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A class of stochastic set differential equations (SSDEs) with non-Lipschitzian coefficients is investigated. We first give the
preliminaries on the stochastic set differential equations. Then the nonexplosion of solutions to the SSDEs is discussed. Moreover,
the existence and uniqueness of the solutions to SSDEs are proven. Finally, the continuous dependence of the solutions to SSDEs
is studied.

1. Introduction

Set-valued differential equations which were started in 1969
by de Blasi and Lervolino [1] have been employed in inves-
tigations of dynamic systems. The evidence of set differen-
tial equations for such areas as control theory, differential
inclusions, and fuzzy differential equations can be found in
[2–12] and references therein. The set differential equations
also are explored in [13–15]. One of the main advantages of
investigating deterministic set differential equations is that
they can be used as a tool for studying properties of solutions
of differential inclusions. On the other hand, the set-valued
random processes are first introduced by van Cutsem [16].
Since then the subject has attracted the interest ofmanymath-
ematicians and further contributions are made from both
the theoretical and applied viewpoints (see, e.g., [17–26]).
In [27–31], the set-valued random differential equations are
studied. The strong solution of Itô type set-valued stochastic
differential equation is analyzed in [32].

As far as we know, there exists a wide literature where
attempts have been made to investigate stochastic differential
inclusions (see, e.g., [33–40] and references therein). And
recently, in [27], a kind of the SSDEs disturbed byWiener pro-
cesses is investigated, where under the Lipschitzian condition
the existence and uniqueness of solutions to the SSDEs are
proven. Under the non-Lipschitzian condition, the existence
and uniqueness of solutions to the stochastic set differential
equations are proven in [41, 42]. Moreover, in our present

paper, under the non-Lipschitzian condition the nonexplo-
sion and continuous dependence of solutions to the SSDEs
are studied. The mathematical tool employed in the paper is
the Bihari inequality and the notion of the support function.
The work presented here generalizes results obtained both
for deterministic and for random set differential equations.
Also, it should be noted that the work related to this paper
is the discussions of fuzzy-valued processes and stochastic
differential equations (see, e.g., [43–51]).

The paper is organized as follows. Section 2 gives an
appropriate framework on a set-valued analysis within which
the notion of a set-valued stochastic integral is given. In
Section 3, moreover, the continuous dependence of the
solutions for SSDEs on initial conditions and nonexplosion
are discussed. Finally, the conclusions are made in Section 4.

2. Preliminaries

LetK(R𝑑) be the family of all nonempty compact and convex
subsets of R𝑑. In K(R𝑑), we define the Hausdorff metric 𝑑𝐻
of two sets 𝐴, 𝐵 ∈ K(R𝑑) as follows:

𝑑𝐻 = max(sup
𝑎∈𝐴

inf
𝑏∈𝐵

‖𝑎 − 𝑏‖ , sup
𝑏∈𝐵

inf
𝑎∈𝐴

‖𝑎 − 𝑏‖) . (1)

Throughout this paper, let (Ω,A, 𝑃) be complete prob-
ability space. A × B+ is a product 𝜎-field of Ω ×

R+. M(Ω,A;K(R𝑑)) denotes the family of A-measurable
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multifunctions with values in R𝑑. A multifunction 𝐹 ∈

M(Ω,A;K(R𝑑)) is said to be 𝐿𝑝-integrably bounded, 𝑝 ≥ 1,
if there exists ℎ ∈ 𝐿𝑝(Ω,A, 𝑃;R+) such that |‖𝐹‖| ≤ ℎ a.s.,
where

|‖𝐴‖| := 𝑑𝐻 (𝐴, {0}) = sup
𝑎∈𝐴

‖𝑎‖ for 𝐴 ∈ K (R𝑑) . (2)

Let us denote

L
𝑝
(Ω,A, 𝑃;K (R𝑑))

:= {𝐹 ∈ M (Ω,A;K (R𝑑)) : |‖𝐹‖| ∈ 𝐿𝑝 (Ω,A, 𝑃;R+)} .
(3)

Denote 𝐼 := [0,∞). Let (Ω,A, {A𝑡}𝑡∈𝐼, 𝑃) be a complete,
filtered probability spacewhere the sub-𝜎-field family (A𝑡, 𝑡 ∈
𝐼) of A satisfies the usual conditions. We call 𝑋 : 𝐼 ×

Ω → K(R𝑑) a set-valued stochastic process, if for every
𝑡 ∈ 𝐼 a mapping 𝑋(𝑡, ⋅) = 𝑋(𝑡) : Ω → K(R𝑑) is
a set-valued random variable. If 𝑋 : 𝐼 × Ω → K(R𝑑)
is {A𝑡}𝑡∈𝐼-adapted and measurable, then it will be called
nonanticipating. Equivalently, the set-valued process 𝑋 is
nonanticipating if and only if 𝑋 is measurable with respect
to the 𝜎-algebraN, which is defined as follows:

N := {𝐴 ∈ B (𝐼) ⊗A : 𝐴
𝑡
∈ A𝑡 for every 𝑡 ∈ 𝐼} , (4)

where 𝐴𝑡 = {𝜔 : (𝑡, 𝜔) ∈ 𝐴} for 𝑡 ∈ 𝐼.
Let 𝑝 ≥ 1 and 𝐿𝑝(𝐼 × Ω,N;R𝑑) denote the set of all

nonanticipatingR𝑑-valued stochastic processes {ℎ(𝑡)}𝑡∈𝐼 such
that 𝐸(∫𝑇

0
‖ℎ(𝑠)‖

𝑝
𝑑𝑠) < ∞. A set-valued stochastic process𝑋

is called 𝐿𝑝-integrably bounded, if there exists a real-valued
stochastic process ℎ ∈ 𝐿𝑝(𝐼 × Ω,N;R+) such that

