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Authors investigate themetric generalized inverses of linear operators in Banach spaces. Authors prove by themethods of geometry
of Banach spaces that, if𝑋 is approximately compact and𝑋 is 2-strictly convex, then metric generalized inverses of bounded linear
operators in 𝑋 are upper semicontinuous. Moreover, authors also give criteria for metric generalized inverses of bounded linear
operators to be lower semicontinuous. Finally, a sufficient condition for set-valued mapping 𝑇𝜕 to be continuous mapping is given.

1. Introduction

Let (𝑋, ‖ ⋅ ‖) be a real Banach space. Let 𝑆(𝑋) and 𝐵(𝑋)
denote the unit sphere and the unit ball, respectively. By 𝑋∗
we denote the dual space of𝑋. Let𝑁,𝑅, and𝑅+ denote the set
of natural numbers, reals, and nonnegative reals, respectively.

Let 𝐴𝑓 = {𝑥 ∈ 𝑆(𝑋) : 𝑓(𝑥) = ‖𝑓‖ = ‖𝑥‖ = 1} and
[𝑥1, 𝑥2] = {𝑡𝑥1 + (1 − 𝑡)𝑥2 : 𝑡 ∈ [0, 1]}. By 𝑥𝑛

𝑤

󳨀→ 𝑥 we
denote that {𝑥𝑛}

∞

𝑛=1
is weakly convergent to 𝑥. 𝐶(𝐶𝑤) denotes

closed hull of 𝐶 (weak closed hull) and dist(𝑥, 𝐶) denotes the
distance of 𝑥 and 𝐶. Let 𝐶 ⊂ 𝑋 be a nonempty subset of 𝑋.
Then the set-valued mapping 𝑃𝐶 : 𝑋 → 𝐶

𝑃𝐶 (𝑥) = {𝑧 ∈ 𝐶 : ‖𝑥 − 𝑧‖ = dist (𝑥, 𝐶) := inf
𝑦∈𝐶

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩} (1)

is called the metric projection operator from𝑋 onto 𝐶.
A subset 𝐶 of 𝑋 is said to be proximal if 𝑃𝐶(𝑥) ̸= 0 for all

𝑥 ∈ 𝑋 (see [1]). 𝐶 is said to be semi-Chebyshev if 𝑃𝐶(𝑥) is at
most a singleton for all 𝑥 ∈ 𝑋. 𝐶 is said to be Chebyshev if
it is proximal and semi-Chebyshev. It is well known that (see
[1]) 𝑋 is reflexive if and only if each closed convex subset of
𝑋 is proximal and that𝑋 is strictly convex if and only if each
convex subset of𝑋 is semi-Chebyshev.

Definition 1 (see [2]). A nonempty subset 𝐶 of 𝑋 is said to
be approximatively compact if, for any {𝑦𝑛}

∞

𝑛=1
⊂ 𝐶 and any

𝑥 ∈ 𝑋 satisfying ‖𝑥 − 𝑦𝑛‖ → inf𝑦∈𝐶‖𝑥 − 𝑦‖ (𝑛 → ∞), the
sequence {𝑦𝑛}

∞

𝑛=1
has a subsequence converging to an element

in 𝐶.𝑋 is called approximatively compact if every nonempty
closed convex subset of𝑋 is approximatively compact.

Definition 2 (see [3]). Set-valued mapping 𝐹 : 𝑋 → 𝑌 is
called upper semicontinuous at 𝑥0, if, for each norm open set
𝑊with𝐹(𝑥0) ⊂ 𝑊, there exists a normneighborhood𝑈 of𝑥0
such that𝐹(𝑥) ⊂ 𝑊 for all𝑥 in𝑈.𝐹 is called lower continuous
at𝑥0, if, for any𝑦 ∈ 𝐹(𝑥0) and any {𝑥𝑛}

∞

𝑛=1
in𝑋with𝑥𝑛 → 𝑥0,

there exists 𝑦𝑛 ∈ 𝐹(𝑥𝑛) such that 𝑦𝑛 → 𝑦 as 𝑛 → ∞. 𝐹 is
called continuous at 𝑥0, if 𝐹 is upper semicontinuous and is
lower continuous at 𝑥0.

Let us present the history of the approximative compact-
ness and related notions. This notion has been introduced by
Jefimow and Stechkin in [2] as a property of Banach spaces,
which guarantees the existence of the best approximation
element in a nonempty closed convex set 𝐶 for any 𝑥 ∈ 𝑋.
In 2007, Chen et al. (see [4]) proved that a nonempty closed
convex 𝐶 of a midpoint locally uniformly rotund space is
approximately compact if and only if 𝐶 is Chebyshev set
and the metric projection operator 𝑃𝐶 is continuous. In 1972,
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Oshman (see [5]) proved that the metric projection operator
𝑃𝐶 is upper semicontinuous.

Definition 3 (see [6]). A Banach space 𝑋 is called nearly
dentable space if, for any 𝑓 ∈ 𝑆(𝑋∗) and any open set 𝑈𝐴𝑓 ⊃
𝐴𝑓, we have 𝐴𝑓 ̸= 0 and 𝐴𝑓 ∩ co(𝐵(𝑋) \ 𝑈𝐴𝑓) = 0.

Definition 4 (see [7]). ABanach space𝑋 is said to be 𝑘-strictly
convex if for any 𝑘 + 1 elements 𝑥1, 𝑥2, . . . , 𝑥𝑘+1 ∈ 𝑆(𝑋), if
‖𝑥1 +𝑥2 + ⋅ ⋅ ⋅ +𝑥𝑘+1‖ = 𝑘+1, then 𝑥1, 𝑥2, . . . , 𝑥𝑘+1 are linearly
dependent.

Definition 5 (see [8]). A Banach space 𝑋 is said to be
nearly strictly convex space if every convex subset of 𝑆(𝑋) is
relatively compact.

I. Singer defined in [7] the 𝑘-strictly convex spaces and the
dual notion (𝑘-smooth spaces) was introduced by Sullivan.
In 1988, Skowski and Stachura [8] introduced the notion of
nearly strict convexity of Banach spaces by means of the
Kuratowskimeasure of noncompactness. It is well known that
if 𝑋 is a 𝑘-strictly convex space, then 𝑋 is a nearly strictly
convex space. It is easy to see that, if 𝑋 is a nearly dentable
space, then𝑋 is a reflexive space. In 2011, Shang et al (see [6])
defined nearly dentable space and proved the following two
results.

Theorem 6. A Banach space 𝑋 is approximatively compact if
and only if

(1) 𝑋 is a nearly dentable space,

(2) 𝑋 is a nearly strictly convex space.

Theorem 7. Let 𝑋 be nearly a dentable space. Then for any
closed convex set 𝐶, the metric projection operator 𝑃𝐶 is upper
semicontinuous.

Let 𝑇 be a linear bounded operator from 𝑋 into 𝑌. Let
𝐷(𝑇), 𝑅(𝑇), and 𝑁(𝑇) denote the domain, range, and null
space of 𝑇, respectively. If 𝑁(𝑇) ̸= {0} or 𝑅(𝑇) ̸= 𝑌, the oper-
ator equation 𝑇𝑥 = 𝑦 is generally ill-posed. In applications,
one usually looks for the best approximate solution (b.a.s.) to
the equation 𝑇𝑥 = 𝑦 (see [9]).

A point 𝑥0 ∈ 𝐷(𝑇) is called the best approximate solution
to the operator equation 𝑇𝑥 = 𝑦, if

󵄩󵄩󵄩󵄩𝑇𝑥0 − 𝑦
󵄩󵄩󵄩󵄩 = inf {󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑦

󵄩󵄩󵄩󵄩 : 𝑥 ∈ 𝐷 (𝑇)} ,

󵄩󵄩󵄩󵄩𝑥0
󵄩󵄩󵄩󵄩 = min{‖V‖ : V ∈ 𝐷 (𝑇) , 󵄩󵄩󵄩󵄩𝑇V − 𝑦

󵄩󵄩󵄩󵄩 = inf
𝑥∈𝐷(𝑇)

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑦
󵄩󵄩󵄩󵄩} ,

(2)

where 𝑦 ∈ 𝑌(see [9]).
Nashed and Votruba [9] introduced the concept of the

(set-valued) metric generalized inverse 𝑇 as follows.

