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Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of independent and nonidentically distributed random variables.We obtain a new kind of complete

moment convergence for their sums under the Lyapunov condition. Moreover, our result extends and improves the corresponding
result of the independent and identically distributed (i.i.d.) cases.

1. Introduction and Main Result

Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of random variables, and

𝑆
𝑛
= ∑
𝑛

𝑘=1
𝑋
𝑘
. If for every 𝜀 > 0, ∑+∞

𝑛=1
𝑃{|𝑋
𝑛
| > 𝜀} < ∞, then

{𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is said to converge to 0 completely.

Hsu and Robbins [1] proved that if {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is a

sequence of independent and identically distributed (i.i.d.)
random variables with 𝐸𝑋

1
= 𝜇, and 𝐸𝑋2

1
< ∞, then 𝑆

𝑛
/𝑛 →

𝜇 completely.
Erdos [2, 3] proved that if {𝑋,𝑋

𝑛
, 𝑛 ≥ 1} is a sequence of

i.i.d. random variables, then for every 𝜀 > 0, ∑+∞
𝑛=1

𝑃{|𝑆
𝑛
|/𝑛 >

𝜀} < ∞ holds if and only if 𝐸𝑋
1
= 𝜇 and 𝐸𝑋2

1
< ∞.

Obviously the sum tends to infinity as 𝜀 ↓ 0, and it is
necessary to study the convergence rate in which this occurs;
Heyde [4] proved that

lim
𝜀↓0

𝜀
2

+∞

∑
𝑛=1

𝑃 (
󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨 ≥ 𝜀𝑛) = 𝐸𝑋

2

, (1)

when𝐸𝑋 = 0 and𝐸𝑋2 < ∞.This research direction is known
as the precise asymptotics. For analogous results in more
general case, we refer the reader to [5–14] and the references
therein.

Recently, Liu and Lin [15] have introduced a new kind of
complete moment convergence and obtained the following
result.

Theorem A (see [15]). Suppose that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is a

sequence of independent and identically distributed (i.i.d.)
random variables. Then

lim
𝜀↓0

1

− log 𝜀

∞

∑
𝑛 =1

1

𝑛2
𝐸 [𝑆
2

𝑛
𝐼 {
󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨 ≥ 𝜀𝑛}] = 2𝜎

2 (2)

holds if and only if 𝐸𝑋
𝑘

= 0, 𝐸[𝑋
2

𝑘
] = 𝜎

2, and
𝐸[𝑋
2

𝑘
log+|𝑋

𝑘
|] < ∞, where 𝑘 ∈ 𝑍 and 𝑘 ≥ 1.

However, the condition of identical distribution is very
strong and rather difficult to verify in some real cases. The
following theorem gives a sufficient condition of complete
moment convergence for independent nonidentically dis-
tributed random variables.

Theorem 1. Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be independent random

variables such that 𝐸𝑋
𝑛
= 0 and 𝐸[𝑋2

𝑛
] = 𝜎

2

𝑛
< ∞, 𝑛 ∈ 𝑁.

Assume that there exists a constant 𝑐 such that |𝑋
𝑘
| ≤ 𝑐𝐵

𝑛
,

a.s., where 𝐵2
𝑛
= ∑
𝑛

𝑘=1
𝜎
2

𝑘
. Moreover, one also assumes that the

following Lyapunov condition [16, page 298] is satisfied:

lim
𝑛→+∞

𝐵
−2−𝛿

𝑛

𝑛

∑
𝑗 =1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨

2+𝛿

= 0, (3)
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where 0 < 𝛿 ≤ 1. Then, one has

lim
𝜀↓0

1

− log 𝜀

+∞

∑
𝑛 =1

1

𝑛
𝐸[

𝑆
2

𝑛

𝐵2
𝑛

𝐼
{|𝑆
𝑛
|/𝐵
𝑛
≥𝜀√𝑛}

] = 2. (4)

Remark 2. Suppose that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is a sequence

of independent and identically distributed (i.i.d.) random
variables with 𝐸[|𝑋

2+𝛿

𝑛
|] < ∞, where 0 < 𝛿 ≤ 1 is a

constant. It is easy to verify the Lyapunov condition (3) in
real applications, and so the Lyapunov condition (3) is much
weaker than the identically distributed condition. Moreover,
the Lyapunov condition (3) constrains the growth rate of
moment.

Many sequences of independent random variables satisfy
Lyapunov’s condition; here we give some examples.