‖|𝑋 (𝑡, 𝜔)|‖ ≤ ℎ (𝑡, 𝜔) for a.a. (𝑡, 𝜔) ∈ 𝐼 × Ω. (5)

We define the operation onK(R𝑑) as follows. For two sets
𝐴, 𝐵 ∈ K(R𝑑), if there exists such a 𝐶 ∈ K(R𝑑) that 𝐴 =

𝐵 + 𝐶, then 𝐶 is the Hukuhara difference of 𝐴 and 𝐵 denoted
by 𝐶 = 𝐴 ⊖ 𝐵. We note that 𝐴 + 𝐵 = {0} implies that 𝐴 = −𝐵.
However, 𝐴 ⊖ 𝐴 ̸= {0}. Indeed, take 𝐴 = [0, 1].

It is well known that

𝑑𝐻 (𝐴 + 𝐶, 𝐵 + 𝐶) = 𝑑𝐻 (𝐴, 𝐵) ,

𝑑𝐻 (𝜆𝐴, 𝜆𝐵) = |𝜆| 𝑑𝐻 (𝐴, 𝐵) ,
(6)

for all 𝐴, 𝐵, 𝐶 ∈ K(R𝑑), 𝜆 ∈ R.
Let 𝜎(𝐴, 𝑟) ≜ sup{⟨𝑥, 𝑟⟩ : 𝑥 ∈ 𝐴}; 𝑟 ∈ B is the support

function of𝐴, whereB is a unit sphere centered at origin.The
support function 𝜎(⋅, ⋅) satisfies the following properties.

(i) 𝜎(𝐴, ⋅) is bounded onB; that is, |𝜎(𝐴, 𝑟)| ≤ |‖𝐴‖|, ∀𝑟 ∈
B.

(ii) 𝜎(𝐴, ⋅) is Lipschitz continuous in 𝑟

󵄨󵄨󵄨󵄨𝜎 (𝐴, 𝑟) − 𝜎 (𝐴, 𝑟
∗
)
󵄨󵄨󵄨󵄨 ≤ |‖𝐴‖| ⋅

󵄨󵄨󵄨󵄨𝑟 − 𝑟
∗󵄨󵄨󵄨󵄨 , ∀𝑟, 𝑟

∗
∈ B. (7)

(iii) For all 𝐴, 𝐵 ∈ K(R𝑑),

𝐻(𝐴, 𝐵) = sup
𝑟∈B

|𝜎 (𝐴, 𝑟) − 𝜎 (𝐵, 𝑟)| . (8)

(iv) For all 𝐴, 𝐵 ∈ K(R𝑑), 𝜎(𝐴 + 𝐵, 𝑟) = 𝜎(𝐴, 𝑟) +

𝜎(𝐵, 𝑟)∀𝑟 ∈ B.
(v) For all 𝐴 ∈ K(R𝑑), 𝜎(𝜆𝐴, 𝑟) = 𝜆𝜎(𝐴, 𝑟)∀𝑟 ∈ B, 𝜆 ≥

0.
(vi) For all 𝐴, 𝐵 ∈ K(R𝑑), if 𝜎(𝐴, 𝑟) = 𝜎(𝐴, 𝑟) +

𝜎(𝐵, 𝑟), ∀𝑟 ∈ B; then we have 𝐴 = 𝐵.

By L𝑝(𝐼 × Ω,N;K(R𝑑)) we denote the set of nonan-
ticipating and 𝐿𝑝-integrably bounded set-valued stochastic
processes. Let 𝑋 ∈ L1(𝐼 × Ω,N;K(R𝑑)). For such 𝑋 and
a fixed 𝑡 ∈ 𝐼, by the FubiniTheorem, we can define Aumann’s
integral∫𝑡

0
𝑋(𝑠, 𝜔)𝑑𝑠, for𝜔 ∈ Ω. Obviously, for every 𝑡 ∈ 𝐼 and

𝜔 ∈ Ω the Aumann integral ∫𝑡
0
𝑋(𝑠, 𝜔)𝑑𝑠 belongs to K(R𝑑)

(see, e.g., [7, 19]).
We say that a set-valued stochastic process 𝑋 is 𝑑𝐻-

continuous, if almost all its trajectories, that is, the mappings
𝑋(⋅, 𝜔) : 𝐼 → K(R𝑑), are 𝑑𝐻-continuous functions. It is
easy to know that if𝑋 ∈ L𝑝(𝐼 × Ω,N;K(R𝑑)), then the set-
valued stochastic process ∫𝑡

0
𝑋(𝑠)𝑑𝑠 is 𝑑𝐻-continuous (see,

e.g., Corollary 1 in [27]).
In what follows, we state the generalized Bihari inequality

(cf., Mao [52]) which plays an important role in the following
section.

Lemma 1 (generalized Bihari inequality). Let 𝑢 be Borel
measurable, bounded, nonnegative, and left limit function on
[0, 𝑇] and 𝑐 > 0. Let 𝐾 : R+ → R+ be a continuous
nondecreasing function such that 𝐾(𝑡) > 0 for all 𝑡 > 0.