Definition 8. Let 𝑋, 𝑌 be Banach spaces and let 𝑇 be a linear
operator from 𝑋 to 𝑌. The set-valued mapping 𝑇𝜕 : 𝑌 → 𝑋

defined by

𝑇
𝜕
(𝑦) = {𝑥0 ∈ 𝐷 (𝑇) : 𝑥0 is a best approximation

solution to 𝑇 (𝑥) = 𝑦}

(3)

for any 𝑦 ∈ 𝐷(𝑇
𝜕
) is called the (set-valued) metric gene-

ralized inverse of 𝑇, where

𝐷(𝑇
𝜕
) = {𝑦 ∈ 𝑌 : 𝑇 (𝑥) = 𝑦 has a best approximation

solution in 𝑋} .
(4)

During the last three decades, the linear generalized
inverses of linear operators in Banach spaces and their
applications have been investigated by many authors. In this
paper, authors investigate the metric generalized inverses
of linear operators in Banach spaces. Authors prove by
the methods of geometry of Banach spaces that, if 𝑋 is
approximatively compact and 𝑋 is 2-strictly convex space,
then metric generalized inverse of a bounded linear operator
is upper semicontinuous. Moreover, authors also give criteria
for metric generalized inverses of bounded linear operators
to be lower semicontinuous. Finally, authors give a sufficient
condition for the set-valued mapping 𝑇𝜕 to be continuous
mapping.The topic of this paper is related to the topic of [10–
15].

2. Main Results

Theorem 9. Let 𝑋 and 𝑌 be nearly dentable Banach spaces
and 𝑋1 a closed subspace of 𝑋. Then for any bounded linear
operator 𝑇, if 𝐷(𝑇) is a closed subspace of 𝑋1 and 𝑅(𝑇) is a
Chebyshev subspace of 𝑌, then (1) ⇔ (2) + (3) and (1) ⇒ (4),
where

(1) 𝑋1 is a 2-strictly convex Banach space;

(2) for any 𝑦 ∈ 𝑌, there exist 𝑥1 ∈ 𝐷(𝑇) and 𝑥2 ∈ 𝐷(𝑇)
such that the set-valued mapping satisfies the equality
𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2];

(3) the set-valued mapping 𝑇𝜕 is upper semicontinuous;

(4) for any 𝑦 ∈ 𝑌, the set-valued mapping 𝑇𝜕 is lower
semicontinuous at 𝑦 if and only if the function 𝑔(𝑦) =
sup{‖𝑧1−𝑧2‖ : 𝑧1, 𝑧2 ∈ 𝑇

𝜕
(𝑦)} is lower semicontinuous

at 𝑦.

In order to prove this theorem, we give a lemma.

Lemma10. Let𝑋 be a reflexive 2-strictly convex Banach space.
Then for any closed convex set 𝐶 and 𝑥 ∈ 𝑋, there exist 𝑦1 ∈ 𝐶
and 𝑦2 ∈ 𝐶 such that 𝑃𝐶(𝑥) = [𝑦1, 𝑦2].
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Proof. (a) We may assume without loss of generality that
𝑥 = 0 and inf𝑦∈𝐶‖0 − 𝑦‖ = 1. Hence, for any 𝑥1 ∈ 𝑃𝐶(0),
𝑥2 ∈ 𝑃𝐶(0), and 𝑥3 ∈ 𝑃𝐶(0), we have

𝑥1 + 𝑥2 + 𝑥3

3
∈ 𝐶 󳨐⇒

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥1 + 𝑥2 + 𝑥3

3

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≥ 1 =

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥3
󵄩󵄩󵄩󵄩

3
.

(5)

This implies that ‖𝑥1 +𝑥2 +𝑥3‖ = ‖𝑥1‖ + ‖𝑥2‖ + ‖𝑥3‖. Since𝑋
is 2-strictly convex, we may assume that 𝑥3 = 𝑡1𝑥1 + 𝑡2𝑥2. By
the Hahn-Banach theorem, there exists 𝑓 ∈ 𝑆(𝑋∗) such that
𝑓(𝑥1 + 𝑥2 + 𝑥3) = 3. Noticing that 𝑥1 ∈ 𝑆(𝑋), 𝑥2 ∈ 𝑆(𝑋), and
𝑥3 ∈ 𝑆(𝑋), we have 𝑓(𝑥1) = 𝑓(𝑥2) = 𝑓(𝑥3) = 1. Thus

1 = 𝑓 (𝑥3) = 𝑓 (𝑡1𝑥1 + 𝑡2𝑥2) = 𝑡1𝑓 (𝑥1) + 𝑡2𝑓 (𝑥2) = 𝑡1 + 𝑡2,

𝑥3 = 𝑡1𝑥1 + 𝑡2𝑥2.

(6)

(b) By inf𝑦∈𝐶‖0−𝑦‖ = 1, it is easy to see that𝑃C(0) ⊂ 𝑆(𝑋).
Since𝑋 is a 2-strictly convex space,𝑋 is a nearly convex space.
Since 𝑋 is a nearly convex space and 𝑃𝐶(0) is closed convex
set, 𝑃𝐶(0) is compact. Hence there exist 𝑦1 ⊂ 𝑃𝐶(0) and 𝑦1 ⊂
𝑃𝐶(0) such that

𝑑 (0) = sup {󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 : 𝑥 ∈ 𝑃𝐶 (0) , 𝑦 ∈ 𝑃𝐶 (0)} =

󵄩󵄩󵄩󵄩𝑦1 − 𝑦2
󵄩󵄩󵄩󵄩 .

(7)

We may assume without loss of generality that 𝑃𝐶(0) is not
a singleton. Moreover, for any 𝑦 ∈ 𝑃𝐶(0), if 𝑦1 = 𝑡𝑦 + (1 −
𝑡)𝑦2, then 𝑡 ̸= 0. Otherwise, we have 𝑦1 = 𝑦2.Therefore, by the
proof of (a), we have 𝑦 = 𝛼𝑦1 + (1 − 𝛼)𝑦2 for any 𝑦 ∈ 𝑃𝐶(0).
Suppose that 𝛼 < 0. Then

𝑦 = 𝛼𝑦1 + (1 − 𝛼) 𝑦2 󳨐⇒ 𝑦2 =
1

1 − 𝛼
𝑦 +

−𝛼

1 − 𝛼
𝑦1. (8)

Hence we have

󵄩󵄩󵄩󵄩𝑦1 − 𝑦2
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩
𝑦1 −

1

1 − 𝛼
𝑦 −

−𝛼

1 − 𝛼
𝑦1

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
−𝛼

1 − 𝛼

󵄩󵄩󵄩󵄩𝑦1 − 𝑦
󵄩󵄩󵄩󵄩 <

󵄩󵄩󵄩󵄩𝑦1 − 𝑦
󵄩󵄩󵄩󵄩 ,

(9)

a contradiction. Hence 𝛼 ≥ 0. Similarly, we have 1 − 𝛼 ≥ 0.
Thus 𝛼 ∈ [0, 1]. This means that, for any 𝑦 ∈ 𝑃𝐶(0), we have
𝑦 ∈ [𝑦1, 𝑦2]. Hence we have the equation 𝑃𝐶(𝑥) = [𝑦1, 𝑦2].
This completes the proof.