Example 1. Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of independent

random variables satisfying 𝐸𝑋
𝑘
= 𝜇
𝑘
, Var𝑋

𝑘
= 𝜎
2

𝑘
, 𝑘 ≥ 1,

and 𝐵
2

𝑛
→ ∞(𝑛 → ∞). Suppose that 𝑋

𝑛
, 𝑛 ≥ 1 are

uniformly bounded; that is, there exists a constant 𝑀 such
that |𝑋

𝑛
| ≤ 𝑀 for all 𝑛 ≥ 1, and then we have

𝑛

∑
𝑘 =1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑘 − 𝜇𝑘

󵄨󵄨󵄨󵄨
2+1

≤ 2𝑀

𝑛

∑
𝑘 =1

𝐸
󵄨󵄨󵄨󵄨𝑋𝑘 − 𝜇𝑘

󵄨󵄨󵄨󵄨
2

= 2𝑀𝐵
2

𝑛
,

lim
𝑛→+∞

𝐵
−2−1

𝑛

𝑛

∑
𝑗 =1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨

2+1

≤ lim
𝑛→+∞

2𝑀𝐵
2

𝑛

𝐵2+1
𝑛

= 2𝑀 lim
𝑛→+∞

1

𝐵
𝑛

= 0,

(5)

which verifies that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} satisfies the Lyapunov

condition (3).

Example 2. Let {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} be a sequence of independent

random variables, which satisfies 𝑃(𝑋
𝑛
= 1) = 𝑝

𝑛
, 𝑃(𝑋

𝑛
=

0) = 1 − 𝑝
𝑛
, and

𝑝
𝑛
=

{{{

{{{

{

1

2
, 𝑛 = 2𝑘, 𝑘 ∈ 𝑁,

1

3
, 𝑛 = 2𝑘 + 1, 𝑘 ∈ 𝑁.

(6)

By Example 1, we know that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} satisfies the

Lyapunov condition (3).

Remark 3. Suppose that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} is a sequence

of independent and identically distributed (i.i.d.) random
variables such that 𝐸𝑋

𝑛
= 0, 𝐸[𝑋2

𝑛
] = 𝜎

2 for all 𝑛 ≥ 1,
𝐸[|𝑋
2+𝛿

𝑛
|] < ∞, where 𝛿 > 0 is a constant. Then, from

Remark 2, we know that it satisfies Lyapunov’s condition.
Therefore, by Theorem 1, we have

lim
𝜀↓0

1

− log 𝜀

∞

∑
𝑛=1

1

𝑛2
𝐸 [𝑆
2

𝑛
𝐼 {
󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨 ≥ 𝜀𝑛}] = 2𝜎

2

. (7)

Obviously, this case is the result of Liu and Lin [15].Therefore,
our condition ofTheorem 1 is different from the conditions of
TheoremA, and our result partly extends and improves those
given in Liu and Lin [15].

2. Proof of Theorem 1

In this section, we will prove Theorem 1. We first present the
following two lemmas, which play a key role in the proof of
Theorem 1.

Lemma 4 (see [17]). Suppose that {𝑋,𝑋
𝑛
, 𝑛 ≥ 1} are

independent random variables with 𝐸𝑋
𝑛
= 0 and 𝐸[𝑋

2

𝑛
] =

𝜎
2

𝑛
< ∞, where 𝑛 ∈ 𝑁. Let 𝐵2

𝑛
= ∑
𝑛

𝑗=1
𝜎
2

𝑗
, 𝐹
𝑛
(𝑥) =

𝑃((∑
𝑛

𝑗=1
𝑋
𝑗
)/𝐵
𝑛
≤ 𝑥), andΔ

𝑛
(𝑥) = |𝐹

𝑛
(𝑥)−Φ(𝑥)|, whereΦ(𝑥)

is the standard normal distribution function. If 𝐸|𝑋
𝑗
|
2+𝛿

< ∞,
𝑗 = 1, 2, . . . , 𝑛, for some 0 ≤ 𝛿 ≤ 1, then for every 𝑥,

Δ
𝑛
(𝑥) ≤ 𝐴𝐵

−2−𝛿

𝑛

𝑛

∑
𝑗 =1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨

2+𝛿

(1 + |𝑥|
2+𝛿

)
−1

(8)

holds.

Lemma 5 (see page 73 of [18]). Under the conditions of
Lemma 4, if |𝑋

𝑗
| ≤ 𝑐𝐵

𝑛
a.s., 𝑗 = 1, 2, . . . , 𝑛, where 𝑐 > 0, then

for every 𝑥 > 0,

𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑥) ≤ 2 exp(− 𝑥

2𝑐
sinh(𝑥𝑐

2
)) . (9)

Proof of Theorem 1. Similar to [15], we have
+∞

∑
𝑛 =1

1

𝑛
𝐸[

𝑆
2

𝑛

𝐵2
𝑛

𝐼 {

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛}]

= 𝜀
2

+∞

∑
𝑛 =1

𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) +

+∞

∑
𝑛 =1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡)𝑑𝑡

:= 𝐼
1
+ 𝐼
2
.