(i) If 𝜇(𝑡) is a continuous nonnegative nondecreasing
function on [0, 𝑇], then the inequality

𝑢 (𝑡) ≤ 𝑐 + ∫
𝑡

0

𝐾 (𝑢 (𝑠−)) 𝑑𝜇 (𝑠) , ∀𝑡 ∈ [0, 𝑇] (9)

implies that

𝑢 (𝑡) ≤ 𝐺
−1
(𝐺 (𝑐) + 𝜇 (𝑡)) , (10)

for all 𝑡 ∈ [0, 𝑇] such that

𝐺 (𝑐) + 𝜇 (𝑡) ∈ Dom (𝐺
−1
) , (11)

where

𝐺 (𝑞) = ∫
𝑞

𝑎

1

𝐾 (V)
𝑑V, 𝑞 > 0, (12)

where 𝐺−1 is the inverse function of 𝐺 and 𝑎 ∈ [0, 𝑇].
(ii) If ](𝑡) is a continuous nonpositive nonincreasing

function on [0, 𝑇], then the inequality

𝑢 (𝑡) ≥ 𝑐 + ∫
𝑡

0

𝐾 (𝑢 (𝑠−)) 𝑑] (𝑠) , ∀𝑡 ∈ [0, 𝑇] , (13)
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implies that

𝑢 (𝑡) ≥ 𝐺
−1
(𝐺 (𝑐) + ] (𝑡)) , (14)

for all 𝑡 ∈ [0, 𝑇] such that

𝐺 (𝑐) + ] (𝑡) ∈ Dom (𝐺
−1
) . (15)

3. Properties of Solutions to SSDEs

In this section, we consider the following stochastic set
differential equation (in the integral form):

𝑋 (𝑡) = 𝑥0 + ∫
𝑡

0

𝑓 (𝑋 (𝑠)) 𝑑𝑠 + ∫
𝑡

0

𝑔 (𝑋 (𝑠)) 𝑑𝑊 (𝑠) , (16)

where 𝑓 takes values in 𝐶(K(R𝑑),K(R𝑑)), 𝑔 in
𝐶(K(R𝑑),R𝑑 × R𝑚), 𝑊 = (𝑊(𝑡), 𝑡 ≥ 0) is an𝑚-dimensional
Brownian motion, and 𝑥0 ∈ K(R𝑑) is a set-valued random
variable. Here, 𝐶(K(R𝑑),K(R𝑑)) (resp., 𝐶(K(R𝑑),R𝑑 ×R𝑚)
stands for the family of the continuous functions from the
spaceK(R𝑑) to the spaceK(R𝑑) (resp.,K(R𝑑) to R𝑑 × R𝑚).
In (16), the integral ∫𝑡

0
𝑓(𝑋(𝑠))𝑑𝑠 is Aumann’s one, and the

integral ∫𝑡
0
𝑔(𝑋(𝑠))𝑑𝑊(𝑠) is a general Itô type stochastic one,

whose definition can refer to [53].
Due to the continuity of 𝑓, we can know that 𝜎(𝑓(⋅), 𝑟)

takes values in𝐶(K(R𝑑),R). In order to discuss the solutions
to (16), by the concept and properties of the support function
we consider the following single valued stochastic differential
equation, for ∀𝑟 ∈ B:

𝑑𝜎 (𝑋 (𝑡) , 𝑟) = 𝜎 (𝑓 (𝑋 (𝑡)) , 𝑟) 𝑑𝑡 + 𝑟
⊤
𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) ,

𝜎 (𝑋 (0) , 𝑟) = 𝜎 (𝑥0, 𝑟) .

(17)

We first claim that (16) is equivalent to (17). Indeed, from the
properties of the support function and (16) we deduce that,
for 𝑟 ∈ B,

𝜎 (𝑋 (𝑡) , 𝑟) = 𝜎 (𝑥0, 𝑟) + 𝜎(∫
𝑡

0

𝑓 (𝑋 (𝑡)) 𝑑𝑡, 𝑟)

+ ∫
𝑡

0

𝑟
⊤
𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡)

= 𝜎 (𝑥0, 𝑟) + ∫
𝑡

0

𝜎 (𝑓 (𝑋 (𝑡)) , 𝑟) 𝑑𝑡

+ ∫
𝑡

0

𝑟
⊤
𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) ,

(18)

which shows that (17) holds. Conversely, (16) can be derived
from (17).

It is known that (17) has a solution up to a lifetime 𝜁(𝑟)
which depends on 𝑟 ∈ B. Set

𝜁 = inf
𝑟∈B

𝜁 (𝑟) . (19)

We call 𝜁 the lifetime of solution to (16). Obviously, ‖|𝑋(𝜁)|‖ =
+∞ a.s. Here, by the concepts of explosion time and lifetime
time from Pages 158 and 191 in [54], the lifetime of solution
to (16) or (17) is the same as the explosion time of the solution
of (16) or (17).

If (17) has the pathwise uniqueness, then we show the
existence and uniqueness of the solution to the SSDE (16).
So the study of pathwise uniqueness is of great interest. It
is a classical result that, under the Lipschitz coefficients, the
pathwise uniqueness holds and the solution of (17) can be
constructed by using Picard iteration; moreover, the solution
depends on the initial values continuously. However, under
non-Lipschitzian condition, Fei [42] presents the existence
and uniqueness of solutions to (16); hence, the existence and
uniqueness of solutions to (17) also are proven.

In what follows, we discuss the nonexplosion of the
solutions to (16) under non-Lipschitzian condition. Our idea
is to derive an inequality so that the generalized Bihari
inequality (Lemma 1) can be applied.