Proof of Theorem 9. Consider that (2) + (3) ⇒ (1). Suppose
that 𝑋1 is not a 2-strictly convex Banach space. Then there
exist 𝑥1 ∈ 𝑆(𝑋1), 𝑥2 ∈ 𝑆(𝑋1), and 𝑥3 ∈ 𝑆(𝑋1) such that

󵄩󵄩󵄩󵄩𝑥1 + 𝑥2 + 𝑥3
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩𝑥3
󵄩󵄩󵄩󵄩 = 3 (10)

and 𝑥1, 𝑥2, and 𝑥3 are linearly independent. Therefore, by
the Hahn-Banach theorem, there exists 𝑓 ∈ 𝑆(𝑋∗

1
) such that

𝑓(𝑥1 + 𝑥2 + 𝑥3) = 3. Noticing that 𝑥1 ∈ 𝑆(𝑋1), 𝑥2 ∈ 𝑆(𝑋1),
and 𝑥3 ∈ 𝑆(𝑋1), we have 𝑓(𝑥1) = 𝑓(𝑥2) = 𝑓(𝑥3) = 1.
Pick 𝑦0 ∈ 𝑌. Define the subspace {𝑡𝑦0 : 𝑡 ∈ 𝑅} of 𝑌. Since

{𝑡𝑦0 : 𝑡 ∈ 𝑅} is a one-dimensional subspace of 𝑌, we obtain
that {𝑡𝑦0 : 𝑡 ∈ 𝑅} is a strictly convex Banach space. This
implies that {𝑡𝑦0 : 𝑡 ∈ 𝑅} is a Chebyshev subspace of𝑌. Define
the bounded linear operator

𝑇𝑥 = 𝑓 (𝑥) 𝑦0, 𝑥 ∈ 𝑋1. (11)

Since𝑇 is a bounded linear operator and 𝑅(𝑇) is a Chebyshev
subspace of 𝑌, there exist 𝑧1 ∈ 𝐷(𝑇) and 𝑧2 ∈ 𝐷(𝑇) such that
𝑇
𝜕
(𝑦0) = [𝑧1, 𝑧2]. Moreover, it is easy to see that
󵄩󵄩󵄩󵄩𝑥1
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥2
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩𝑥3
󵄩󵄩󵄩󵄩

= min{V ∈ 𝐷 (𝑇) : 󵄩󵄩󵄩󵄩𝑇V − 𝑦0
󵄩󵄩󵄩󵄩 = inf
𝑥∈𝐷(𝑇)

󵄩󵄩󵄩󵄩𝑇𝑥 − 𝑦0
󵄩󵄩󵄩󵄩} .

(12)

This implies that 𝑥1, 𝑥2, 𝑥3 ∈ 𝑇
𝜕
(𝑦0) = [𝑧1, 𝑧2]. Hence there

exist 𝑡1 ∈ (0, 1), 𝑡2 ∈ (0, 1), and 𝑡3 ∈ (0, 1) such that

𝑥1 = 𝑡1𝑧1 + (1 − 𝑡1) 𝑧2,

𝑥2 = 𝑡2𝑧1 + (1 − 𝑡2) 𝑧2,

𝑥3 = 𝑡3𝑧1 + (1 − 𝑡3) 𝑧2.

(13)

Then

(

𝑥1

𝑥2

𝑥3

) = (

𝑡1 1 − 𝑡1

𝑡2 1 − 𝑡2

𝑡3 1 − 𝑡3

)(
𝑧1

𝑧2
) . (14)

Hence there exists (𝑎, 𝑏, 𝑐) ̸= (0, 0, 0) such that

𝑎 (𝑡1, 1 − 𝑡1) + 𝑏 (𝑡2, 1 − 𝑡2) + 𝑐 (𝑡3, 1 − 𝑡3) = (0, 0) . (15)

Then
𝑎𝑥1 + 𝑏𝑥2 + 𝑐𝑥3

= 𝑎 (𝑡1, 1 − 𝑡1) (
𝑧1

𝑧2
) + 𝑏 (𝑡2, 1 − 𝑡2) (

𝑧1

𝑧2
)

+ 𝑐 (𝑡3, 1 − 𝑡3) (
𝑧1

𝑧2
)

= [𝑎 (𝑡1, 1 − 𝑡1) + 𝑏 (𝑡2, 1 − 𝑡2) +𝑐 (𝑡3, 1 − 𝑡3)] (
𝑧1

𝑧2
)

= (0, 0) (
𝑧1

𝑧2
) = 0.

(16)

This implies that 𝑥1, 𝑥2, and 𝑥3 are linearly dependent, a
contradiction. Hence we obtain that𝑋1 is a 2-strictly convex
Banach space.

Consider that (1) ⇒ (2) + (3). (a) Since 𝑅(𝑇) is a
Chebyshev subspace of 𝑌, we obtain that for any 𝑦 ∈ 𝑌,
𝑃𝑅(𝑇)(𝑦) is single-point set. Hence, for any 𝑦 ∈ 𝑌, there exists
𝑥0 ∈ 𝐷(𝑇) such that 𝑇−1(𝑃𝑅(𝑇)(𝑦)) = 𝑥0 − 𝑁(𝑇). Moreover,
by Lemma 10, there exist 𝑧1 ∈ 𝑃𝑁(𝑇)(𝑥0) and 𝑧2 ∈ 𝑃𝑁(𝑇)(𝑥0)
such that 𝑃𝑁(𝑇)(𝑥0) = [𝑧1, 𝑧2]. Thus

𝑇
𝜕
(𝑦) = 𝑥0 − 𝑃𝑁(𝑇) (𝑥0) = 𝑥0 − [𝑧1, 𝑧2]

= [𝑥0 − 𝑧1, 𝑥0 − 𝑧2] .

(17)
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(b) By Theorem 7, the metric projector operator 𝑃𝑅(𝑇) is
upper semicontinuous. Since 𝑅(𝑇) is a Chebyshev subspace,
we obtain that 𝑃𝑅(𝑇) is a single-valued operator. This means
that the metric projector operator 𝑃𝑅(𝑇) is continuous. Next
we will prove that 𝑇𝜕 is upper semicontinuous; that is, for
any {𝑦𝑛}

∞

𝑛=1
⊂ 𝑌, 𝑦𝑛 → 𝑦 ∈ 𝑌 and any norm open set 𝑊

with 𝑇𝜕(𝑦) ⊂ 𝑊, there exists a natural number𝑁0 such that
𝑇
𝜕
(𝑦𝑛) ⊂ 𝑊 whenever 𝑛 > 𝑁0. Otherwise, there exists 𝑥𝑛 ∈

𝑇
𝜕
(𝑦𝑛) such that {𝑥𝑛}

∞

𝑛=1
∩𝑊 = 0. Since the metric projector

operator 𝑃𝑅(𝑇) is continuous, we obtain that 𝑃𝑅(𝑇)(𝑦𝑛) →

𝑃𝑅(𝑇)(𝑦) as 𝑛 → ∞. Noticing that 𝑇𝑥𝑛 = 𝑃𝑅(𝑇)(𝑦𝑛), we have
𝑇𝑥𝑛 → 𝑃𝑅(𝑇)(𝑦) as 𝑛 → ∞. Since 𝑇 is a bounded linear
operator, we obtain that 𝑁(𝑇) is a closed subspace of 𝐷(𝑇).
Put

𝑇 :
𝐷 (𝑇)

𝑁 (𝑇)
󳨀→ 𝑅 (𝑇) , 𝑇 [𝑥] = 𝑇𝑥, (18)

where [𝑥] ∈ 𝐷(𝑇)/𝑁(𝑇) and 𝑥 ∈ 𝐷(𝑇). It is easy to see
that 𝑅(𝑇) = 𝑅(𝑇). Moreover, 𝑅(𝑇) = 𝑅(𝑇). In fact, suppose
that 𝑅(𝑇) ̸= 𝑅(𝑇). Then there exists 𝑦󸀠 ∈ 𝑅(𝑇) such that
𝑦
󸀠
∉ 𝑅(𝑇). It is easy to see that {𝑦 ∈ 𝑅(𝑇) : ‖𝑦

󸀠
− 𝑦‖ =

dist(𝑦󸀠, 𝑅(𝑇))} = 0. This implies that 𝑅(𝑇) is not a Chebyshev
subspace of 𝑌, a contradiction. By 𝑅(𝑇) = 𝑅(𝑇), we obtain
that𝑅(𝑇) is a Banach space.Moreover, it is easy to see that𝑇 is
a bounded linear operator and𝑁(𝑇) = {0}. This implies that
the bounded linear operator𝑇 is both injective and surjective.
By the inverse operator theorem, 𝑇