(10)

To prove Theorem 1, we only need to study 𝐼
1
and 𝐼
2
. We

will divide the proof into two steps.

Step 1. We first prove the equality as follows:

lim
𝜀↓0

1

− log 𝜀
𝜀
2

+∞

∑
𝑛=1

𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) = 0. (11)

In fact, it follows from Proposition 2.1.1 of [19] that

lim
𝜀↓0

𝜀
2

+∞

∑
𝑛=1

𝑃 (|𝑁| ≥ 𝜀√𝑛) = 1. (12)

By (12), we obtain

lim
𝜀↓0

1

− log 𝜀
𝜀
2

+∞

∑
𝑛 =1

𝑃 (|𝑁| ≥ 𝜀√𝑛) = 0. (13)

To establish the equality (11), from (13) we only need to prove
that

lim
𝜀↓0

1

− log 𝜀
𝜀
2

+∞

∑
𝑛=1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(14)
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Obviously, it follows from Lemma 4 that
󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

= 2Δ
𝑛
(𝜀√𝑛)

≤ 2𝐴𝐵
−2−𝛿

𝑛
(1 +

󵄨󵄨󵄨󵄨𝜀√𝑛
󵄨󵄨󵄨󵄨
2+𝛿

)
−1
𝑛

∑
𝑗 =1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨

2+𝛿

.

(15)

Combining (3) and (15), we get

lim
𝑛→+∞

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (16)

Since

lim
𝜀↓0

[1/𝜀
2

]

∑
𝑛=1

𝜀
2

≤ 1, (17)

it follows from Toeplitz’s lemma (page 120 of [20]) that

lim
𝜀↓0

𝜀
2

[1/𝜀
2

]

∑
𝑛 =1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0. (18)

By (18), we have

lim
𝜀↓0

1

− log 𝜀
𝜀
2

[1/𝜀
2

]

∑
𝑛 =1

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(19)

On the other hand, it follows from Lemma 5 that

𝜀
2

∑

𝑛 ≥ [1/𝜀2]

𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛)

≤ 2𝜀
2

∫
+∞

1/𝜀
2

exp(−𝜀
√𝑡

2𝑐
sinh(𝜀

√𝑡𝑐

2
))𝑑𝑡

= 2𝜀
2

∫
+∞

1

exp(− 𝑢

2𝑐
sinh(𝑢𝑐

2
))

2𝑢

𝜀2
𝑑𝑡

= 4∫
+∞

1

𝑢 exp(− 𝑢

2𝑐
sinh(𝑢𝑐

2
)) 𝑑𝑢.

(20)

Noting that

∫
+∞

1

𝑢 exp (− 𝑢

2𝑐
sinh(𝑢𝑐

2
)) 𝑑𝑢 < ∞, (21)

the inequality (20) yields

𝜀
2

∑

𝑛≥ [1/𝜀2]

𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) < ∞. (22)

By (22), we obtain

lim
𝜀↓0

1

− log 𝜀
𝜀
2

+∞

∑

[1/𝜀
2
]

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝜀√𝑛) − 𝑃 (|𝑁| ≥ 𝜀√𝑛)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
= 0.

(23)

Combining (19) and (23), we see that the equality (11) is
satisfied.

Step 2. Next, we need to prove the following equality:

lim
𝜀↓0

1

− log 𝜀

+∞

∑
𝑛 =1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡)𝑑𝑡 = 2. (24)

Obviously, it follows from Proposition 3.1 of [15] that

lim
𝜀↓0

1

− log 𝜀

+∞

∑
𝑛=1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡𝑃 (|𝑁| ≥ 𝑡) 𝑑𝑡 = 2. (25)

To establish (24), from (25) we only need to prove

lim
𝜀↓0

1

− log 𝜀

+∞

∑
𝑛=1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 = 0.