Theorem 2. Let 𝜌 : R+ → [1, +∞) be a continuous function
such that

(i) 𝑠𝜌(𝑠) is nondecreasing and concave;

(ii) ∫∞
0
𝑑𝑠/(𝑠𝜌(𝑠) + 1) = +∞.

Assume that, for some constant 𝐶 > 0,

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑓 (𝑥)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 ≤ 𝐶 (‖|𝑥|‖ 𝜌 (‖|𝑥|‖

2
) + 1) ,

󵄩󵄩󵄩󵄩𝑔(𝑥)
󵄩󵄩󵄩󵄩
2
≤ 𝐶 (‖|𝑥|‖

2
𝜌 (‖|𝑥|‖

2
) + 1) , 𝑥 ∈ K (R𝑑) .

(20)

If 𝐸‖|𝑥0|‖ < +∞, then the lifetime of the solution 𝑋(𝑡, 𝑥0) to
(16) is infinite: 𝜁 = +∞ a.s. Moreover,

lim
𝐸‖|𝑥0|‖→+∞

𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑋 (𝑡, 𝑥0)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩 = +∞ ∀𝑡 ≥ 0. (21)

Proof. Let 𝜉𝑟(𝑡) = |𝜎(𝑋(𝑡), 𝑟)|2, ∀𝑟 ∈ B, where 𝑋(𝑡) is a
solution to (16). Hence, we have

𝑑𝜉
𝑟
(𝑡) = [2𝜎 (𝑋 (𝑡) , 𝑟) 𝜎 (𝑓 (𝑋 (𝑡)) , 𝑟) +

󵄩󵄩󵄩󵄩󵄩
𝑔(𝑋(𝑡))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

] 𝑑𝑡

+ 2𝜎 (𝑋 (𝑡) , 𝑟) 𝑟
⊤
𝑔 (𝑋 (𝑡)) 𝑑𝑊 (𝑡) .

(22)

Since 𝑟 ∈ B, we get ‖𝑔(𝑋(𝑠))⊤𝑟‖2 ≤ ‖𝑔(𝑋(𝑠))‖
2. Set 𝜉(𝑡) =

‖|𝑋(𝑡)|‖
2; it follows that from (20) and property (i) of the

support function 𝜎(⋅)

𝐸𝜉
𝑟
(𝑡) = 𝜉

𝑟
(0) + 2𝐸∫

𝑡

0

(𝜎 (𝑋 (𝑠) , 𝑟) 𝜎 (𝑓 (𝑋 (𝑠)) , 𝑟)

+
󵄩󵄩󵄩󵄩󵄩
𝑟
⊤
𝑔 (𝑋 (𝑠))

󵄩󵄩󵄩󵄩󵄩

2

) 𝑑𝑠
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≤ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
+ 2𝐶∫

𝑡

0

𝐸(2𝜉 (𝑠) 𝜌 (𝜉 (𝑠))

+√𝜉 (𝑠) + 1) 𝑑𝑠

≤ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
+ 2𝐶∫

𝑡

0

(2𝐸𝜉 (𝑠) 𝜌 (𝐸𝜉 (𝑠))

+√𝐸𝜉 (𝑠) + 1) 𝑑𝑠,

(23)

where we have utilized the concavity of the functions V𝜌(V)
and√V.

Denote 𝜂(𝑡) = 𝐸𝜉(𝑡). Noticing 𝜌(𝜂) ≥ 1, we get

𝜂𝜌 (𝜂) + √𝜂

𝜂𝜌 (𝜂) + 1
≤ 1 +

√𝜂

𝜂𝜌 (𝜂) + 1
≤ 1 +

√𝜂

𝜂 + 1
≤ 1 +

1

2
< 2,

(24)

where 𝜑(𝜂) = √𝜂/(1 + 𝜂) takes the maximum at 1 on the
interval (0,∞).

It is easy to see that

sup
𝜂≥0

𝜂𝜌 (𝜂) + √𝜂

𝜂𝜌 (𝜂) + 1
≤ 2, (25)

which deduce that

2𝜂𝜌 (𝜂) + √𝜂

𝜂𝜌 (𝜂) + 1
≤
2 (𝜂𝜌 (𝜂) + √𝜂)

𝜂𝜌 (𝜂) + 1
+

1

𝜂𝜌 (𝜂) + 1
≤ 5. (26)

Thus we have

2𝜂𝜌 (𝜂) + √𝜂 + 1 ≤ 6 (𝜂𝜌 (𝜂) + 1) . (27)

In virtue of (23), we have

𝜂 (𝑡) ≤ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
+ 12𝐶∫

𝑡

0

(𝜂 (𝑠) 𝜌 (𝜂 (𝑠)) + 1) 𝑑𝑠. (28)

Set

𝐺 (𝑢) = ∫
𝑢

1

𝑑𝑠

𝑠𝜌 (𝑠) + 1
, 𝑢 > 0. (29)

By condition (ii) it is easy to show that 𝐺(𝑢) is strictly
increasing, 𝐺(𝑢) → +∞ as 𝑢 → +∞ and 𝐺−1(𝑢) → +∞

as 𝑢 → +∞.
From (28), the generalized Bihari inequality (Lemma 1

(i)), and 𝐸‖|𝑥0|‖ < +∞ we obtain

𝜂 (𝑡) ≤ 𝐺
−1
(𝐺 (𝐸

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
) + 12𝐶𝑡) < +∞, ∀𝑡 ≥ 0, (30)

which proves that 𝜁 = +∞.