−1

is a bounded linear
operator. Hence we have

[𝑥𝑛] = 𝑇
−1

(𝑃𝑅(𝑇) (𝑦𝑛)) 󳨀→ 𝑇
−1

(𝑃𝑅(𝑇) (𝑦)) = [𝑥] .
(19)

This means that ‖[𝑥𝑛]‖ → ‖[𝑥]‖ as 𝑛 → ∞. Noticing that

𝑥𝑛 ∈ 𝑇
𝜕
(𝑦𝑛) ,

󵄩󵄩󵄩󵄩[𝑥𝑛]
󵄩󵄩󵄩󵄩 = inf
𝑧∈𝑁(𝑇)

󵄩󵄩󵄩󵄩𝑥𝑛 + 𝑧
󵄩󵄩󵄩󵄩 ,

𝑇 [𝑥𝑛] = 𝑇 (𝑥𝑛 + 𝑧) = 𝑃𝑅(𝑇) (𝑦𝑛) ,

𝑥 ∈ 𝑇
𝜕
(𝑦) ,

‖[𝑥]‖ = inf
𝑧∈𝑁(𝑇)

‖𝑥 + 𝑧‖ ,

𝑇 [𝑥] = 𝑇 (𝑥 + 𝑧) = 𝑃𝑅(𝑇) (𝑦) ,

(20)

it is easy to see that ‖[𝑥𝑛]‖ = ‖𝑥𝑛‖ and ‖[𝑥]‖ = ‖𝑥‖. Since
‖[𝑥𝑛]‖ → ‖[𝑥]‖, ‖[𝑥𝑛]‖ = ‖𝑥𝑛‖, and ‖[𝑥]‖ = ‖𝑥‖, we have
‖𝑥𝑛‖ → ‖𝑥‖ as 𝑛 → ∞. We will derive a contradiction for
each of the following two cases.
Case 1 (𝑥 = 0). By (19), we have [𝑥𝑛] → [𝑥] = 0 as 𝑛 → ∞.
This implies that ‖[𝑥𝑛]‖ → 0 as 𝑛 → ∞. Thus ‖𝑥𝑛‖ → 0 as
𝑛 → ∞. By 𝑥 = 0, we have 0 ∈ 𝑇𝜕(𝑦) ⊂ 𝑊. Moreover, by

‖𝑥𝑛‖ → 0, we have 𝑥𝑛 → 0 as 𝑛 → ∞, which contradicts
the equation {𝑥𝑛}

∞

𝑛=1
∩𝑊 = 0.

Case 2 (𝑥 ̸= 0). By 𝑦𝑛 → 𝑦, we obtain that {𝑦𝑛}
∞

𝑛=1
is a

bounded sequence. Since the distance function is continuous,
we have
󵄩󵄩󵄩󵄩𝑦𝑛 − 𝑃𝑅(𝑇) (𝑦𝑛)

󵄩󵄩󵄩󵄩 = dist (𝑦𝑛, 𝑅 (𝑇)) 󳨀→ dist (𝑦, 𝑅 (𝑇))

as 𝑛 󳨀→ ∞.

(21)

This implies that {𝑦𝑛 − 𝑃𝑅(𝑇)(𝑦𝑛)}
∞

𝑛=1
is a bounded sequence.

Hence {𝑃𝑅(𝑇)(𝑦𝑛)}
∞

𝑛=1
is a bounded sequence. Since 𝑇

−1

is
a bounded linear operator, we obtain that {[𝑥𝑛]}

∞

𝑛=1
is a

bounded sequence. By ‖[𝑥𝑛]‖ = ‖𝑥𝑛‖, we obtain that {𝑥𝑛}
∞

𝑛=1

is a bounded sequence. Since 𝑋 is a nearly dentable Banach
space, 𝑋 is reflexive. Hence, there exists a subsequence
{𝑥𝑛𝑘

}
∞

𝑘=1
of {𝑥𝑛}

∞

𝑛=1
such that 𝑥𝑛𝑘

𝑤

󳨀→ 𝑥
󸀠. Since𝐷(𝑇) is a closed

convex set, 𝐷(𝑇) is a weakly closed convex set. Hence we
obtain that 𝑥󸀠 ∈ 𝐷(𝑇). By 𝑥𝑛𝑘

𝑤

󳨀→ 𝑥
󸀠 and 𝑥󸀠 ∈ 𝐷(𝑇), we have

𝑇𝑥𝑛𝑘

𝑤

󳨀→ 𝑇𝑥
󸀠. Noticing that 𝑇𝑥𝑛 → 𝑇𝑥, we have 𝑇𝑥󸀠 = 𝑇𝑥.

Since 𝑥 ∈ 𝑇𝜕(𝑦), we have ‖𝑥󸀠‖ ≥ ‖𝑥‖. By the Hahn-Banach
theorem, there exists 𝑓 ∈ 𝑆(𝑋

∗
) such that 𝑓(𝑥󸀠) = ‖𝑥

󸀠
‖.

Hence
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
= 𝑓 (𝑥

󸀠
) = lim
𝑘→∞

𝑓 (𝑥𝑛𝑘
) ≤ lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

= lim
𝑘→∞

󵄩󵄩󵄩󵄩󵄩
[𝑥𝑛𝑘

]
󵄩󵄩󵄩󵄩󵄩
= ‖[𝑥]‖ = ‖𝑥‖ .

(22)

This implies that ‖𝑥󸀠‖ = ‖𝑥‖. By {𝑥𝑛𝑘}
∞

𝑘=1
⊂ 𝐷(𝑇) and ‖𝑥󸀠‖ =

‖𝑥‖, we have 𝑥󸀠 ∈ 𝑇𝜕(𝑦). Define

𝑧𝑛𝑘
=

𝑥𝑛𝑘
󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

, 𝑧0 =
𝑥
󸀠

󵄩󵄩󵄩󵄩𝑥
󸀠󵄩󵄩󵄩󵄩

. (23)

By ‖𝑥𝑛𝑘‖ → ‖𝑥
󸀠
‖ and 𝑥𝑛𝑘

𝑤

󳨀→ 𝑥
󸀠, we have 𝑧𝑛𝑘

𝑤

󳨀→ 𝑧0. Since
{𝑥𝑛𝑘

}
∞

𝑘=1
⊂ 𝐷(𝑇), 𝑥 ∈ 𝐷(𝑇), 𝑧𝑛𝑘 = 𝑥𝑛𝑘/‖𝑥𝑛𝑘‖ and 𝑧0 = 𝑥

󸀠
/‖𝑥
󸀠
‖,

we have {𝑧𝑛𝑘}
∞

𝑘=1
⊂ 𝐷(𝑇), and 𝑧0 ∈ 𝐷(𝑇).

Next we will prove that there exists a subsequence {𝑧𝑛𝑙}
∞

𝑙=1

of {𝑧𝑛𝑘}
∞

𝑘=1
such that 𝑧𝑛𝑙 → 𝑧0 as 𝑙 → ∞. Pick 𝑓 ∈ 𝐴(𝑧0).

Then for 𝑥 ∈ 𝐴𝑓 \ (𝐴𝑓 ∩ 𝐷(𝑇)), we have 𝑥 ∉ 𝐷(𝑇).
Since 𝐷(𝑇) is a closed set, there exists 𝜀𝑥 > 0 such that
dist(𝑥, 𝐷(𝑇)) > 2𝜀𝑥 for any 𝑥 ∈ 𝐴𝑓 \ (𝐴𝑓 ∩ 𝐷(𝑇)). Noticing
that {𝑧𝑛𝑘}

∞

𝑘=1
⊂ 𝐷(𝑇), we have dist(𝑥, {𝑧𝑛𝑘}

∞

𝑘=1
) > 2𝜀𝑥. Then

dist(𝐴𝑓 ∩𝐷(𝑇), {𝑧𝑛𝑘}
∞

𝑘=1
) = 0. In fact, suppose that dist(𝐴𝑓 ∩

𝐷(𝑇), {𝑧𝑛𝑘
}
∞

𝑘=1
) > 0. Then for any 𝑥 ∈ 𝐴𝑓 ∩ 𝐷(𝑇), there

exists 𝜀𝑥 > 0 such that dist(𝑥, {𝑧𝑛𝑘}
∞

𝑘=1
) > 2𝜀𝑥. Hence, for any

𝑥 ∈ 𝐴𝑓, there exists 𝜀𝑥 > 0 such that dist(𝑥, {𝑧𝑛𝑘}
∞

𝑘=1
) > 2𝜀𝑥.