(26)

Letting 𝑥 = 𝑡/√𝑛 − 𝜀 and 𝐿
𝑛
= (𝐴∑

𝑛

𝑗=1
𝐸|𝑋
𝑗
|
2+𝛿

)/𝐵
2+𝛿

𝑛
,

we apply Lemma 4 to obtain

∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

= ∫
+∞

0

2√𝑛 (𝑥 + 𝜀)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ √𝑛 (𝑥 + 𝜀))

−𝑃 (|𝑁| ≥ √𝑛 (𝑥 + 𝜀))

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
√𝑛 𝑑𝑥

= 2∫
+∞

0

𝑛 (𝑥 + 𝜀) 2Δ
𝑛
(√𝑛 (𝑥 + 𝜀)) 𝑑𝑥

≤ 2∫
+∞

0

𝑛 (𝑥 + 𝜀) 𝐿
𝑛

1

1 + [√𝑛 (𝑥 + 𝜀)]
2+𝛿

𝑑𝑥.

(27)

If 𝑛 ≤ [1/𝜀
2

], then it follows from (3) that

∫
1/√𝑛

0

𝑛 (𝑥 + 𝜀) 𝐿
𝑛

1

1 + [√𝑛 (𝑥 + 𝜀)]
2+𝛿

𝑑𝑥

≤ ∫
1/√𝑛

0

𝑛 (𝑥 + 𝜀) 𝐿
𝑛
𝑑𝑥

=
1

2
𝑛𝐿
𝑛
(𝑥 + 𝜀)

2

󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1/√𝑛

0

≤
3

2
𝐿
𝑛
󳨀→ 0 (𝑛 󳨀→ ∞) ,

∫
1

1/√𝑛

𝑛 (𝑥 + 𝜀) 𝐿
𝑛

1

1 + [√𝑛 (𝑥 + 𝜀)]
2+𝛿

𝑑𝑥

≤ ∫
1

1/√𝑛

𝑛
−𝛿/2

(𝑥 + 𝜀)
−1−𝛿

𝐿
𝑛
𝑑𝑥
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≤ ∫
1

1/√𝑛

𝑛
−𝛿/2

𝑥
−1−𝛿

𝐿
𝑛
𝑑𝑥

= 𝐿
𝑛
𝑛
−𝛿/2

[−
1

𝛿
𝑥
−𝛿

]
󵄨󵄨󵄨󵄨󵄨󵄨󵄨

1

1/√𝑛

≤
1

𝛿
𝐿
𝑛
󳨀→ 0 (𝑛 󳨀→ ∞) ,

∫
+∞

1

𝑛 (𝑥 + 𝜀)
1

𝑛1+𝛿/2(𝑥 + 𝜀)
2+𝛿

𝑑𝑥

= 𝑛
−𝛿/2

∫
+∞

1

(𝑥 + 𝜀)
−1−𝛿

𝑑𝑥 󳨀→ 0 (𝑛 󳨀→ ∞) .

(28)

Hence, by (27) and (28), we have that for 𝑛 ≤ [1/𝜀
2

], the
following holds:

∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 󳨀→ 0 (𝑛 󳨀→ ∞) .

(29)

Noting the fact that the weighted average of a sequence
that converge to 0 also converges to 0, we have

[1/𝜀
2

]

∑
𝑛 =1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 󳨀→ 0,

as 𝜀 󳨀→ 0,

(30)

and so

lim
𝜀↓0

1

− log 𝜀

[1/𝜀
2

]

∑
𝑛=1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

= 0.

(31)

If 𝑛 ≥ [1/𝜀
2

], it follows from (8) and (3) that

∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

≤ ∫
+∞

1

4𝑡𝐴𝐵
−2−𝛿

𝑛
(1 + |𝑡|

2+𝛿

)
−1
𝑛

∑
𝑗 =1

𝐸
󵄨󵄨󵄨󵄨󵄨
𝑋
𝑗

󵄨󵄨󵄨󵄨󵄨

2+𝛿

𝑑𝑡

≤ 4𝐿
𝑛
∫
+∞

1

1

𝑡1+𝛿
𝑑𝑡 󳨀→ 0 (𝑛 󳨀→ ∞) .

(32)

Obviously, by (32), we get

lim
𝜀↓0

1

− log 𝜀

+∞

∑

𝑛= [1/𝜀
2
]

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡

= 0.

(33)

Combining (31) and (33), we have

lim
𝜀↓0

1

− log 𝜀

+∞

∑
𝑛 =1

1

𝑛
∫
+∞

𝜀√𝑛

2𝑡

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑃(

󵄨󵄨󵄨󵄨𝑆𝑛
󵄨󵄨󵄨󵄨

𝐵
𝑛

≥ 𝑡) − 𝑃 (|𝑁| ≥ 𝑡)

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨
𝑑𝑡 = 0,

(34)

which implies that (24) is satisfied.

Therefore, from (11) and (34), we see that (4) is true. This
completes the proof of Theorem 1.
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