On the other hand, from (20) and property (i) of the
support function 𝜎(⋅) we have

𝐸𝜉
𝑟
(𝑡) = 𝜉

𝑟
(0)

+ 2𝐸∫
𝑡

0

(𝜎 (𝑋 (𝑠) , 𝑟) 𝜎 (𝑓 (𝑋 (𝑠)) , 𝑟)

+
󵄩󵄩󵄩󵄩󵄩
𝑟
⊤
𝑔 (𝑋 (𝑠))

󵄩󵄩󵄩󵄩󵄩

2

) 𝑑𝑠

≥ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
− 2𝐶∫

𝑡

0

𝐸(𝜉 (𝑠) 𝜌 (𝜉 (𝑠)) + √𝜉 (𝑠)) 𝑑𝑠

≥ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
− 2𝐶∫

𝑡

0

(𝐸𝜉 (𝑠) 𝜌 (𝐸𝜉 (𝑠)) + √𝐸𝜉 (𝑠)) 𝑑𝑠.

(31)

Due to inequality (24), we have

𝜂 (𝑡) ≥ 𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
− 4𝐶∫

𝑡

0

(𝜂 (𝑠) 𝜌 (𝜂 (𝑠)) + 1) 𝑑𝑠. (32)

By Lemma 1(ii), we get

𝐸
󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑋(𝑡, 𝑥0)

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
= 𝜂 (𝑡) ≥ 𝐺

−1
(𝐺 (𝐸

󵄩󵄩󵄩󵄩
󵄨󵄨󵄨󵄨𝑥0

󵄨󵄨󵄨󵄨
󵄩󵄩󵄩󵄩
2
) − 4𝐶𝑡) , ∀𝑡 ≥ 0,

(33)

which shows that lim𝐸‖|𝑥0|‖→+∞𝐸‖|𝑋(𝑡, 𝑥0)|‖ = +∞ by the
property of the function 𝐺(⋅) in (29). Thus, the proof of the
theorem is complete.

Theorem 3. Let 𝜓 : (0, 1) → [1, +∞) be a continuous
function such that

(i) 𝑠𝜓(𝑠) is nondecreasing and concave;

(ii) ∫1/2
0

𝑑𝑠/𝑠𝜓(𝑠) = +∞.

Assume that for some constant 𝐶 > 0, 𝑑𝐻(𝑥, 𝑦) <

1, 𝑥, 𝑦 ∈ K(R𝑑), 𝑡 ∈ 𝐼,

𝑑𝐻 (𝑓 (𝑡, 𝑥) , 𝑓 (𝑡, 𝑦)) ≤ 𝐶𝑑𝐻 (𝑥, 𝑦) 𝜓 (𝑑
2

𝐻
(𝑥, 𝑦)) ,

󵄩󵄩󵄩󵄩𝑔(𝑡, 𝑥) − 𝑔(𝑡, 𝑦))
󵄩󵄩󵄩󵄩
2
≤ 𝐶𝑑2
𝐻
(𝑥, 𝑦) 𝜓 (𝑑2

𝐻
(𝑥, 𝑦)) .

(34)

Then SSDE (16) has a unique solution.

Proof. By constructing the sequence {𝑋𝑛} of set-valued ran-
dom variables as that in [42], the existence of the solutions to
(16) is similarly proven. Next, we prove the uniqueness of the
solutions to (16).

Let (𝑋(𝑡))𝑡≥0 and (𝑌(𝑡))𝑡≥0 be two solutions of (16). Set
𝜂𝑟(𝑡) = 𝜎(𝑋(𝑡), 𝑟)−𝜎(𝑌(𝑡), 𝑟), 𝜉𝑟(𝑡) = |𝜂𝑟(𝑡)|

2
, ∀𝑟 ∈ B. Hence,

by Itô formula we have

𝑑𝜉
𝑟
(𝑡) = [2𝜂

𝑟
(𝑡) (𝜎 (𝑓 (𝑡, 𝑋 (𝑡)) , 𝑟) − 𝜎 (𝑓 (𝑡, 𝑌 (𝑡)) , 𝑟))

+
󵄩󵄩󵄩󵄩󵄩
(𝑔 (𝑡, 𝑋 (𝑡)) − 𝑔 (𝑡, 𝑌 (𝑡)))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

] 𝑑𝑡

+ 2𝜂
𝑟
(𝑡) 𝑟
⊤
(𝑔 (𝑡, 𝑋 (𝑡)) − 𝑔 (𝑡, 𝑌 (𝑡))) 𝑑𝑊 (𝑡) .

(35)
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Since 𝑟 ∈ B, we get ‖(𝑔(𝑡, 𝑋(𝑠)) − 𝑔(𝑡, 𝑌(𝑠)))
⊤
𝑟‖
2

≤

‖𝑔(𝑡, 𝑋(𝑠)) − 𝑔(𝑡, 𝑌(𝑠))‖
2. Set 𝜉(𝑡) = 𝑑2

𝐻
(𝑋(𝑡), 𝑌(𝑡)).