We define the open set

𝑈𝐴𝑓
= ⋃

𝑥∈𝐴𝑓

{𝑦 ∈ 𝑋 :
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 < 𝜀𝑥} . (24)

It is easy to see that A𝑓 ⊂ 𝑈𝐴𝑓 and𝑈𝐴𝑓 ∩{𝑧𝑛𝑘𝑖 }
∞

𝑖=1
= 0. Since𝑋

is a nearly dentable space, we obtain that𝑋 is a reflexive space.
Hence co(𝐵(𝑋)\𝑈𝐴𝑓) = co𝑤(𝐵(𝑋)\𝑈𝐴𝑓) is a weakly compact
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set and 𝐴𝑓 ∩ co(𝐵(𝑋) \ 𝑈𝐴𝑓) = 0. By the separation theorem
of locally convex space, there exists 𝑔 ∈ 𝑋∗ = (𝑋, 𝑤)∗ and
𝑟 > 0 such that

inf {𝑔 (𝑧) : 𝑧 ∈ 𝐴𝑓} − 𝑟

> sup{𝑔 (𝑧) : 𝑧 ∈ co𝑤(𝐵 (𝑋)
𝑈𝐴𝑓

) = co(𝐵 (𝑋)
𝑈𝐴𝑓

)} .

(25)

Noticing that {𝑧𝑛𝑘𝑖 }
∞

𝑖=1
⊂ co(𝐵(𝑋)/𝑈𝐴𝑓) and 𝑧0 ∈ 𝐴𝑓, we

have 𝑔(𝑧0) − 𝑟 > sup{𝑔(𝑧) : 𝑧 ∈ {𝑧𝑛𝑘𝑖 }
∞

𝑖=1
}. This means that

𝑧𝑛𝑘

𝑤

󳨀→ 𝑧0 is impossible, a contradiction. Hence dist(𝐴𝑓 ∩
𝐷(𝑇), {𝑧𝑛𝑘

}
∞

𝑘=1
) = 0. Then there exists a subsequence {𝑧𝑛𝑙}

∞

𝑙=1

of {𝑧𝑛𝑘}
∞

𝑘=1
such that dist(𝑧𝑛𝑙 , 𝐴𝑓 ∩ 𝐷(𝑇)) → 0 as 𝑙 → ∞.

Then there exists a sequence {ℎ𝑛𝑙}
∞

𝑙=1
⊂ 𝐴𝑓 ∩ 𝐷(𝑇) such that

‖𝑧𝑛𝑙
− ℎ𝑛𝑙

‖ → 0 as 𝑙 → ∞. Since 𝑋1 is a 2-strictly convex
space, we obtain that𝑋1 is a nearly strictly convex space.This
means that𝐴𝑓∩𝐷(𝑇) is compact. Hence the sequence {ℎ𝑛𝑙}

∞

𝑙=1

has a Cauchy subsequence. By ‖𝑧𝑛𝑙 − ℎ𝑛𝑙‖ → 0, we have that
{𝑧𝑛𝑙
}
∞

𝑙=1
has aCauchy subsequence.Noticing that𝑧𝑛𝑘

𝑤

󳨀→ 𝑧0, we
obtain that there exists a subsequence {𝑧𝑛𝑗}

∞

𝑗=1
of {𝑧𝑛𝑙}

∞

𝑙=1
such

that 𝑧𝑛𝑗 → 𝑧0 as 𝑗 → ∞. By ‖𝑥𝑛𝑘‖ → ‖𝑥
󸀠
‖ and 𝑧𝑛𝑗 → 𝑧0,

we have
󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑗
− 𝑥
󸀠
󵄩󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧𝑛𝑗

−
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧0

󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧𝑛𝑗

−
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩󵄩

󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧𝑛𝑗

−
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
⋅ 𝑧0

󵄩󵄩󵄩󵄩󵄩󵄩

=
󵄨󵄨󵄨󵄨󵄨󵄨

󵄩󵄩󵄩󵄩󵄩󵄩
𝑥𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩

󵄨󵄨󵄨󵄨󵄨󵄨
⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛𝑗

󵄩󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑥
󸀠󵄩󵄩󵄩󵄩󵄩
⋅
󵄩󵄩󵄩󵄩󵄩󵄩
𝑧𝑛𝑗
− 𝑧0

󵄩󵄩󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑗 󳨀→ ∞.

(26)

Moreover, we have 𝑥󸀠 ∈ 𝑇𝜕(𝑦) ⊂ 𝑊, which contradicts the
equation {𝑥𝑛}

∞

𝑛=1
∩ 𝑊 = 0. Hence, for any bounded linear

operator 𝑇 and 𝑦 ∈ 𝑌, if𝐷(𝑇) is a closed subspace of𝑋1 and
𝑅(𝑇) is Chebyshev subspace of 𝑌, then there exist 𝑥1, 𝑥2 ∈
𝐷(𝑇) such that the set-valued mapping 𝑇𝜕(𝑦) = [𝑥1, 𝑥2] is
upper semicontinuous.

Consider that (1)⇒(4). Let the function 𝑔(𝑦) = sup{‖𝑧1−
𝑧2‖ : 𝑥1, 𝑥2 ∈ 𝑇

𝜕
(𝑦)} be lower semicontinuous at 𝑦. Since 𝑋1

is a 2-strictly convex Banach space, there exist 𝑥1 ∈ 𝐷(𝑇) and
𝑥2 ∈ 𝐷(𝑇) such that set-valued mapping 𝑇𝜕(𝑦) = [𝑥1, 𝑥2].
Hence 𝑔(𝑦) = ‖𝑥1 − 𝑥2‖. Let 𝑦𝑛 → 𝑦 as 𝑛 → ∞. Then
dist(𝑥1, 𝑇

𝜕
(𝑦𝑛)) = 0 as 𝑛 → ∞. Otherwise, there exist

𝜀0 > 0 and a subsequence {𝑇𝜕(𝑦𝑛𝑘)}
∞

𝑘=1
of {𝑇𝜕(𝑦𝑛)}

∞

𝑛=1
such

that dist(𝑥1, 𝑇
𝜕
(𝑦𝑛𝑘

)) ≥ 8𝜀0 for any 𝑘 ∈ 𝑁. We define the
open set

𝑊(𝑦) = ⋃

𝑥∈[𝑥1 ,𝑥2]

int𝐵 (𝑥, 𝜀0) . (27)

Since 𝑋1 is a 2-strictly convex Banach space, by the impli-
cation (1)⇒(2)+(3), the set-valued mapping 𝑇𝜕 is upper

semicontinuous. Hence there exists a natural number 𝑘0 such
that 𝑇𝜕(𝑦𝑛𝑘) ⊂ 𝑊(𝑦) whenever 𝑘 > 𝑘0. Let 𝑇

𝜕
(𝑦𝑛𝑘

) =

[𝑥1,𝑛𝑘
, 𝑥2,𝑛𝑘

]. Then there exist 𝑦1,𝑛𝑘 ∈ 𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2] and

𝑦2,𝑛𝑘
∈ 𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2] such that
󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
< 𝜀0,

󵄩󵄩󵄩󵄩󵄩
𝑥2,𝑛𝑘

− 𝑦2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
< 𝜀0. (28)

Then
󵄩󵄩󵄩󵄩󵄩
𝑥1 − 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≥
󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑥1

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≥ 8𝜀0 − 𝜀0 = 7𝜀0,

󵄩󵄩󵄩󵄩󵄩
𝑥1 − 𝑦2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≥
󵄩󵄩󵄩󵄩󵄩
𝑥2,𝑛𝑘

− 𝑥1

󵄩󵄩󵄩󵄩󵄩
−
󵄩󵄩󵄩󵄩󵄩
𝑥2,𝑛𝑘

− 𝑦2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≥ 8𝜀0 − 𝜀0 = 7𝜀0.

