then 𝑃
𝐶
(𝑢) is also complete. Hence, 𝑃

𝐶
(𝑢) is star-shaped and

complete, and 𝑓(𝑃
𝐶
(𝑢)) is compact, so, byTheorem 13, there

exists 𝑥 ∈ 𝑃
𝐶
(𝑢) such that 𝑓𝑥 = 𝑥.
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Remark 19. As in the case of Theorem 13 (see Remark 14),
the preceding theorem can be restated as follows. Let 𝐸 be a
normed linear space (Banach space, resp.) and let 𝑓 : 𝐸 → 𝐸

be nonexpansive with a fixed point 𝑢 ∈ 𝐸. If 𝐶 is a complete
(closed, resp.) 𝑓-invariant subset of 𝐸 such that 𝑓 is compact
on 𝐶 and 𝑃

𝐶
(𝑢) is a star-shaped set, then 𝑓 has a fixed point

in 𝑃
𝐶
(𝑢).

We conclude the paper illustrating Theorem 18 with the
following example.

Example 20. Let (ℓ
1
, ‖ ⋅ ‖
1
) be the Banach space of Exam-

ple 15. Define 𝑓 : ℓ
1
→ ℓ
1
as

𝑓x = (𝑥
1
, 𝑘𝑥
2
, 0, . . . , 0, . . .) , (36)

for all x := {𝑥
𝑛
}
𝑛≥1

∈ ℓ
1
, with 𝑘 ∈ (0, 1]. Let 𝐹 ∈

ϝ be continuous. Since 𝑓 is nonexpansive, it follows from
Remark 5 that it is 𝐹-nonexpansive. Of course, 𝑓 has fixed
points. In fact

Fix (𝑓) = {x := {𝑥
𝑛
}
𝑛≥1

∈ ℓ
1
: 𝑥
𝑛
= 0 ∀𝑛 ≥ 2} . (37)

As in Example 15, let𝐶 be the closed unit ball of (ℓ
1
, ‖ ⋅ ‖
1
).

We know that 𝐶 is a closed and thus complete, 𝑓-invariant
subset of 𝐸 such that 𝑓 is compact on 𝐶.

Then, if we choose x := {𝑥
𝑛
}
𝑛≥1

∈ Fix(𝑓) such that
|𝑥
1
| > 1, we deduce that 𝑃

𝐶
(x) = (1, 0, 0, . . . , 0, . . .) if 𝑥

1
> 1,

and 𝑃
𝐶
(x) = (−1, 0, 0, . . . , 0, . . .) if 𝑥

1
< −1. Therefore, 𝑃

𝐶
(𝑢)

is trivially star-shaped. Thus, all conditions of Theorem 18
(compare Remark 19) have been verified.
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