From condition (34) and the property of the support
function, we get

󵄨󵄨󵄨󵄨𝜂
𝑟
(𝑡)
󵄨󵄨󵄨󵄨 ≤ 𝑑𝐻 (𝑋 (𝑡) , 𝑌 (𝑡)) ,

󵄨󵄨󵄨󵄨𝜎 (𝑓 (𝑡, 𝑋 (𝑡)) , 𝑟) − 𝜎 (𝑓 (𝑡, 𝑌 (𝑡)) , 𝑟)
󵄨󵄨󵄨󵄨

≤ 𝑑𝐻 (𝑓 (𝑡, 𝑋 (𝑡)) , 𝑓 (𝑡, 𝑌 (𝑡)))

≤ 𝐶𝑑𝐻 (𝑋 (𝑡) , 𝑌 (𝑡)) 𝜓 (𝑑
2

𝐻
(𝑋 (𝑡) , 𝑌 (𝑡))) ,

(36)

which deduces
𝐸𝜉
𝑟
(𝑡)

= 2𝐸∫
𝑡

0

(𝜂
𝑟
(𝑠) (𝜎 (𝑓 (𝑡, 𝑋 (𝑠)) , 𝑟) − 𝜎 (𝑓 (𝑡, 𝑌 (𝑠)) , 𝑟))

+
󵄩󵄩󵄩󵄩󵄩
(𝑔 (𝑡, 𝑋 (𝑠)) − 𝑔 (𝑡, 𝑌 (𝑠)))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

) 𝑑𝑠

≤ 2𝐶∫
𝑡

0

𝐸 (2𝑑
2

𝐻
(𝑋 (𝑠) , 𝑌 (𝑠)) 𝜓

× (𝑑
2

𝐻
(𝑋 (𝑠) , 𝑌 (𝑠)))) 𝑑𝑠

≤ 4𝐶∫
𝑡

0

𝐸𝜉 (𝑠) 𝜓 (𝐸𝜉 (𝑠)) 𝑑𝑠,

(37)

where we have utilized the concavity of the functions V𝜓(V).
Denote 𝜗(𝑡) = 𝐸𝜉(𝑡). In virtue of (37), we have

𝜗 (𝑡) ≤ 4𝐶∫
𝑡

0

𝜗 (𝑠) 𝜓 (𝜗 (𝑠)) 𝑑𝑠. (38)

Let

𝐺 (𝑢) = ∫
𝑢

1/2

𝑑𝑠

𝑠𝜓 (𝑠)
, 𝑢 > 0. (39)

We easily show that 𝐺(𝑢) is strictly increasing, 𝐺(𝑢) → −∞

as 𝑢 → 0 and 𝐺−1(𝑢) → 0 as 𝑢 → −∞.
By Lemma 1 (i), we obtain

𝜗 (𝑡) ≤ 𝐺
−1
(𝐺 (0+) + 4𝐶𝑡) = 0, ∀𝑡 ≥ 0, (40)

which shows that 𝑋(𝑡) = 𝑌(𝑡). Thus we complete the proof.

Note that function

𝜓 (𝑠) =

{{

{{

{

log 1
𝑠
, 0 < 𝑠 ≤

1

𝑒
,

1, 𝑠 >
1

𝑒
,

(41)

is a typical example satisfying conditions (i) and (ii).
Next, we will study the dependence of the solutions to the

SSDE (16) on initial data. For the mapping 𝑥0 → 𝑋(𝑡, 𝑥0),
we call 𝑋𝑡(𝑥0) = 𝑋(𝑡, 𝑥0) mean square continuous on 𝑥0,
uniformly with respect to 𝑡 ∈ 𝐼 if 𝐸𝑑𝐻(𝑋(𝑡, 𝑦0), 𝑋(𝑡, 𝑥0)) →

0 as 𝑑𝐻 − lim𝑦0 = 𝑥0 on any compact subset 𝐼 of 𝑡, where the
limit 𝑥0 of 𝑦0 is in sense of the metric 𝑑𝐻.

Theorem 4. Assume that the conditions in Theorem 3 hold.
Then the mapping 𝑥0 → 𝑋𝑡(𝑥0) is mean square continuous,
uniformly with respect to 𝑡 in any compact subset, where
𝑋𝑡(𝑥0) = 𝑋(𝑡, 𝑥0) is the solution to SSDE (16).

Proof. Take 𝜖 ∈ (0, 1). Consider a small parameter 0 < 𝛿 < 𝜖.
Assume𝑥0, 𝑦0 ∈ K(R𝑑) such that𝑑𝐻(𝑥0, 𝑦0) < 𝛿. For∀𝑟 ∈ B,
let

𝜂
𝑟
(𝑡) = 𝜎 (𝑋𝑡 (𝑥0) , 𝑟) − 𝜎 (𝑋𝑡 (𝑦0) , 𝑟) ,

𝜉
𝑟
(𝑡) =

󵄨󵄨󵄨󵄨𝜂
𝑟
(𝑡)
󵄨󵄨󵄨󵄨
2
,

𝜉 (𝑡) = 𝑑
2

𝐻
(𝑋𝑡 (𝑥0) , 𝑋𝑡 (𝑦0)) .

(42)

By (17) and Itô formula, we have

𝑑𝜉
𝑟
(𝑡)

= [2𝜂
𝛼,𝑟
(𝑡) (𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑥0)) , 𝛼, 𝑟)

−𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑦0)) , 𝑟))

+
󵄩󵄩󵄩󵄩󵄩
(𝑔(𝑡, 𝑋(𝑡, 𝑥0)) − 𝑔 (𝑡, 𝑋 (𝑡, 𝑦0)))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

] 𝑑𝑡

+ 2𝜂
𝛼,𝑟
(𝑡) 𝑟
⊤
(𝑔 (𝑡, 𝑋 (𝑡, 𝑥0))

−𝑔 (𝑡, 𝑋 (𝑡, 𝑦0))) 𝑑𝑊 (𝑡) .