(29)

Noticing that 𝑦1,𝑛𝑘 ∈ 𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2] and 𝑦2,𝑛𝑘 ∈ 𝑇

𝜕
(𝑦) =

[𝑥1, 𝑥2], we have ‖𝑦1,𝑛𝑘 − 𝑥2‖ = ‖𝑥1 − 𝑥2‖ − ‖𝑥1 − 𝑦1,𝑛𝑘
‖.

Moreover, we may assume without loss of generality that
‖𝑥1 − 𝑦1,𝑛𝑘

‖ ≤ ‖𝑥1 − 𝑦2,𝑛𝑘
‖. Therefore, by (29), we have

󵄩󵄩󵄩󵄩󵄩
𝑦1,𝑛𝑘

− 𝑦2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑦1,𝑛𝑘

− 𝑥2

󵄩󵄩󵄩󵄩󵄩
=
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩󵄩
𝑥1 − 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 − 7𝜀0.

(30)
Then

󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑥2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
≤
󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦1,𝑛𝑘

− 𝑥2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑦1,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩
+
󵄩󵄩󵄩󵄩󵄩
𝑦1,𝑛𝑘

− 𝑦2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

+
󵄩󵄩󵄩󵄩󵄩
𝑦2,𝑛𝑘

− 𝑥2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≤ 𝜀0 +
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 − 7𝜀0 + 𝜀0

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 − 5𝜀0.

(31)

This implies that

lim inf
𝑛→∞

𝑔 (𝑦𝑛𝑘
) = lim inf
𝑛→∞

󵄩󵄩󵄩󵄩󵄩
𝑥1,𝑛𝑘

− 𝑥2,𝑛𝑘

󵄩󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 − 5𝜀0

<
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 = 𝑔 (𝑦) ,

(32)

a contradiction.Then dist(𝑥1, 𝑇
𝜕
(𝑦𝑛)) = 0 as 𝑛 → ∞. Hence

there exists 𝑥𝑛,1 ∈ 𝑇
𝜕
(𝑦𝑛) such that ‖𝑥𝑛,1 − 𝑥1‖ → 0 as

𝑛 → ∞. Similarly, there exists 𝑥𝑛,2 ∈ 𝑇
𝜕
(𝑦𝑛) such that

‖𝑥𝑛,2 − 𝑥2‖ → 0 as 𝑛 → ∞. For any 𝑥 ∈ 𝑇𝜕(𝑦) = [𝑥1, 𝑥2],
there exists 𝑡 ∈ [0, 1] such that 𝑥 = 𝑡𝑥1 + (1 − 𝑡)𝑥2. Moreover,
it is easy to see that 𝑡𝑥𝑛,1 + (1 − 𝑡)𝑥𝑛,2 ∈ 𝑇

𝜕
(𝑦𝑛) = [𝑥𝑛,1, 𝑥𝑛,2].

Hence, for any 𝑥 ∈ 𝑇𝜕(𝑦) = [𝑥1, 𝑥2], we have
󵄩󵄩󵄩󵄩𝑡𝑥𝑛,1 + (1 − 𝑡) 𝑥𝑛,2 − 𝑥

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑡𝑥𝑛,1 + (1 − 𝑡) 𝑥𝑛,2 − (𝑡𝑥1 + (1 − 𝑡) 𝑥2)

󵄩󵄩󵄩󵄩

≤
󵄩󵄩󵄩󵄩𝑡𝑥𝑛,1 − 𝑡𝑥1

󵄩󵄩󵄩󵄩 +
󵄩󵄩󵄩󵄩(1 − 𝑡) 𝑥𝑛,2 − (1 − 𝑡) 𝑥2

󵄩󵄩󵄩󵄩

= 𝑡
󵄩󵄩󵄩󵄩𝑥𝑛,1 − 𝑥1

󵄩󵄩󵄩󵄩 + (1 − 𝑡)
󵄩󵄩󵄩󵄩𝑥𝑛,2 − 𝑥2

󵄩󵄩󵄩󵄩

󳨀→ 0 as 𝑛 󳨀→ ∞.

(33)
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This means that, if the function 𝑔(𝑦) = sup{‖𝑧1 − 𝑧2‖ :

𝑥1, 𝑥2 ∈ 𝑇
𝜕
(𝑦)} is lower semicontinuous at 𝑦, then the set-

valued mapping 𝑇𝜕 is lower semicontinuous at 𝑦.
Let the set-valued mapping 𝑇𝜕 be lower semicontinuous

at 𝑦. Since 𝑋1 is a 2-strictly convex Banach space, there exist
𝑥1 ∈ 𝐷(𝑇) and 𝑥2 ∈ 𝐷(𝑇) such that the set-valued mapping
satisfies the equality 𝑇𝜕(𝑦) = [𝑥1, 𝑥2]. Hence we have 𝑔(𝑦) =
‖𝑥1 − 𝑥2‖. Let 𝑦𝑛 → 𝑦 as 𝑛 → ∞ and 𝑇𝜕(𝑦𝑛) = [𝑧𝑛,1, 𝑧𝑛,2].
Then 𝑔(𝑦𝑛) = ‖𝑧𝑛,1 − 𝑧𝑛,2‖. Since the set-valued mapping 𝑇𝜕

is lower semicontinuous at 𝑦, there exist 𝑥𝑛,1 ∈ 𝑇
𝜕
(𝑦𝑛) and

𝑥𝑛,2 ∈ 𝑇
𝜕
(𝑦𝑛) such that ‖𝑥𝑛,1 −𝑥1‖ → 0 and ‖𝑥𝑛,2 −𝑥2‖ → 0

as 𝑛 → ∞. Since

𝑔 (𝑦𝑛) =
󵄩󵄩󵄩󵄩𝑧𝑛,1 − 𝑧𝑛,2

󵄩󵄩󵄩󵄩 ≥
󵄩󵄩󵄩󵄩𝑥𝑛,1 − 𝑥𝑛,2

󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩𝑥1 − 𝑥𝑛,2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥1 − 𝑥𝑛,1

󵄩󵄩󵄩󵄩

≥
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥2 − 𝑥𝑛,2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥1 − 𝑥𝑛,1

󵄩󵄩󵄩󵄩 ,

(34)

we have

lim inf
𝑛→∞

𝑔 (𝑦𝑛)

≥ lim inf
𝑛→∞

(
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥2 − 𝑥𝑛,2

󵄩󵄩󵄩󵄩 −
󵄩󵄩󵄩󵄩𝑥1 − 𝑥𝑛,1

󵄩󵄩󵄩󵄩)

= lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 − lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥2 − 𝑥𝑛,2
󵄩󵄩󵄩󵄩 − lim
𝑛→∞

󵄩󵄩󵄩󵄩𝑥1 − 𝑥𝑛,1
󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑥1 − 𝑥2

󵄩󵄩󵄩󵄩 = 𝑔 (𝑦) .

(35)

Hence the function 𝑔(𝑦) = sup{‖𝑧1 − 𝑧2‖ : 𝑧1, 𝑧2 ∈ 𝑇
𝜕
(𝑦)} is

lower semicontinuous at 𝑦. This completes the proof.

Theorem 11. Let 𝑋 and 𝑌 be nearly dentable Banach spaces
and 𝑋1 a closed subspace of 𝑋. Then for any bounded linear
operator 𝑇, if 𝐷(𝑇) is a closed subspace of 𝑋1, 𝑁(𝑇) is a
hyperplane of 𝐷(𝑇), and 𝑅(𝑇) is a Chebyshev subspace of 𝑌,
then (1) ⇔ (2) + (3), where

(1) 𝑋1 is a 2-strictly convex Banach space;
(2) for any 𝑦 ∈ 𝑌, there exist 𝑥1 ∈ 𝐷(𝑇) and 𝑥2 ∈ 𝐷(𝑇)

such that the set-valued mapping satisfies the equality
𝑇
𝜕
(y) = [𝑥1, 𝑥2];

(3) the set-valued mapping 𝑇𝜕 is continuous.

In order to prove the theorem, we first give a lemma.