(43)

From condition (34) and the property of the support
function, we get
󵄨󵄨󵄨󵄨𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑥0)) , 𝑟) − 𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑦0)) , 𝑟)

󵄨󵄨󵄨󵄨

≤ 𝑑𝐻 (𝑓 (𝑡, 𝑋 (𝑡, 𝑥0)) , 𝑓 (𝑡, 𝑋 (𝑡, 𝑦0)))

≤ 𝐶𝑑𝐻 (𝑋 (𝑡, 𝑥0) , 𝑋 (𝑡, 𝑦0)) 𝜓 (𝑑
2

𝐻
(𝑋 (𝑡, 𝑥0) , 𝑋 (𝑡, 𝑦0))) ,

(44)

which deduces

𝐸𝜉
𝑟
(𝑡)

= 𝐸𝜉
𝑟
(0)

+ 2𝐸∫
𝑡

0

(𝜂
𝛼,𝑟
(𝑠) (𝜎 (𝑓 (𝑡, 𝑋 (𝑠, 𝑥0)) , 𝑟)

−𝜎 (𝑓 (𝑡, 𝑋 (𝑠, 𝑦0)) , 𝑟) )

+
󵄩󵄩󵄩󵄩󵄩
(𝑔 (𝑡, 𝑋 (𝑠, 𝑥0)) − 𝑔 (𝑡, 𝑋 (𝑠, 𝑦0)))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

)𝑑𝑠

≤ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0)

+ 2𝐶∫
𝑡

0

𝐸 (2𝑑
2

𝐻
(𝑋 (𝑠, 𝑥0) , 𝑋 (𝑠, 𝑦0)) 𝜓

× (𝑑
2

𝐻
(𝑋 (𝑠, 𝑥0) , 𝑋 (𝑠, 𝑦0)))) 𝑑𝑠

≤ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0) + 4𝐶∫

𝑡

0

𝐸𝜉 (𝑠) 𝜓 (𝐸𝜉 (𝑠)) 𝑑𝑠,

(45)

where we have utilized the concavity of the functions V𝜓(V).
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Setting 𝜗(𝑡) = 𝐸𝑑2
𝐻
(𝑋𝑡(𝑥0), 𝑋𝑡(𝑦0)), from (45) we have

𝜗 (𝑡) ≤ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0) + 4𝐶∫

𝑡

0

𝜗 (𝑠) 𝜓 (𝜗 (𝑠)) 𝑑𝑠. (46)

Define

𝐺 (𝑢) = ∫
𝑢

𝑎

𝑑𝑠

𝑠𝜓 (𝑠)
, 𝑢 > 0, for some 𝑎 ∈ (0, 1) . (47)

We easily have that 𝐺(𝑢) is strictly increasing, 𝐺(𝑢) → −∞

as 𝑢 → 0 and 𝐺−1(𝑢) → 0 as 𝑢 → −∞.
By Lemma 1 (i), we have

𝜗 (𝑡) ≤ 𝐺
−1
(𝐺 (𝐸𝑑

2

𝐻
(𝑥0, 𝑦0)) + 4𝐶𝑡) . (48)

For arbitrary 𝜖 > 0 and given 𝑡, it is easy to deduce that there
exists 𝛿 > 0 with 𝑑𝐻(𝑥0, 𝑦0) < 𝛿, which shows 𝐸𝑑𝐻(𝑥0, 𝑦0) <
𝛿, such that

𝜗 (𝑡) ≤ 𝐺
−1
(𝐺 (𝐸𝑑

2

𝐻
(𝑥0, 𝑦0)) + 4𝐶𝑡) < 𝜖

2
. (49)

Since 𝐺(𝑢) is increasing, we have that

sup
0≤𝑠≤𝑡

𝜗 (𝑠) ≤ sup
0≤𝑠≤𝑡

𝐺
−1
(𝐺 (𝐸𝑑

2

𝐻
(𝑥0, 𝑦0)) + 4𝐶𝑠)

≤ 𝐺
−1
(𝐺 (𝐸𝑑

2

𝐻
(𝑥0, 𝑦0)) + 4𝐶𝑡) < 𝜖

2
,

(50)

which shows that

sup
0≤𝑠≤𝑡

𝐸𝑑𝐻 (𝑋𝑠 (𝑥0) , 𝑋𝑠 (𝑦0))

≤ sup
0≤𝑠≤𝑡

√𝐸𝑑2
𝐻
(𝑋𝑠 (𝑥0) , 𝑋𝑠 (𝑦0)) < 𝜖.

(51)

Thus, we show𝑋𝑡(𝑥0) is mean square continuous on 𝑥0, with
respect to 𝑡 in any compact subset.Therefore, we complete the
proof.

Definition 5. The two solutions 𝑋𝑡(𝑥0) and 𝑌𝑡(𝑦0) of SSDE
(16) with initial value 𝑥0 and 𝑦0, respectively, if for any 𝑡,
𝑃(𝑑𝐻(𝑋𝑡(𝑥0), 𝑋𝑡(𝑦0)) > 0) > 0, can be called nonconfluence.

The following theorem gives the sufficient condition.

Theorem 6. Suppose that the conditions in Theorem 3 hold.
For ∀𝑥0, 𝑦0 ∈ K(R𝑑), 𝑥0 ̸= 𝑦0, we have that𝑋𝑡(𝑥0) and𝑋𝑡(𝑦0)
are nonconfluence.

Proof. Let

𝜂
𝑟
(𝑡) = 𝜎 (𝑋𝑡 (𝑥0) , 𝑟) − 𝜎 (𝑋𝑡 (𝑦0) , 𝑟) ,

𝜉
𝑟
(𝑡) =

󵄨󵄨󵄨󵄨𝜂
𝑟
(𝑡)
󵄨󵄨󵄨󵄨
2
,

𝜉 (𝑡) = 𝑑
2

𝐻
(𝑋𝑡 (𝑥0) , 𝑋𝑡 (𝑦0)) ,

𝜗 (𝑡) = 𝐸𝜉 (𝑡) .

(52)

From condition (34) and the property of the support
function, for ∀𝑟 ∈ B, we get

󵄨󵄨󵄨󵄨𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑥0)) , 𝑟) − 𝜎 (𝑓 (𝑡, 𝑋 (𝑡, 𝑦0)) , 𝑟)
󵄨󵄨󵄨󵄨

≤ 𝑑𝐻 (𝑓 (𝑡, 𝑋 (𝑡, 𝑥0)) , 𝑓 (𝑡, 𝑋 (𝑡, 𝑦0)))

≤ 𝐶𝑑𝐻 (𝑋 (𝑡, 𝑥0) , 𝑋 (𝑡, 𝑦0)) 𝜓 (𝑑
2

𝐻
(𝑋 (𝑡, 𝑥0) , 𝑋 (𝑡, 𝑦0))) .

(53)

Thus, similar to the discussion in the proof of Theorem 4, we
obtain

𝐸𝜉
𝑟
(𝑡)

= 𝐸𝜉
𝑟
(0)

+ 2𝐸∫
𝑡

0

(𝜂
𝑟
(𝑠) (𝜎 (𝑓 (𝑡, 𝑋 (𝑠, 𝑥0)) , 𝑟)

−𝜎 (𝑓 (𝑡, 𝑋 (𝑠, 𝑦0)) , 𝑟) )

+
󵄩󵄩󵄩󵄩󵄩
(𝑔 (𝑡, 𝑋 (𝑠, 𝑥0)) − 𝑔 (𝑡, 𝑋 (𝑠, 𝑦0)))

⊤
𝑟
󵄩󵄩󵄩󵄩󵄩

2

)𝑑𝑠

≥ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0)

− 2𝐶∫
𝑡

0

𝐸 (2𝑑
2

𝐻
(𝑋 (𝑠, 𝑥0) , 𝑋 (𝑠, 𝑦0)) 𝜓

× (𝑑
2

𝐻
(𝑋 (𝑠, 𝑥0) , 𝑋 (𝑠, 𝑦0)))) 𝑑𝑠

≥ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0) − 4𝐶∫

𝑡

0

𝐸𝜉 (𝑠) 𝜓 (𝐸𝜉 (𝑠)) 𝑑𝑠,

(54)

which shows that

𝜗 (𝑡) ≥ 𝐸𝑑
2

𝐻
(𝑥0, 𝑦0) − 4𝐶∫

𝑡

0

𝜗 (𝑠) 𝜓 (𝜗 (𝑠)) 𝑑𝑠. (55)

Take 𝐺(𝑢) as in the proof of Theorem 4.
By Lemma 1 (ii), we have

𝜗 (𝑡) ≥ 𝐺
−1
(𝐺 (𝐸𝑑

2

𝐻
(𝑥0, 𝑦0)) − 4𝐶𝑡) , ∀𝑡 ≥ 0. (56)

Since 𝐸𝑑2
𝐻
(𝑥0, 𝑦0) ̸= 0, from the property of 𝐺(𝑢), we obtain

𝜗 (𝑡) > 0, ∀𝑡 ≥ 0, (57)

which means that 𝑃(𝑑𝐻(𝑋𝑡(𝑥0), 𝑋𝑡(𝑦0)) > 0) > 0. Thus, the
proof is complete.

Finally, through using (34), Theorem 6, and the standard
arguments, we obtain the following theorem.

Theorem 7. Let condition (34) hold.Then for any 𝑡 > 0, 𝑥0 →
𝑋𝑡(𝑥0) defines a flow of homeomorphisms ofK(R𝑑).
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4. Conclusions

In many real dynamic systems, we are often faced with
random experiments whose outcomes might be multival-
ued. Moreover, the stochastic set differential equations may
be employed in characterizing a large class of physically
important dynamic systems which can be applied in such
areas as control, economics, and finance. In this paper, we
study the behavior of solutions to SSDEs disturbed by a
Wiener process with the non-Lipschitzian coefficients. First,
the nonexplosion theorem of the Itô type SSDEs is proven.
Then the existence and uniqueness theorem of solutions to
SSDEs is given. Moreover, the continuous dependence of
solutions to the SSDEs is investigated. Main mathematical
tool is the notion of the support function and the generalized
Bihari inequality. Besides, the present case can be extended
to the SSDEs driven by a multidimensional semimartingale
in future.
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[49] M. T. Malinowski, “Itô type stochastic fuzzy differential equa-
tions with delay,” Systems and Control Letters, vol. 61, no. 6, pp.
692–701, 2012.

[50] M. T. Malinowski, “Some properties of strong solutions to
stochastic fuzzy differential equations,” Information Sciences,
vol. 252, pp. 62–80, 2013.

[51] M. T.Malinowski, “Approximation schemes for fuzzy stochastic
integral equations,”Applied Mathematics and Computation, vol.
219, no. 24, pp. 11278–11290, 2013.

[52] X. R. Mao, Exponential Stability of Stochastic Differential Equa-
tions, Marcel Dekker, New York, NY, USA, 1994.

[53] B. Øksendal, Stochastic Differential Equations: An Introduction
with Applications, Springer, Berlin, Germany, 6th edition, 2005.

[54] N. Ikeda and S. Watanabe, Stochastic Differential Equations and
Diffusion Processes, North-Holland Publishing, Amsterdam,
The Netherlands, 1981.