Lemma 12. Let 𝑋 be a reflexive 2-strictly convex space and
𝐻 = {𝑥 ∈ 𝑋 : 𝑓(𝑥) = 0} be a hyperplane of 𝑋. Then the
function 𝑔(𝑦) = sup{‖𝑧1 − 𝑧2‖ : 𝑧1, 𝑧2 ∈ 𝑃𝐻(𝑦)} is lower
semicontinuous.

Proof. (a) We will prove that, if 𝑦1, 𝑦2 ∈ {𝑥 ∈ 𝑋 : 𝑓(𝑥) = 𝜆},
then 𝑔(𝑦1) = 𝑔(𝑦2). It is easy to see that 𝑦1 − 𝑦2 ∈ 𝐻 and
dist(𝑦1, 𝐻) = dist(𝑦2, 𝐻). Hence, for any 𝑧 ∈ 𝑃𝐻(𝑦2), we have

dist (𝑦1, 𝐻) = dist (𝑦2, 𝐻) =
󵄩󵄩󵄩󵄩𝑦2 − 𝑧

󵄩󵄩󵄩󵄩

=
󵄩󵄩󵄩󵄩𝑦1 − (𝑦1 − 𝑦2 + 𝑧)

󵄩󵄩󵄩󵄩 .

(36)

This implies that 𝑦1 − 𝑦2 + 𝑧 ∈ 𝑃𝐻(𝑦1). Hence we have 𝑦1 −
𝑦2 + 𝑃𝐻(𝑦2) ⊂ 𝑃𝐻(𝑦1). Similarly, we have 𝑦2 − 𝑦1 + 𝑃𝐻(𝑦1) ⊂
𝑃𝐻(𝑦2). By 𝑦1 −𝑦2 +𝑃H(𝑦2) ⊂ 𝑃𝐻(𝑦1) and 𝑦2 −𝑦1 +𝑃𝐻(𝑦1) ⊂
𝑃𝐻(𝑦2), we have 𝑦1 − 𝑦2 + 𝑃𝐻(𝑦2) = 𝑃𝐻(𝑦1). This implies that
𝑔(𝑦1) = 𝑔(𝑦2).

(b) Let 𝑓(𝑥) = 𝜆1, 𝑓(𝑦) = 𝜆2, and 𝜆1 > 𝜆2 > 0. Next we
will prove that 𝑔(𝑥) ≥ 𝑔(𝑦). Pick 𝑥𝐻 ∈ 𝑃𝐻(𝑥). Then

𝑓(
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) = 𝑓(
𝜆2

𝜆1

𝑥) + 𝑓(
𝜆1 − 𝜆2

𝜆1

𝑥𝐻)

= 𝑓(
𝜆2

𝜆1

𝑥) = 𝜆2.

(37)

Moreover, we have

𝑃𝐻 (𝑥) ⊃ 𝑃𝐻 (
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) . (38)

In fact, noticing that𝑓(𝑥) = dist(𝑥,𝐻) and𝑓(𝑦) = dist(𝑦,𝐻),
we have

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) − 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

≥ ‖𝑥 − 𝑧‖ −

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

𝑥 − (
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻)

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

>
󵄩󵄩󵄩󵄩𝑥 − 𝑥𝐻

󵄩󵄩󵄩󵄩 −
𝜆1 − 𝜆2

𝜆1

󵄩󵄩󵄩󵄩𝑥 − 𝑥𝐻
󵄩󵄩󵄩󵄩

=
𝜆2

𝜆1

󵄩󵄩󵄩󵄩𝑥 − 𝑥𝐻
󵄩󵄩󵄩󵄩 =

𝜆2

𝜆1

𝑓 (𝑥) = 𝑓 (𝑦) ,

(39)

for any 𝑧 ∉ 𝑃𝐻(𝑥). By

(

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

(
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) − 𝑧

󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩

)

> 𝑓 (𝑦) = dist (𝑦,𝐻)

= dist(𝜆2
𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻, 𝐻) ,

(40)

we have

𝑧 ∉ 𝑃𝐻 (
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) . (41)

This implies that

𝑃𝐻 (𝑥) ⊃ 𝑃𝐻 (
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) . (42)

By (a), there exists 𝑧 ∈ 𝑋 such that

𝑃𝐻 (
𝜆2

𝜆1

𝑥 +
𝜆1 − 𝜆2

𝜆1

𝑥𝐻) = 𝑃𝐻 (𝑦) + 𝑧. (43)

By (42) and (43), we have 𝑃𝐻(𝑥) ⊃ 𝑃𝐻(𝑦) + 𝑧. Hence 𝑔(𝑥) ≥
𝑔(𝑦).
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(c) We will prove that, if 𝑓(𝑦) = 𝜆 ≥ 0 and 𝑃𝐻(𝑦) =
[𝑧1, 𝑧2], then 𝑃𝐻𝑡(𝑦) ⊃ [𝑡𝑦 + (1 − 𝑡)𝑧1, 𝑡𝑦 + (1 − 𝑡)𝑧2], where
𝐻𝑡 = {𝑥 ∈ 𝑋 : 𝑓(𝑥) = 𝑡𝜆} and 𝑡 ∈ (0, 1). Let 𝑥 ∈ 𝐻𝑡 and
𝑥 ∉ 𝑃𝐻𝑡

(𝑦). Then

dist (𝑦,𝐻𝑡) = dist (𝑦 − 𝑥,𝐻𝑡 − 𝑥) = dist (𝑦 − 𝑥,𝐻)

= 𝑓 (𝑦) − 𝑓 (𝑥) <
󵄩󵄩󵄩󵄩𝑦 − 𝑥

󵄩󵄩󵄩󵄩 .

(44)

Let (1 − 𝑡)𝑧 = 𝑥 − 𝑡𝑦. Therefore, by (44), we have

𝑓 (𝑧) = 𝑓(
1

1 − 𝑡
𝑥) − 𝑓(

𝑡

1 − 𝑡
𝑦) =

1

1 − 𝑡
⋅ 𝑡𝜆 −

𝑡

1 − 𝑡
𝜆 = 0,

󵄩󵄩󵄩󵄩𝑧 − 𝑦
󵄩󵄩󵄩󵄩 =

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

1

1 − 𝑡
𝑥 −

𝑡

1 − 𝑡
𝑦 − 𝑦

󵄩󵄩󵄩󵄩󵄩󵄩󵄩

=
1

1 − 𝑡

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 >

𝑓 (𝑦) − 𝑓 (𝑥)

1 − 𝑡
= 𝜆.

(45)

This means that 𝑧 ∈ 𝐻 and ‖𝑧 − 𝑦‖ > 𝜆 = 𝑓(𝑦) = dist(𝑦,𝐻).
Hence we have 𝑧 ∉ 𝑃𝐻(𝑦) = [𝑧1, 𝑧2]. Then 𝑥 ∉ [𝑡𝑦 + (1 − 𝑡)𝑧1,
𝑡𝑦 + (1 − 𝑡)𝑧2]. Otherwise, there exists ℎ ∈ [0, 1] such that
𝑥 = ℎ[𝑡𝑦+(1−𝑡)𝑧1]+(1−ℎ)[𝑡𝑦+(1−𝑡)𝑧2]. By 𝑥 = 𝑡𝑦+(1−𝑡)𝑧,
we have 𝑧 = ℎ𝑧1 +(1−ℎ)𝑧2, a contradiction.This implies that
𝑃𝐻t
(𝑦) ⊃ [𝑡𝑦 + (1 − 𝑡)𝑧1, 𝑡𝑦 + (1 − 𝑡)𝑧2].
(d) Suppose that there exists 𝑦 ∈ 𝑌 such that function

𝑔(𝑦) is not lower semicontinuous at 𝑦. Then there exists 𝜀 >
0 and {𝑦𝑛}

∞

𝑛=1
such that 𝑔(𝑦) > 𝑔(𝑦𝑛) + 𝜀 and 𝑦𝑛 → 𝑦 as

𝑛 → ∞. Moreover, wemay assumewithout loss of generality
that 𝑓(𝑦) > 0. Otherwise, let 𝑓 = −𝑓. Pick 𝑦𝐻 ∈ 𝑃𝐻(𝑦). By
(a) and (b), there exists {𝑡𝑛}

∞

𝑛=1
⊂ [0, 1] such that 𝑔(𝑡𝑛𝑦 + (1 −

𝑡𝑛)𝑦𝐻) = 𝑔(𝑦𝑛) and 𝑡𝑛 → 1 as 𝑛 → ∞. Put

𝑧𝑛 = 𝑡𝑛𝑦 + (1 − 𝑡𝑛) (𝑦 − 𝑦𝐻) ,

𝐻𝑧𝑛
= {𝑥 ∈ 𝑋 : 𝑓 (𝑥) = (1 − 𝑡𝑛) 𝑓 (𝑦 − 𝑦𝐻)} .

(46)

Hence, for any 𝑧 ∈ 𝑃𝐻𝑧𝑛 (𝑦), we have

dist (𝑧𝑛, 𝐻) = dist (𝑧𝑛 + (𝑦 − 𝑧𝑛) ,𝐻 + (𝑦 − 𝑧𝑛))

= dist (𝑦,𝐻𝑧𝑛)

=
󵄩󵄩󵄩󵄩𝑦 − 𝑧

󵄩󵄩󵄩󵄩 =
󵄩󵄩󵄩󵄩𝑧𝑛 − (𝑧𝑛 − 𝑦 + 𝑧)

󵄩󵄩󵄩󵄩 ,

𝑓 (𝑧𝑛 − 𝑦 + 𝑧)

= 𝑓 (𝑧𝑛 − 𝑦) + 𝑓 (𝑧)

= (1 − 𝑡𝑛) 𝑓 (𝑦 − 𝑦𝐻) − (1 − 𝑡𝑛) 𝑓 (𝑦 − 𝑦𝐻) = 0.

(47)

This implies that 𝑧𝑛 − 𝑦 + 𝑧 ∈ 𝑃𝐻(𝑧𝑛). Hence we have

𝑔 (𝑧𝑛) = sup {󵄩󵄩󵄩󵄩𝑧1 − 𝑧2
󵄩󵄩󵄩󵄩 : 𝑧1, 𝑧2 ∈ 𝑃𝐻 (𝑧𝑛)}

≥ sup {󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 : 𝑥1, 𝑥2 ∈ 𝑃𝐻𝑧𝑛

(𝑦)} .

(48)

Let 𝑃𝐻(𝑦) = [𝑧1, 𝑧2]. Therefore, by (c) and 𝐻𝑧𝑛 = {𝑥 ∈ 𝑋 :

𝑓(𝑥) = (1 − 𝑡𝑛)𝑓(𝑦 − 𝑦𝐻)}, we have 𝑃𝐻𝑧𝑛 (𝑦) ⊃ [t𝑛𝑦 + (1 −
𝑡𝑛)𝑧1, 𝑡𝑛𝑦 + (1 − 𝑡𝑛)𝑧2]. Hence

sup {󵄩󵄩󵄩󵄩𝑥1 − 𝑥2
󵄩󵄩󵄩󵄩 : 𝑥1, 𝑥2 ∈ 𝑃𝐻𝑧𝑛

(𝑦)}

≥ (1 − 𝑡𝑛)
󵄩󵄩󵄩󵄩𝑧1 − 𝑧2

󵄩󵄩󵄩󵄩 = (1 − 𝑡𝑛) 𝑔 (𝑦) 󳨀→ 𝑔 (𝑦) .

(49)

By 𝑔(𝑧𝑛) ≥ sup{‖𝑥1 − 𝑥2‖ : 𝑥1, 𝑥2 ∈ 𝑃𝐻𝑧𝑛 (𝑦)} and 𝑔(𝑧𝑛) =
𝑔(𝑦𝑛), we have lim inf𝑛→∞𝑔(𝑦𝑛) = lim inf𝑛→∞𝑔(𝑧𝑛) ≥ 𝑔(𝑦),
a contradiction. This completes the proof.

Proof of Theorem 11. By Theorem 9, we just need to prove
that, for any 𝑦 ∈ 𝑌, the function 𝑔(𝑦) = sup{‖𝑧1 − 𝑧2‖ :
𝑧1, 𝑧2 ∈ 𝑇

𝜕
(𝑦)} is lower semicontinuous on 𝑦. Let 𝑦𝑛 → 𝑦

as 𝑛 → ∞. Since 𝑌 is a nearly dentable Banach space and
𝑅(𝑇) is a Chebyshev subspace of 𝑌, by Theorem 7, we have
𝑃𝑅(𝑇)(𝑦𝑛) → 𝑃𝑅(𝑇)(𝑦) as 𝑛 → ∞. Put

𝑇 :
𝐷 (𝑇)

𝑁 (𝑇)
󳨀→ 𝑅 (𝑇) , 𝑇 [𝑥] = 𝑇𝑥, (50)

where [𝑥] ∈ 𝐷(𝑇)/𝑁(𝑇) and 𝑥 ∈ 𝐷(𝑇). By the proof of
Theorem 9, we obtain that 𝑇

−1

is a bounded linear operator.
Then

[𝑥𝑛] = 𝑇
−1

(𝑃𝑅(𝑇) (𝑦𝑛)) 󳨀→ [𝑥] = 𝑇
−1

(𝑃𝑅(𝑇) (𝑦))

as 𝑛 󳨀→ ∞.

(51)

Hence there exist 𝑥 ∈ [𝑥] and 𝑥𝑛 ∈ [𝑥𝑛] such that 𝑥𝑛 → 𝑥 as
𝑛 → ∞. By Lemma 12, we obtain that lim inf𝑛→∞ℎ(𝑥𝑛) ≥
ℎ(𝑥), where ℎ(𝑥) = sup{‖𝑥1 − 𝑥2‖ : 𝑥1, 𝑥2 ∈ 𝑃𝑁(𝑇)(𝑥)}.
Noticing that ℎ(𝑥) = 𝑔(𝑦) and ℎ(𝑥𝑛) = 𝑔(𝑦𝑛), we have
lim inf𝑛→∞𝑔(𝑦𝑛) ≥ 𝑔(𝑦). This completes the proof.

ByTheorems 6 and 9, we have the following.

Theorem13. Let𝑋 and𝑌 be approximatively compact Banach
spaces and 𝑋1 a closed subspace of 𝑋. Then for any bounded
linear operator𝑇, if𝐷(𝑇) is a closed subspace of𝑋1 and𝑅(𝑇) is
a Chebyshev subspace of𝑌, then (1) ⇔ (2)+(3) and (1) ⇒ (4),
where

(1) 𝑋1 is a 2-strictly convex Banach space;

(2) for any 𝑦 ∈ 𝑌, there exist 𝑥1 ∈ 𝐷(𝑇) and 𝑥2 ∈ 𝐷(𝑇)
such that the set-valued mapping satisfies the equality
𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2];

(3) the set-valued mapping 𝑇𝜕 is upper semicontinuous;

(4) for any 𝑦 ∈ 𝑌, the set-valued mapping 𝑇𝜕 is lower
semicontinuous at 𝑦 if and only if the function 𝑔(𝑦) =
sup{‖𝑧1−𝑧2‖ : 𝑧1, 𝑧2 ∈ 𝑇

𝜕
(𝑦)} is lower semicontinuous

at 𝑦.
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ByTheorems 6 and 11, we have the following.

Theorem14. Let𝑋 and𝑌 be approximatively compact Banach
spaces and 𝑋1 a closed subspace of 𝑋. Then for any bounded
linear operator 𝑇, if 𝐷(𝑇) is a closed subspace of 𝑋1, 𝑁(𝑇) is
a hyperplane of𝐷(𝑇), and 𝑅(𝑇) is a Chebyshev subspace of 𝑌,
then (1) ⇔ (2) + (3), where

(1) 𝑋1 is a 2-strictly convex Banach space;
(2) for any 𝑦 ∈ 𝑌, there exist 𝑥1 ∈ 𝐷(𝑇) and 𝑥2 ∈ 𝐷(𝑇)

such that the set-valued mapping satisfies the equality
𝑇
𝜕
(𝑦) = [𝑥1, 𝑥2];

(3) the set-valued mapping 𝑇𝜕 is continuous.
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